PRESENTED

TO

W. H. Cole Esque M. A.

Asst: Supt 1st Grade Great Trig & Survey

BY AUTHORITY OF MIS EXCELLENCY THE VICEROY

AND

GOVERNOR GENERAL OF INDIA

IN COUNCIL

A. D. 1871.

GEOGRAPHICAL No. 31.

INDIA OFFICE, London, 6th December 1871.

To

HIS EXCELLENCY THE RIGHT HON'BLE THE GOVR. GENL. OF INDIA IN COUNCIL.

My Lord,-

With reference to your Excellency's Despatch dated the 3rd of August (No. 7) 1871. I have now to inform you that two hundred copies of the first volume of Colonel Walker's account of the operations of the Great Trigonometrical Survey of India have arrived, and that eighty-one have been distributed in accordance with list A, attached to the letter from Major Montgomerie, which was transmitted with your despatch. A copy has also been sent to the Meteorological Office. Each copy bears an inscription to the effect that it is presented under my authority.

2. The account of the origin and early operations of the Survey in the first part of this volume, forms a narrative of general interest; and the exhaustive discussions on the standards of length, and on the base lines measured in India give a scientific importance to the publication of work, which will be appreciated throughout Europe. I have caused my sense of the value of his labors to be conveyed to Colonel Walker, who is now on furlough, and I request that Mr. Hennessey, Mr. Cole and Captain Herschel, may be informed that I fully appreciate the value of the assistance they have rendered to Colonel Walker in the preparation of the work. Their devotion to the service, and their accurate and conscientious discharge of very laborious duties, is most praiseworthy.

I have &c. (Sd.) ARGYLL.

No. 36.

Copy forwarded to the Officiating Superintendent Great Trigonometrical Survey, (with reference to his letter No. 79-620 dated 19th May last) for information and communication to the Officers concerned.

By order

DEPARTMENT OF AGRICULTURE, REVENUE AND COMMERCE (SURVEYS) Fort William 17th January 1872.

(Sd.) P. WHALLEY, Offg. Under Secy. to the Govt. of India.

Engraved at the Surveyor General's Office. Calcutta Nov! 1870.

.

ACCOUNT OF THE OPERATIONS OF

THE GREAT TRIGONOMETRICAL SURVEY OF INDIA

VOLUME I.

THE

STANDARDS OF MEASURE

AND THE

BASE-LINES.

ALSO AN INTRODUCTORY ACCOUNT OF

THE EARLY OPERATIONS OF THE SURVEY

DURING THE PERIOD 1800-1830.

BY COLONEL J. T. WALKER, R.E., F.R.S., &c., &c.,

SUPERINTENDENT OF THE SURVEY.

Dehra Doon: PRINTED AT THE OFFICE OF THE GREAT TRIGONOMETRICAL SURVEY

M. J. O'CONNOR.

1870.

۰.

QB 296 I43 V.1

,

.

.

Digitized by Google

INDEX CHART OF	THE .	Friangulati	ION OF	[NDIA	••	••	••	••	Facing tit	le page.
ERRATA	••	••	••	••	••	••	••	••	••	VIII
PREFACE	••	۰.	••	••	••	••	••	••	••	IX

INTRODUCTION.

1.	Origin and proposed objects of the Survey	xv
2.	Commencement of Operations	XVII
3.	The instruments and the methods of observation and reduction	XVIII
4.	Geodetic investigations, a necessary part of the operations	XIX
5.	Determinations of the lengths of arcs of great circles perpendicular to a meridian	xx
6.	Determinations of the lengths of meridional arcs	XXII
7.	Injury to the Great Theodolite	XXV
8.	The General Triangulation of the southern Peninsula up to the parallel of 16°	XXVI
9.	Objections raised to the system of operations; proposals for an astronomical instead of a geodetic basis for the Survey of India	f xx v11
10.	Geographical Operations	ib.
11.	The Survey transferred from the control of the Madras Government to that of the Government of India	; XXVIII
12.	Continuation of the narrative to the death of Colonel Lambton in 1823; the operations embracing the country between the parallels of 16° and 19°, and the meridians of 77° and 80°	XXX
13.	The Operations during the period 1823-30	XXX 111
14.	Concluding Observations	XXXIV

SECTION I. THE STANDARDS OF MEASURE.

Chapt	er I.	. Description of	the Standa	rds.							•
	1. ¹	Cary's three feet	; b rass sca le		••	••	••	••	••	••	(1)
1	2.	The 10-feet iron	standard ba	urs A a	and B , a	and the 6	inch bras	s scales A	and B	••	(2)
	3, [`]	The 10-feet steel foot IF	Standard I	_s , the	10-feet 	bronse S	Standard	B_{B} , and the \cdots	he Standa	rd steel	

Digitized by Google

1.	Preliminary Observations	
2.	The Expansion of the 10-feet Standard A	••
8.	Re-determination of the Expansion of Standard A	••
4.	Adoption of a rate of expansion varying with the temperature for the 10-feet Standay	••• ••1 •
5.	The Expansion of the 10-feet Standard B	
6.	The Expansions of the 6-inch brass scales A and B and of the steel foot IF	••
7.	On the possible increments of expansion of the steel and bronze Standards I_s and I_s and ordinary increase of temperature	for
8.	Recapitulation of the adopted Expansions	••
oter 1	III. Comparisons of the Standards.	
1.	The influence of Personal Equations	• •
2. .	Comparisons of the 10-feet Standards A and B in 1834-35	••
8.	Comparisons of the 10-feet Standards B , I_s , I_B and Ordnance Survey O ₁	••
4.	Comparisons of the 10-feet Standards A, I, and I, in 1867-70	••
5.	Examination of the comparative lengths of the 10-feet Standards A and B. as dedu	uced
•	from the observations of 1834-35 and 1865-70	••
6.	Final Results. The relations of the Indian 10-feet Standards to each other and to Principal European Standards of Length	the
7.	The relations of the Foot IF, and its sub-divisions, to the 10-feet Standard A	••
8.	The relations of the 6-inch brass scale A , and of the corresponding scales which	are
-	employed in the measurements of the base-lines, to the 10-feet Standard A	••
9.	The relation of inch [7.8] of Cary's 3-feet brass scale to the 10-feet Standard A	••
	SECTION II. THE MEASUREMENT OF THE BASE-LINES.	
oter I	IV. Pr. liminary Observations	•.•
oter I	V. The Base-Lines which were measured with Chains.	
1.	Description of the Chains	••
2.	The method of using the Chains	•
8.	The Localities of the Base-Lines	••
А	The Thermal Expansions of the Chains	

ii

	CONTENTS.	iii
5.	Comparative lengths of the old chain and the new or standard chain	(41)
6.	Investigations of supposed variations in the length of the standard chain	(41)
7.	The impossibility of ascertaining the unit of length of the chain base-lines otherwise than by re-measurement	(43)
Chapter V	71. The Colby Apparatus of Compensation Bars and Microscopes.	
1.	Description of the Apparatus	(46)
2.	The method of using the Apparatus which has been followed in the operations of this Survey	(48)
3.	Comparisons of the Compensation Bars and Microscopes with the 10-feet and 6-inch standards	(51)
4.	The lengths of the base-lines, the time occupied in their measurement, and the verifica- tory triangulation	(53)
Chapter 1	VII. On the errors of the Compensation Bars and Microscopes.	
1.	Preliminary Observations	(55)
. 2.	On the construction of the compensation bars, and the measures taken for equalizing the thermal capacities of the components	(56)
3.	Theory of the changes in the length of a compensation bar, relatively to the normal length of a standard bar	(58)
4.	The data for the investigation of the changes in length of the Indian compensation bars, relatively to the length of the 10-feet standard A	(60)
Chapter	VIII. Investigation of the probable errors of the Cape Comorin base-line.	
1.	The fluctuations of the compensation bars found to be due to the relative positions- with regard to external thermal influences-rather than to the respective thermal capacities of the brass and the iron components	(62)
2.	Preliminary arrangements; programme of operations	(63)
3.	Formation of the equations of condition for determining the relative length of the com- pensation bar B to the Standard	(65)
4.	Determination of the error of compensation of har B	(67)
5.	Determination of the normal excess of the mean of all the compensation bars over the standard at 62° F: probable errors : thermometric errors	(69)
б.	Determination of the actual lengths of the compensation bars during the measurements	(72)
7 .	Determination of the lengths of the compensation microscopes during the measure- ments; probable errors	(74)

.

Digitized by Google

.

8.	. Determination of the length of the base-line allowing for the effects of the thermal inequalities and the imperfect compensation of the bars; probable errors	(75)
9.	Determination of the length of the base-line by the usual method; probable errors	(76)
10.	Determination of the probable errors of each of the several operations of the base-line and thence the probable error of the measurement	(78)
11.	On the observed thermal inequalities of the components of compensation bar B during the comparisons with the standard and during the measurement of the base-line	(79)
Chapter I	X. Determination of the probable error of a base-line, by comparing the sections of by triangulation.	the line
1.	Preliminary Observations	(83)
2.	The probable errors of the Principal Angles	,,
3.	Investigation of the probable errors of the trigonometrical ratios	(84)
4.	Application of the preceding investigation	(86)
5.	The probable errors of the ratios of the linear measurements	(89)
6.	Determination of the average probable error of the differences between the ratios given by the triangulation and those by the linear measurements, and thence the average probable error of the linear measurements	33
Chapter X	K. General conclusions on the probable errors of base-lines measured with the Com Apparatus.	p ens ation
1.	The Dehra Doon base-line	(92)
2.	Recapitulation of the results of Chapters VIII and IX; conclusions regarding the probable errors of the measurements with the Compensation Apparatus, excluding the errors of the standards	.,
3.	Influence of the probable errors of unit, temperature and co-efficient of expansion of	-
	the standards of measure on the lengths of the base-lines	(94)
4.	Final conclusions. Equal weights given to all the base-lines	(96)
5.	Progressive and accidental changes in the lengths of the compensation bars	(98)
Chapter X	(I. On the calculations for the reduction of the base-lines.	
1.	General details	(101)
2.	Reduction of the measured length of a base to the length at the mean sea level	(102)
3.	Verification of the linear measurements by triangulation between the sections of the base-lines	(108)

Digitized by Google

iv

THE CALCUTTA BASE-LINE

.

Preliminary Statement	•••	•••	I2	Introduction	•••		I3
Bar Comparisons	•••	•••	I4	Length measured with Bars	•••	•••	I
Microscope Comparisons	•••	•••	I12	Length measured with Microsco	pes	•••	I
Details of the Measurement	t	•••	I14	Reduction to Mean Sea Level	•••	•••	I1
Final lengths in terms of S	itandard A		I22	Description of Stations	•••		I

THE DEHRA DOON BASE-LINE

Preliminary State	ment	•••	•••	II2	Introduction	••• .	•••	II3
Bar Comparisons,	1st Measu	rement	•••	II4	Lengths measured with	Bars, 1st M	easurement	II10
Do.	2nd d	0	•••	II1	Do.	2nd	do.	II15
Microscope Comp	arisons, 1s	t Measurem	ent	II16	Lengths measured with	Microscopes	, 1st Meast.	II1
Do.	2nd d	.0	•••	II22	Do.		2nd do.	II24
Details of the 1st	Measuren	nent	•••	II25	Details of the 2nd. Mea	surement	•••	II33
Beduction to Mea	n Sea Lev	el, 1st Meas	urement	II42	Reduction to Mean Sea	Level, 2nd	Measurement	II
Final lengths in t	erms of St	andard A	•••	II	Verificatory Triangulati	on	•••	II45
Comparison betwe	en triangu	lated & mea	sured valu	es II46	Description of Stations		•••	II47

THE SIRONJ BASE-LINE

Preliminary Statement	•••	•••	III2	Introduction	•••		•••	III3
Bar Comparisons	•••	•••	III4	Length measured with	n Bars	•••	•••	III12
Microscope Comparisons	•••	•••	III_ ₁₃	Length measured with	h Microsco	opes	•••	III_17
Details of the Measurement	•••	•••	III17	Reduction to Mean S	ea Level		•••	III25
Final length in terms of Stand	lard A	•••	III25	Description of Station	15	•••	•••	III26

THE BIDER BASE-LINE

Preliminary Statement		•••	IV2	Introduction	•••	•••	•••	IV3
Bar Comparisons	•••	•••	IV_4	Lengths measured with	n Bars	•••	•••	IV_12
Microscope Comparisons	•••	•••	IV13	Lengths measured with	n Microsc	opes	•••	IV_16
Details of the Measurement	•••	••••	IV16	Reduction to Mean Sea	a Level	•••	•••	IV24
Final lengths in terms of Stan	dard A	•••	IV24	Verificatory Triangulat	tion	•••	•••	IV25
Comparison between triangulate	ed & measu	red values	1V26	Description of Station	8	•••	•••	IV27

THE SONAKHODA BASE-LINE

Preliminary Statement	•••	•••	V2	Introduction	•••	•••	V3
Bar Comparisons	•••	•••	V_4	Lengths measured with Bars	•••	•••	V_16
Microscope Comparisons	•••	•••	V7.	Lengths measured with Micros	copes	•••	V_19
Details of the Measurement	•••	•••	V0	Reduction to Mean Sea Level		•••	V7
Final lengths in terms of Stan	dard A	•••	V8	Verificatory Triangulation	•••	•••	V20
Comparisons between triangula	ted & mea	sured valu	Description of Stations		•••	V	

THE CHACH OR ATTOK BASE-LINE

Preliminary Statement	•••	•••	VI2	Introduction	•••	•••	VI3
Bar Comparisons	•••	•••	VI_4	Lengths measured with Bars	•••	•••	VI16
Microscope Comparisons	•••	•••	VI	Lengths measured with Micros	scopes	•••	VJ20
Details of the Measurement	•••	•••	VI	Reduction to Mean Sea Level	•••	•••	VI28
Final lengths in terms of Star	ndard A	•••	VI8	Verificatory Triangulation	•••	•••	VI_29
Comparison between triangula	ted & meas	ured value	Description of Stations	•~		VI1	

THE KARACHI BASE-LINE

Preliminary Statement	•••	•••	VII_2	Introduction		• • •	•••	VII_3
Bar Comparisons	•••	•••	VII_4	Lengths measured with	Bars	•••	•••	VII_18
Microscope Comparisons	•••	•••	VII_19	Lengths measured with	Microsc	op es	•••	VII1
Details of the Measurement	•••	•••	VII22	Reduction to Mean Sea	Level	•••	•••	VII27
Final lengths in terms of Star	ndard A	•••	VII27	Verificatory Triangulatio	n	•••	•••	VII_28
Comparison between triangulat	Description of Stations		•••	•••	VII30			

,

•

.

THE VIZAGAPATAM BASE-LINE

Preliminary Statement	•••	••••	VIII_2	Introduction	• •		•••	VIII3
Bar Comparisons	•••	•••	VIII_4	Lengths measured wi	ith Bars		•••	VIII_16
Microscope Comparisons	•••	•••	VIII_17	Lengths measured wi	th Micros	scopes	•••	VIII_19
Details of the Measurement	•••	•••	VIII_20	Reduction to Mean S	Sea Level		•••	VIII_27
Final lengths in terms of Sta	undard A	•••	VIII_27	Verificatory Triangul	lation		•••	VIII_28
Comparison between triangul sured values	ated and	mea- }	VIII_ ₃₀	Description of Statio	ns		•••	VIII_31

THE BANGALORE BASE-LINE

Preliminary Statement	***	•••	IX2	Introduction	•••	İXj
Bar Comparisons	•••	•••	1X_4	Lengths measured with Bars	•••	IX
Microscope Comparisons	•-•		IX32	Lengths measured with Microscopes	•••	IX36
Details of the Measurement		•••	IX37	Reduction to Mean Sea Level	•••	1X
Final lengths in terms of Star	ndard A		IX	Verificatory Triangulation	•••	IX
Comparison between triangula sured values	ted and n	nea- } }	IX_46	Description of Stations	•••	IX_47

THE CAPE COMORIN BASE-LINE

Preliminary Statement		X2	Introduction	•••	х_ ₃
Bar Comparisons	•••	X_4	Bar Lengths		X_13
Microscope Comparisons	•••	x	Table of Microscope Errors		X_19
Lengths measured with Microscope	8	X2	Extracts from the Field Book		X_23
Compass Measurements		x 31	Reduction to Mean Sea Level		X32
Final lengths in terms of Standard	Α	x 33	Description of Stations	•••	X34

APPENDICES

PAGE

		· · · · · · · · · · · · · · · · · · ·		Page
No.	1.	Description of the method of comparing, and the apparatus employed		1
**	2.	Comparisons of the Lengths of the 10-feet Standards A and B, and determinations of the Dif	ference	•
		of their Expansions		3
"	3.	Comparisons between the 10-feet Standards $ _B _S$ and $A \dots \dots \dots \dots \dots$	•••	8
"	4.	Comparisons of the 6-inch Brass Scales of the Compensated Microscopes		13
"	5.	Determination of the Length of the Inch [7.8] on Cary's 3-foot Brass Scale		20
,,	6.	Comparisons between the 10-feet Standard Bars Is and A for determining the Expansion of	of A	24
"	7.	Final determination of the Differences in Length between the 10-feet Standards $ _B _S$ and	Α	87
22	8.	On the Thermometers employed with the Standards of Length		39
	9.	Determination of the Longths of the Sub-divisions of the Inch [a.b]		50
"	10.	Report on the Practical Errors of the Measurement of the Cape Comorin Base	•••	52

PLATES

I to XVI appertain to pages (66) and (70) XVII to XXXII ,, ,, (70) XXXIII ,, ,, (81)

.

viii

ERRATA.

PAGE.					
XIX,	line 3 from bottom	for	Geodotic	read	l Geodetic
XXIV,	"4,"	"	o″'29	"	o″'19
xxx,	" 14 from top	"	chieftans	"	chieftains.
XXXI,	"10 "	"	in course	"	in the course.
XXXII,	foot note	after	this section	dele	1.
(13)	3rd para. line 3	for	proof the	read	proof of the.
(17)	line 7 from top	"	The expansion	"	The coefficient of expansion.
(18)	"14 from bottom	"	the expansion	"	the change of expansion.
(20)	"17 "	"	practise	"	practice.
(27)	"13 "	"	standard yard	"	standard yard at 62° F.
(28)	head of last column	"		,,	
(44)	line 2 from below		a greater length	,,	a shorter length.
(59)	. 13 from above		$T + 62^{\circ}$		$T_{a} + 62^{\circ}$
ih.	12 from below	"	$\mathbf{X} = \mathbf{B} - \mathbf{A}$		x = B - A
ю. •Ъ	" 1 <u>0</u>	"	$\mathbf{X} = \mathbf{B}' - \mathbf{A}' \mathbf{k} \mathbf{c}$	"	x = B' - A' & c
(73)	equation (20)	" "	$51.4\left(\frac{[0t]}{1}+1.1\right)$	"	$\left(51.4 \frac{\left[0.6\right]}{1.1} + 1.1\right)$
• •					
"	"	"	$\left(2.9\frac{\lfloor o^L \rfloor}{r} - 0.1\right)de'_i$	"	$\left(2.9\frac{\lfloor 0^{l} \rfloor}{r} + 0.1\right) de'_{i}$
(74)	line 5 from above	"	12°	"	7 °
(84)	last line	"	[an.a]	>>	[an.u]
(85)	equation (25)	» -	$\frac{\rho^2}{F^2} \times e.m. s^2$ of F	"	$\frac{\rho^2}{F^3} \times p.e.^3$ of F
(88)	2nd line of foot note	••	of end sections	••	of the end sections
(103)	line 8 from below		form Madras		from Madras
ìII ,	last line		43'	.,,	43 min.
		"		"	
v _2	line 3	"	Rámgunj	n	Rámganj
V32	line 5	"	Station γ	"	Auxiliary Station γ
	0		Station &		Auxiliary Station &
VIII	line 12 of Introduction	" 1,,	at the end of the 173rd set	" "	near the end of the 266th set
VIII	last line	.,	$+ 52.0 dE_{a}$	••	- 52.0 dE
7			· · ·		5 2
*****			$(dx)^2$		$(dx)^3$
VIII_3(hrst line of foot note	"	$+\frac{1}{2x^2}$	"	
x	lines 4, 6, 8 of foot note	"	thermometer iron	"	thermometer on iron
Ŭ	line () de		a cab and carb		hash and have
x "	foot note	" -	2400 unu 4210 Y	"	7347 and 7349
- <u>-</u> 19	TOUR HOLE	-	~ 19	"	<u> </u>
Annondia	on mana 1 lant line for		- Ling in collars above the obj	.	logg

Appendices, page 1 last line for working in collars above the object glass

"

32

read which are usualy attached to the bars

49 last line for practice read practice 50 5th line from below , unite ,, unit

ADDENDA ET CORRIGENDA.

Page I____3 The height adopted for South-End Calcutta base-line, 13'0 feet, is the value above mean sea level at Karáchi, and is deduced through the spirit levelling operations from Karáchi viâ Kydd's Dock Calcutta to the terminus of the base-line above named. Page II___3 The East-End of Dehra Doon base-line was connected with mean sea level at Karáchi by the

Page II_3 The East-End of Dehra Doon base-line was connected with mean sea level at Karáchi by the spirit levelling operations in 1862 (see page $1I_{47}$).

Page VI_{3} The South-West-End of Chach or Attock base-line was connected with mean sea level at Karáchi by the spirit levelling operations in 1860 (see page VI_{31}).

Page VII____8 It may be understood from what is stated on this page, that the height of the base-line adopted in reducing the measured length to mean sea level, was deduced by means of the vertical angles connecting the base-line with Manora tide-gauge; whereas, the values of height employed are those obtained from the spirit levelling operations of 1860 (see page VII___30). J. B. N. H.

Digitized by Google

Digitized by Google

PREFACE.

THE Chart which faces the title page of this volume is an Index to the principal triangulation and the geodetic operations of the Great Trigonometrical Survey of India, from the commencement of the 'Mathematical and Geographical Survey of the Peninsula' in the year 1800, up to the termination of the field season of 1869-70.

The net-work of triangulation in the southern Peninsula, which is shown on the chart by fine lines, was executed during the three first decades of the progress of the Survey, and was completed before the year 1830. Up to that year the instruments which were respectively used for the linear and the angular measurements, though good for the time, were much inferior to those which were then constructed for the Survey, under Colonel Everest's superintendence, in England, and which even at the present time are scarcely surpassed by the best modern instruments. And, with the introduction of the new instruments, a new system of observation was introduced, which was more rigorous and refined and better calculated to give accurate and precise results than the less laborious and unsystematic methods of procedure which had been previously followed.

Thus the year 1830 marks an epoch of transition in the history of the Trigonometrical Survey of India which is of very considerable importance. The Index Chart has therefore been prepared so as to permit of the operations before and after that year being readily distinguished; it shows that the net-work system of triangulation was succeeded by a system of chains of triangles, following certain obligatory meridians and parallels and the coast and frontier lines, and forming what is known as 'the gridiron system of triangulation'. These chains are indicated on the chart by strong lines. In order that the chart—which is necessarily on a very small scale, viz. $\frac{I}{6,082,560}$ — might not be confused with too many details, all secondary triangulation—both before and after the year 1830—has been omitted, with the exception of that to the peaks of the Himalayan and the Soolimani mountain ranges, which lie beyond the chains of the principal triangles. But the stations at which the latitude or the azimuth has been determined by astronomical observations, and those at which pendulums have been swung to determine the force of gravity, are all shown.

Of the several operations the only portions which have hitherto been published in detail are those relating to the central meridional chain of triangles which extends from Cape Comorin to the Himalayas generally known as 'the Great Arc'—and the triangulation which was executed in the southern parts of the Peninsula, shortly after the commencement of the Survey. By far the greater portion of the work has not yet been published in detail, and a very large portion has not been published in any shape whatever.

PREFACE.

For many years it was the custom to prepare three copies of the results of the operations, in manuscript, one for the use of the Geographer to the India Office in London, another for the Surveyor General's Office in Calcutta, and a third for the Head Quarter's Office of the Trigonometrical Survey in Dehra Doon; copies of such portions as were required for the use of Topographical Surveyors were also prepared in manuscript whenever wanted. But of late years preliminary charts of the triangulation, containing full numerical data of the latitudes, longitudes, azimuths and distances of the stations and other permanent points of reference, have been photozincographed for general use. Thus the requirements of all the persons who were most directly interested in the results of the operations have been fully satisfied, and any further publication of the result has been postponed until the operations were sufficiently advanced to permit of final results being arrived at.

It is obvious that every operation of a survey must necessarily be fallible, and therefore that all newly obtained facts of observation, that are susceptible of being combined with those which have been previously acquired, are liable to disturb the results which were previously arrived at: every additional base-line and every new chain of triangles must necessarily exercise some influence on the operations generally, and more particularly on those in their immediate neighborhood. Thus therefore before a triangulation can be finally reduced and all it's parts harmonized, it is necessary either that the whole of the angular and of the linear measurements shall have been completed, or that they shall have so nearly approached completion that what remains to be done may hereafter be fitted into what has already been done, without any serious violation of principle. It is only of late years that the operations of this Survey have been sufficiently advanced towards completion to justify the commencement of the final reductions; these reductions are however being now proceed with, and the time has arrived when publication may be commenced.

The present volume is intended to be the first of a series which, when completed, will give full details of the operations of this Survey, from the preliminary stage of the actual observations and measurements to the most probable—and therefore the final—results. It commences with a general account of the early operations, or those executed during the first thirty years of the existence of the Survey, mostly under the superintendence of Colonel Lambton, but partly under Captain Everest. These operations must eventually be reduced on the basis of the modern triangulation, but this will probably be one of the last stages to be taken in the general reduction of the operations of the Survey. The remainder of this volume is devoted to a consideration of, *first*, the Standards of Length, their thermal expansions and their relations to the European Standards, and, *secondly*, the Base-Lines, both those which were measured with chains before the year 1830, and those measured with the apparatus of compensation bars and microscopes after that year. It is intended that the details and results of the triangulation and of the astronomical and the pendulum observations shall be given in the subsequent volumes.

As regards the present volume I must express my obligations to Colonel Thuillier, the Surveyor General of India, for the accompanying Index Chart of the operations of this Survey, which he kindly undertook to have engraved at his office; also to Major General Sir Henry James, Director of the Ordnance Survey of Great Britain and Ireland, for permitting certain standards, which were constructed in 1864 for the Trigonometrical Survey of India, to be compared, in his Office, with the Ordnance and with other European standards.

x

PREFACE.

To Captain A. R. Clarke R.E. of the Ordnance Survey, I am very much indebted for his most elaborate and exact comparisons of the new Indian standards of length with those of the Ordnance Survey, for his determinations of the thermal expansions of the principal of these standards, and for calibrating a new thermometer as a standard of reference for this Survey. The whole of these operations are fully described in sections XVI, XVIII, XIX and XX of his *Comparisons of the Standards of Length of England*, *France*, *Belgium*, *Prussia*, *Russia*, *India and Australia*; *London* 1866. Captain Clarke's labors have materially facilitated the operations in this country, and have not only relieved us of much labor, but have supplied us with results which apparently possess the utmost accuracy that is practically attainable.

To the Officers of the Great Trigonometrical Survey who have had a share in the operations discussed in this volume, I am most indebted to J. B. N. Hennessey, Esquire, who has for many years past been in charge of the Computing Office at the Head Quarters of the Department, and whose constant self-devotion to his work, and accurate and conscientious discharge of his duties, I cannot praise too highly. He has either supervised or taken a principal share in the whole of the comparisons of standards which have been made in India since the year 1866, and are here described; he has also re-investigated the factor of expansion of the principal standards of length of this Survey, his account of which operation is given in Appendix No. 6; and he has superintended the reduction of most of the ten base-lines of which the details are given in this volume, and has prepared the whole of them for publication. In these duties he has received much and valuable assistance from W. H. Cole, Esquire M. A., to whom several of the appendices to this volume are due.

To Captain J. P. Basevi, R.E., I am indebted for the Appendix on the Practical Errors of the Measurement of the Cape Comorin base-line; he supervised the operations of the measurement, which were purposely so conducted as to ascertain, in every possibly way, the probable errors of the linear measurements with the compensation apparatus. To Captain J. Herschel, R.E., I am also much indebted for his assistance in the practical operations of that base-line, and in the reduction of the observations, in which his ready aid and thoughtful suggestions were always very valuable.

Dehra Doon, 1st December 1870. J. T. WALKER, Colonel, R.E., Superintendent Great Trigonometrical Survey of India. •

Digitized by Google

AN ACCOUNT OF THE EARLY OPERATIONS

OF THE

GREAT TRIGONOMETRICAL SURVEY OF INDIA,

UP TO THE YEAR 1830.

· · ·

•

.

AN ACCOUNT OF THE OPERATIONS FROM THE COMMENCEMENT OF THE SURVEY TO THE YEAR 1830.

1.

Origin, and proposed objects of the Survey.

Towards the close of the year 1799, Major Lambton, of H. M's. 33rd Regiment of Foot, drew up a project for a Geographical Survey of the southern Peninsula of India, from the coast of Coromandel to the Malabar coast, which was submitted, with the approval and recommendation of his Commanding Officer, the Hon'ble Colonel Wellesley—afterwards the great Duke of Wellington—to the consideration of Lord Clive—afterwards Earl Powis—who was then Governor of Madras. The Trigonometrical Survey of India owes its origin to Major Lambton's proposals, and to the circumstance that at the time when they were submitted to the Madras Government, a large accession of territory, in the centre of the Peninsula, which opened a free communication with the Malabar Coast, had been recently acquired, by the success of the British arms in the Mysore Campaign; thus the Government was readily convinced of the necessity for a survey to be undertaken with the object of furnishing a basis for the geography of the Peninsula, and for connecting the local surveys which were being commenced in the newly acquired provinces, with those of other portions of the Madras Presidency which had been completed or were then in progress.

The earliest document in the records of this Department is a letter—dated 10th February 1800—from 'Brigade-Major' Lambton to the Madras Government, communicating his proposals for a 'Mathematical and Geographical Survey' to be extended across the Presidency under his direction, "with a view to determine the exact positions of all the great objects "that appeared best calculated to become permanent geographical marks, to be hereafter guides "for facilitating a general survey of the Peninsula."

In this letter he alludes to previous correspondence on the subject, which had led to his being called on to submit a definite scheme of operations, and he observes that "the utility of "such a work, and the advantage and information which the nation would derive therefrom, "are so clearly understood that no argument is necessary to demonstrate it's advantages. "The Surveyors of particular districts will be spared much labor when they know the position "of some leading points to which they can refer, because when these points are laid down in "the exact situations in which they are upon the globe, all other objects of whatever deno-"minations, such as towns, forts, rivers &c., which have a relation to those points, will also "have their situations true in Latitude and Longitude."

He then proceeds to give an exposition of the principles on which he proposes to carry out the operations. And first he discards all attempts to fix the positions of objects by astronomical observations only, observing that such determinations are liable to great inaccuracies —" three, four, or perhaps ten minutes"—unless the observations are very numerous at every station. He then proposes to execute a triangulation emanating from a measured base-line,

and verified from time to time by other such base-lines; all the most conspicuous geographical marks in the Peninsula were to be referred to the Astronomical Observatory at Madras, by a net of triangles which was to be thrown over the entire surface of the country; the lengths of the sides of all the triangles were to be computed from the base-lines, and the azimuths of certain sides to be determined by astronomical observations; thus data would be forthcoming for calculating the latitudes and longitudes of the trigonometrical stations with reference to the corresponding elements of the Madras Observatory.

But in order that the results of the triangulation might be correctly employed in determining the spheroidal co-ordinates of the trigonometrical stations, it was necessary that the figure of the earth, and the length of the polar or of the equatorial axis, should be accurately known. Major Lambton was fully aware that at that time these elements were not known with sufficient accuracy for operations of such extent and magnitude as those which he was about to undertake, and that it would be incumbent on him to execute a geodetic survey pari passu with his geographical survey, as a necessary preliminary to the determination of the elements of the trigonometrical stations and other geographical marks. He appears moreover to have acquired an impression, from the results of certain pendulum observations (by whom taken is not stated) in inter-tropical latitudes, that there is a sudden abnormal diminution of the force of gravity in the parallel of 10° north of the equator, and consequently that "a degree on the meridian " from that parallel to the equator must be very short compared with a degree immediately to "the northward of 10°". Hence he observes that it will be necessary to "attend to this cir-" cumstance", not only as influencing the operations of the geographical survey, but as an object of interest with regard to the determination of the figure of the earth; he remarks that as the operations of geodesists had hitherto been restricted to regions which were upwards of 33° from the equator, there was yet "something left as a desideratum" which his operations might supply; and he adds "I shall rejoice indeed if it should come within my province to make " observations tending to elucidate so sublime a subject."

His report closes with the following observations; "I have now adduced what I con-"ceive to be sufficient as being illustrative of the principles of my intended survey, which, on "the scale of general science, will I perceive involve many more objects than what immediately "appertain to geography. But as that is the principal end in view, and more particularly a "knowledge of the extensive acquisitions in Mysore, it will be my aim to anticipate every wish "the Right Honorable the Governor in Council may have, towards forwarding a work so useful and so desirable to the nation."

These were the objects which Major Lambton proposed to accomplish by his 'Geographical Survey of the Peninsula,' and the principal objects of the varied operations of what is now known as the 'Great Trigonometrical Survey of India', are still to furnish leading points, as a basis for the operations of topographical, cadastral and fiscal surveys, in all India, and at the same time to contribute materials for further geodetic investigations. Commeuced by Major Lambton in the year 1800, they have never been entirely suspended, though they have frequently been greatly retarded by the paucity of officers available for their prosecution. The exigencies of the State have often necessitated the removal of certain officers to other duties, and the places of other officers, whose failing health had compelled them to seek the advan-

IVI

tages of a change of climate to Europe or some other quarter of the globe, have frequently remained unfilled. But, whatever may have been the exigencies of the public service, the objects proposed by Major Lambton have never been wholly lost sight of, and the operations have invariably been supported, as adequately as circumstances would permit, first by the Madras Government under whose auspices they were commenced, and afterwards by the Government of India, with the steadfast support and cordial approval of the Hon'ble Court of Directors of the East India Company.

2.

Commencement of Operations.

The earliest operation of the survey was the measurement of a base-line in the vicinity of Bangalore, which was effected towards the close of the year 1800. The instructions communicated to Major Lambton by the Madras Government on receiving the report of this operation may be here quoted, as indicating the lively and intelligent interest with which his proceedings were regarded, and the early recognition of the necessity for aiming at the utmost possible accuracy. In a letter dated 24th September 1801 the Chief Secretary says

"I am directed to acknowledge the receipt of your letter of the 24th June last and of the sketch of your "survey which accompained it, and to inform you that the Right Hon'ble the Governor in Council is entirely satisfied "with this further proof of your assiduity, zeal and talents.

"It being of importance that the fundamental principles of your survey should be established with the greatest "practicable degree of precision, the Governor in Council is desirous that the measurement of the base-line, transmit-"ted with your letter of the 22nd December last, should be supported by the observations for ascertaining the latitude "and direction of the meridian, and that all the operations shall be detailed exactly as they were taken, with such "remarks as occurred at the time, and also that the method observed in your computations should be briefly explained. "I am therefore directed to desire that the explanations and documents may be transmitted to me for the information "of His Lordship in Council, so soon as you shall be enabled to complete them.

"As it appears from the plan of the base, that some interruptions occurred in the measurement of it, it may "perhaps be of importance to repeat that measurement, or at any rate it will be expedient that a base of verification "should be measured, which may afford you the means of judging of the accuracy of the original base."

Major Lambton eventually rejected this base-line, and measured another on more favorable ground in the neighborhood, in the year 1804.

At the commencement of the operations the only instruments with which the Government appears to have been able to supply him, were a steel measuring chain and a five-feet Zenith Sector, both by Ramsden; no satisfactory instruments for measuring the angles of the proposed triangulation appear to have been forthcoming in any part of India, and it was necessary to send to England for instruments, which were received two years afterwards. Meanwhile Major Lambton determined the latitude of certain stations with the Zenith Sector, and set to work on the preliminary operation of laying out the triangulation and selecting stations at which observations were to be taken, when suitable instruments were received. These instruments arrived towards the end of 1802, by which time the preliminary operations had been carried over the newly acquired Province of Mysore, and extended eastwards to Madras.

3.

The instruments and the methods of observation and reduction.

The new instruments were a three-feet theodolite by Cary; an eighteen-inch repeating theodolite by the same maker; two steel measuring chains by Ramsden, a standard brass scale by Cary, and several small theodolites, by different makers, for minor purposes.

Of the three-feet or 'great' theodolite, by Cary, a brief description may be here given, as it was employed in the measurement of the principal angles. "It was a fac-simile of the one made by Ramsden for the Board of Ordnance in England, and was originally a very noble piece of workmanship and seems to have been divided with great accuracy".* The azimuthal circle was 36 inches in diameter, but it was read by two microscopes only, which were placed at 180° apart; the vertical circle appears to have had a diameter of 18 inches, and two microscopes; the focal length of the telescope was 37 inches, aperture 2.5 inches, and the magnifying powers were 36,45 and 66; a micrometer, adapted for vertical measurements, was fitted to the eye-piece.

Major Lambton has given the following description of the system which he pursued in measuring the horizontal anglest and in apportioning their errors.

"As to the angles in general they have been taken three and four times, and every time " that the object was observed, both microscopes were read off thrice, and two separate field-books "kept for making out the angles. What are here made use of are the means taken from two "books. In case a difference of those angles, noticed at the time, left any reason to suspect an "error in the instrument, the division between the dots was carefully examined, as well as those "to the right and left, and if any error was discovered, allowance was made accordingly. "Difficulty however very frequently arose from the haziness of the weather, which rendered the "objects at the very distant points extremely dull, and occasioned some irregularity in the "angles. Whenever that happened the observations were often repeated, and in case any one " in particular was different from the other so much as ten seconds, it was rejected till the three "angles of the triangle had been observed. If the sum of these angles was near what it ought "to be, t no further notice was taken of it, but should the sum of the three angles be nearer "the truth by taking it into the account, and that there appeared an irregularity in the other "two observed angles, I have made it a rule to take each observed angle as a correct one, and "divide the excess or defect between the other two, and then compute from the given side the "other two sides; and after doing the same thing with each of the angles successively, a mean "of the sides thus brought out was taken, which to certain limits will always be near the truth. "I then varied the selection of the observed angles, rejecting such as I had reason to doubt, and "by correcting them and computing the two required sides of the triangle, those which gave "the sides nearest to what had been brought out by the other method, were adopted, let the "error be what it would. This however has rarely happened, and when it did, great precaution "was used, and no angle was rejected without some reason appeared to render it doubtful".

XVIII

[•] See Colonel Everest's Account of the Measurement of an Arc of the Meridian, 1830.

⁺ Page 63 of Vol. I of the General Report of the Trigonometrical Survey, in manuscript.

¹ In such cases the error of the triangle was so divided that each angle received a correction proportioned to it's magnitude.

THE EARLY OPERATIONS OF THE SURVEY.

Such a system of operation is not calculated to elicit results of the full accuracy which an instrument can be made to give, and the method of treating the results was somewhat arbitrary and would not now-a-days be considered justifiable; but the processes were quite on a par with the contemporary operations of European geodesists, and it would be unreasonable to expect a higher order of accuracy, or more scientific methods of analysis and reduction, in a work which from the outset was beset with many difficulties, and was carried on at so great a distance from the centres of civilization and science.

The difficulties which Major Lambton alludes to as arising from the haziness of the weather might have been materially diminished had he been supplied with luminous signals. such as heliotropes and lamps, to erect on the stations which he was observing; but such signals were not employed in the operations of the survey until after the year 1832, when they were introduced by Colonel Everest. For very many years the signals were "masts, flagstaves, and other opaque objects, and then days and days often passed away without a glimpse of the distant object." As the atmosphere in India is usually most favorable during the rainy season, for viewing such objects, it became the practice to wait for the first heavy fall of rain and then take the field, and, so long as the operations were restricted to the southern portions of the Peninsula, the practice does not appear to have been attended with any other detriment than the great personal inconvenience of the Surveyors. But on proceeding to the north, into the basins of the Kistna and the Godavery rivers, though at this season the atmosphere was still most favorable for the operations, the climate was found to be very deadly, and Colonel Everest, who had then been recently appointed to the survey, and was commencing, in those regions, the operations which have won for him such honor as a geodesist, was one of the many sufferers; he has left on record the following remarks on this subject,-

"It is easy to conceive what a reckless waste of life and health was caused by this ex-"posure to the pitiless pelting of the tropical rains, in forest tracts teeming with miasma: no "constitution, European or Asiatic, could bear up for any length of time against such a com-"plication of hardships as thence arose,—eternal watchings by day to the prevention of all "regular exercise—tents decomposing into their original elements—servants—cattle—baggage "_____clothes___bedding___all daily dripping with rain—every comfort which the indwellers of " cities and leaders of regular lives deem essential to happiness and even to existence, re-" morsely sacrificed."

"The introduction of lamps and heliotropes has totally changed the face of things, and "by rendering the rainy season the least fitting period for observing luminous objects, espe-"cially those dependent on cloudless skies, has afforded an opportunity of which I eagerly "availed myself to spare the health of my valuable subordinates, by ordering them to desist "from field operations at the very period which, in the early part of my career and my four "years' heavy apprenticeship, used to be chosen *par excellence* for their commencement."

4.

Geodotic investigations a necessary part of the operations.

It has already been stated that one of the objects which Colonel Lambton had in view was the determination of the elements of the figure of the Earth, as a preliminary to the

XIX

calculations of the latitudes and longitudes of the trigonometrical stations. The necessity for so doing is indicated by the erroneous values of the best determinations of those elements which were known to him when he was commencing his operations, and which he was obliged to employ in the calculations of the spherical excesses of the triangles, until he had himself succeeded in making better determinations. The adopted value of the compression—or ellipticity—was $\frac{1}{150}$, or about twice the true amount, and the adopted lengths of meridional arcs in latitude 13° were too small by about 4.85 parts in 1000, while the lengths of the arcs of parallel in that latitude were too great by about 1.43 parts in 1000.*

Colonel Lambton decided on determining the figure of that portion of the earth's surface to which his operations would be restricted, by measuring the lengths of meridional arcs in successive parallels of latitude, from Cape Comorin northwards, and the lengths of arcs of great-circles perpendicular to the meridians, on the parallels of Madras and Bombay. He intended to apply the results to the triangulation, with the expectation that the latitudes and longitudes of the trigonometrical stations would thus be determined "to a certain extent from actual measurement, and in a great measure independently of any hypothesis of the earth's figure."

5.

Determination of the lengths of arcs of great circles perpendicular to a meridian.

One of the first objects to which Colonel Lambton devoted himself after obtaining the great theodolite from England, was the determination of the lengths of arcs of great circles perpendicular to the meridians of certain of the principal stations. Stations for the triangulation westwards from Madras to Bangalore and thence to Mangalore had been previously so selected as to present several pairs of reciprocating stations in nearly the same latitudes and at distances. of 52 to 64 miles apart. The exact distances were determined by triangulation from the near-est base-lines, which also furnished data for the calculation of the latitudes from the nearest astronomical stations; the mutual azimuths were determined by observations of the pole-star; and with these data the great-circle arcs corresponding to the distances were determined by spherical astronomy, and then the lengths of degrees of great-circles perpendicular to the meridians were computed.

The results of these operations were as follows,

length of	the	perpendicular	degree	in	Lat.	12°	32′	12″	01001.0	fathoms	
		>> >>	,,			12	55	10	60743.8	97	
		9 9	>>				,,	•	60751.8	"	

Of these operations, which were carried out in the years 1802-5, Colonel Lambton remarks that "the more we investigate this interesting subject, and the more ample means we "employ to ascertain the exact figure of the earth, the more seems to be wanting to satisfy "our research; and if we feel reluctant in giving up the elliptic hypothesis, because it is

^{*} See page 65 of Vol. I of the General Report of the Trigonometrical Survey, in manuscript.

[†] See Asiatic Researches, vol. VIII, page 193, and vol. X, page 366.

" consonant to that harmony and order with which we are familiar, the discord which these "results indicate affords by no means sufficient evidence to induce us to abandon that theory. "The great nicety in making the pole-star observations is well understood, and it will be made "more manifest in the case before us by increasing or diminishing the half sum of the angles "with the meridians, reciprocally taken at Mullapunnabetta and Savendroog, by one second only, "when it will appear that a difference of nearly one hundred and fifty fathoms, in the perpendi-"cular degree, will be occasioned thereby. I am fully aware of the delicacy necessary in "taking these angles, and I am also aware that some eminent Mathematicians consider the "method of determining the difference of longitude by the convergency of meridians as in-"sufficient in these low latitudes; yet I am of opinion that by repeating these observations, "whenever stations can be found either in the same or in different latitudes, the truth may " ultimately be very nearly attained." *

For several years Colonel Lambton computed the latitudes and longitudes of the stations of the survey with the elements of the figure of the earth which were afforded by a short meridional arc in the neighborhood of Madras, and by the mean of the two values of the perpendicular degree in latitude 12° 55' 10" above indicated. But about the year 1812, by which time he had carried the great meridional arc from Cape Comorin northwards to Gooty-a distance of about 7°—and had received the results of recent geodetic operations in Europe, he ascertained that-assuming the earth to be a regular spheroid-his adopted value of the perpendicular degree was about 120 fathoms too small, for the most probable value afforded by the new data was 60867 fathoms. Colonel Lambton accepted the new value, and employed itwith an ellipticity = $\frac{1}{304}$ nearly, and for the meridional degree in latitude 13° 34' 44" the value 60491.4 fathoms,—in recomputing the latitudes and longitudes previously determined,‡ and in all computations of the elements of the stations which were fixed in the course of the operations of the subsequent decade.

No record is forthcoming of any further operations to determine the lengths of arcs perpendicular to the meridian, but Colonel Lambton was for many years favorably disposed to such investigations, as is apparent from the instructions which he gave to Captain Everest in the year 1822, when that officer was commencing the triangulation, on the parallel of 18°, which was to be extended from the Great Arc to the island of Bombay. Captain Everest was enjoined to lay out the triangulation in such a manner as to give distances "between sixty and "seventy miles in length, and as nearly from east to west in their direction as possible, so that "the difference of longitude between the two extremities of such distances may be determined " by pole-star observations." The triangulation was duly completed, and several azimuths were observed, but the proposed determinations of differences of longitude do not appear to have been carried out.

^{*} See Asiatic Researches Vol. X page 366.

[†] See pages 7 and 22 of Vol. III of the General Report of the Trigonometrical Survey (in manuscript) of which there is a copy in the India office.

¹ All the values of difference of longitude between the Madras observatory and the stations of the triangulation, which are given in volumes X and XII of the Asiatio Besearches, are too great, by about 7" for 1° of longitude, as the adopted values of the corresponding perpendicular degree were too small.

6.

Determinations of the lengths of meridional arcs.

Of all Colonel Lambton's contributions to geodesy, the most important are his measurements of meridional arcs, the results of which have been employed up to the present time, in combination with those of analogous operations in other parts of the globe, in all investigations of the figure of the earth.

As the instruments with which he was supplied when he commenced his labors were merely a measuring chain and a zenith sector, his first operations were necessarily restricted to the measurement of base-lines, and to taking astronomical observations for the determination of the latitudes of certain stations on the proposed meridional arcs. The zenith sector* was constructed by Ramsden, and is stated by Colonel Everest to have been "a beautiful instrument for that time;" it had an arc of 18° to a radius of 5 feet, and is described by Colonel Lambton in the Asiatic Researches (Vol. VIII p. 180), and is similar to the zenith sector described by General Roy in the Philosophical Transactions for 1790.

The first meridional arc which was measured was 1° 35' in length, between the stations of Trivandeporum and Paudree, and lies at a distance of about 35 miles to the west of the meridian of the Madras observatory. It made the length of the degree = 60494 fathoms in latitude 12° 32'.†

The arcs subsequently measured were all portions of what is now known as the great Indian Arc. In the first instance an arc of about 2° in length was measured from the station of Dodagoontah-near Bangalore-southwards to Patchapolliam; it made the length of the degree = 60530 fathoms in latitude 11° 59' 55". This arc was then extended northwards to Paughur, making the length of the degree = 60466 fathoms in latitude $12^{\circ} 33' 9''$.

Thus it was evident either that the elliptical hypothesis of the earth's figure was erroneousfor the lengths of the degrees were apparently decreasing instead of increasing with the latitudeor that the operations were not reliable, being erroneous either intrinsically or from circumstances beyond control. Similar anomalies had perplexed most of the geodesists of that time, and have given rise to much discussion; it is now well known that they are due, for the most part, to deflections of the plumb line, by local attraction, at the astronomical stations; but at that time many persons supposed that they arose from errors in the observations, and it was not until the operations had been repeated in several instances, with more perfect instruments and better modes of observation and reduction, and exhibited the unmistakeable reality of the discrepancies,§ that the cause became generally recognized.

But Colonel Lambton appears from the outset to have conjectured that the discrepancies in his operations arose from local attraction; and thus, instead of revising his triangulation or his astronomical observations, he immediately proceeded to select new stations, which were less

Digitized by Google

^{*} See Astatic Researches Vol. X, for a discussion of numerous observations which were taken with this instrument by Captain Warren at the Madras observatory. See Asiatic Researches Vol. VIII page 185.
See page 274 of Vol. I of the General Report of the Trigonometrical Survey, in manuscript.
See Principal Triangulation of Ordnance Survey, page 560.

liable to the influence of the attraction of hills and superficial irregularities, and he observed their latitudes. Thus Paughur being on the "northern extremity of a range of rocky hills running north and south" was rejected, and the station of Bomasundrum, in an open plain about 10 miles to the S.E., was adopted instead; the arc from thence to Patchapolliam made the mean length of the degree = 60451 fathoms, in latitude $12^{\circ} 29' 51''$. Colonel Lambton remarks on this result that "when, after a very excellent set of observations, the degree due "to the middle point of the arc between Bomasundrum and Patchapolliam was found to be less "than what was deduced from the arc terminated by the parallel of Paughur, I own I felt both "surprise and disappointment."

He still however had an intuitive conviction that the discrepancies were due to local attraction, and he attributed them partly to the influence of the great table land to the south of Bomasundrum on which Dodagoontah is situated, and partly to "a vein of dense ore lying between the two stations". He concluded that it would be impossible to arrive at more accurate values of the measures of meridional degrees, until the operations, both in Europe and in India, had been further extended, but that what had been done up to that time "had discovered to us "an agent unthought of in former days, viz., a disturbing force occasioned by the attraction "of mountains, and by diversity in the density of strata under the surface, all which will more or "less cause some deflection of the plumb-line". The words here italicized, and other passages in his writings to the same effect—as for instance where he hesitatingly expresses a hope that the sandy plains of the Carnatic may be "free from those inconveniences which are found in "mountainous regions"—show that Colonel Lambton was prepared to recognize the influence not only of mountain ranges and other self-evident irregularities of the earth's crust, but of variations in density under the surface, such as half a century afterwards were proved to exist below the plains on which Moscow is situated, and which are very possibly of more importance than the superficial irregularities to which the attention of geodesists has hitherto been chiefly devoted.

The next meridional arc which was measured lies between Patchapolliam and Punnee, and is an extension of the former operations southwards to the vicinity of Cape Comorin. The amplitude of this arc was 2° 50', and it made the length of the degree = 60472.83 in latitude 9° 34' 44". Operations were subsequently carried northwards to Namthabad, in latitude 15° 6', completing an arc of 4° 6' in amplitude from Patchapolliam, which made the length of the degree = 60487.56 fathoms in latitude 13° 2' 55".*

As the results afforded by the arcs Punnœ-Patchapolliam-Namthabad were very fairly accordant *inter se* and with those of recent European arcs, on the elliptic hypothesis, and as the three astronomical stations were to all appearance much less liable to be affected by local attraction than the stations of Dodagoontah, Paughur and Bomasundrum, Colonel Lambton decided on rejecting the last mentioned stations, and retaining the others only.

Bessel, in his investigation of the figure of the earth, has employed Colonel Lambton's observations at Dodagoontah, but he has rejected the observations at Paughur and Bomasundrum, and in this he has been followed by Captain Clarke; but all, if any, of the stations

^{*} See page 5 of vol. III of the General Report of the Trigonometrical Survey, in manuscript.

should be used, if Colonel Lambton's hypothesis that the plumb-line is deflected in opposite directions by intermediate masses between the northern and the southern stations is correct. That the deflection to the north at Dodagoontah is probably very considerable has been recently shown, on the completion of the modern principal triangulation between Madras and Bangalore; the geodetic latitude of Dodagoontah, as referred to the astronomical latitude of Madras, is found to be 8".4 in excess of the value which was deduced by Bessel from a discussion of Colonel Lambton's zenith distances, and which has been closely corroborated by Captain Herschel's recent zenith distances.

It is unnecessary to enter into the details of the operations for extending the Great Arc northwards; by the year 1815 they had been carried up to Daumergida, in latitude 18° 3', under Colonel Lambton's superintendence, and afterwards they were advanced to Takal Khera, in latitude 21° 6', with Captain Everest's assistance; and by the year 1825 they had been extended by Captain Everest up to Kalianpur, in latitude 24° 7'.

The sections from Daumergida northwards to Kalianpur were re-measured by Captain -then Lieutenant Colonel-Everest, after his return from Europe in 1830, with the aid of the best modern instruments and appliances, which he had been most liberally supplied with by the Court of Directors of the Hon'ble East India Company. The comparative results of the ancient and the modern operations are set forth in Colonel Everest's Account of the measurement of two sections of the meridional arc of India, 1847. The angles which had been measured with the old theodolites, before the introduction of the systematic method of eliminating errors of graduation, were found to differ by 3" to 6" and even as much as 10" from the values by the new theodolites, while those which had been subsequently measured usually agreed within 1" and rarely differed by more than 2" to 3" from the new values.* By the old triangulation and base-lines, the difference between the computed and the measured value of the Beder base was 6.58 feet, + or rather more than the five-thousandth part, by the new it was only 0.36 of a foot[†]. The unit of length of the old operations was not known with any certainty, and the base-lines, having been merely measured with chains, were unreliables. Nevertheless these errors had fortuitously tended to cancel each other, in the meridional arc from Daumergida to Kalianpur, and the total length, 2202926.2 feet|| by the revised operations, differed (in excess) from the original value by 106.7 feet only.

A still more remarkable instance of fortuitous cancelment of error is presented by the old value of the corresponding astronomical arc of amplitude, which differs from the new by only o"29. The original observations had been made with a zenith sector, the arc of which was too small to permit of any of the stars which had been observed up to that time at the southern stations of the Great Arc being satisfactorily observed higher north, most of them falling quite beyond the range of the sector; thus it was necessary to resort to the method of

XXIV

absolute latitudes instead of differential arcs, which introduced the—in those days very large errors of star's places; moreover the observations were comparatively few, and they were without barometric readings for the determination of the refractions. On the other hand, in the subsequent operations, the observations at Daumergida and Kalianpur were very numerous and strictly differential, the same stars being observed at the same times with two colossal astronomical circles, one at each station.

The sections of the Great Arc from Daumergida southwards to Punnœ are being re-measured at the present time, at the recommendation of the President and Council of the Royal Society,* but the undertaking is not yet sufficiently advanced to permit of the results being closely compared with those of the early operations, excepting at the Bangalore base, the error of which has been found to be about the $\frac{1}{12,000}$ th part of it's length. There is however every reason to expect that the discrepancies in these sections will be of greater importance than in those which were re-measured by Colonel Everest, and which being the latest were probably the most accurate. It is known that in the early operations the observations were very few and not so systematic as afterwards; in several cases only two of the angles of the principal triangles were measured, whereas subsequently all three angles were measured, and the triangulation was further strengthened by adopting the form of a chain of polygonal figures in the place of single triangles.

7.

Injury to the Great Theodolite.

During the year 1808, Colonel Lambton's great theodolite met with a very serious misfortune; in being hoisted, in it's case, to the summit of a lofty pagoda on the plains of Tanjore, the bearing rope, which kept the weight from striking against the side of the building, snapped, and the instrument, case and all, struck with a violent crash on the wall, breaking the case and so distorting the azimuthal circle as to render it to all appearance worthless.⁺ Colonel Lambton took the instrument to pieces, and after six weeks of anxious and unceasing exertion, he succeeded in drawing out the injured circle to it's original shape, by means of wedges, screws and pullies. To what extent the graduation was injured does not appear to have ever been definitely ascertained; but the accident led to the eventual introduction of a systematic method of observation, giving readings of the azimuthal circles at numerous equidistant graduations and thus eliminating the effects of errors of graduation to a very considerable extent. This method of observation has been attended with very great success, and since it's introduction the principal angles of this survey have been measured with a degree of accuracy which is probably not surpassed by the best European surveys, and is approached by them only; but it was originated by Colonel Everest, and during the operations before the year 1818-when that officer was appointed an assistant to Colonel Lambton-there was no systematic 'change of zero', and frequently no change at all.

 ^{*} See Report of the Committee, composed of Professors Airy, Miller and Stokes, which was assembled in 1861 at the request of the President and Council of the Royal Society, to report on Colonel Lambton's surveys.
† See Everest's Arc Book of 1830 page 46.

8.

The General Triangulation of the southern Peninsula, up to the parallel of 16°.

The geodetic operations which have already been reviewed, formed but a small portion of the labors of Colonel Lambton. Though executed with greater care and attention to accuracy of detail than other portions of the operations-in order to furnish the elements of the figure of the earth which were required for the calculations of the latitudes and longitudes of the trigonometrical stations-they were merely the basis of a vast net-work of principal and secondary triangulation, which was thrown over all the accessible portions of the Peninsula, from Cape Comorin to the parallel of 16°, covering an area of which the length is about 8° in latitude, and the average breadth 5° in longitude. This region is, for the most part, exceedingly favorable for the rapid execution of a net-work of triangulation; it presents numerous hills, either isolated or clustered in ranges with broad vallies between, and as the summits of these hills are generally bare and free from forest, the surrounding country can be viewed to great distances from them; thus they were admirably adapted, not only for the stations of the principal triangulation, but for enabling observations to be taken to fix the positions of pagodas, minarets and other permanent objects of reference, in the subjacent plains and on the lower hills, for the use of topographical surveyors. Wherever the ground permitted the formation of triangles with long sides—e. g, twenty miles and upwards—the angular measurements were invariably made either with the great theodolite or with an 18-inch repeating theodolite, the second best instrument with which Colonel Lambton had been supplied; these were considered as the principal triangles, and they are shown on the Index Chart facing the title page of this volume. Smaller triangles, emanating from sides of the former as bases, were generally measured with inferior instruments, and are not shown in the Chart. The triangulation was verified and controlled by base-lines measured at distances of 90 to 250 miles, full details of which are given in chapter V of this Volume.*

Wherever hills were numerous, the operations were carried on with great rapidity; but in the plains of Tanjore, and generally in the low lands which trend inwards from the east coast, south of Pondicherry, they were greatly impeded; and it was while the great theodolite was being hoisted to the summit of a pagoda in Tanjore that it met with the accident which has already been described. In these tracts there are considerable gaps in the principal and also in the secondary triangulation; the surface of the country was very flat and destitute of commanding positions, it was also densely wooded, and these difficulties were found to be insurmountable. Thirty-five years afterwards the principal triangulation of this survey was being successfully carried—under the superintendence of Colonel Waugh—through a far more difficult country, the well known Terai, bordering the southern slopes of the Himalayas from the meridian of 79° eastwards to the Assam Valley, which is as flat as Tanjore and is moreover covered with dense and deadly forests and jungle. But then the means and appliances of the survey, and it's command of skilled labor, were far greater than they ever had been in Colonel Lambton's time.

XXVI

^{*} The whole of the triangulation below the parallel of 16°, is shown in a chart on the scale of 8 miles = 1 inch, -- in 8 sections -- entitled, "Plan of the Trigonometrical Operations carried on in the Peninsula of India, from the year 1802 to 1814 inclusive, under the superintendence of Licut.-Colonel W. Lambton." Pulished by J. Horsburgh, 1827.

9.

Objections raised to the system of operations; proposals for an astronomical instead of a geodetic basis for the Survey of India.

"Shortly after the commencement of his labors, Colonel Lambton was called on to "demonstrate the utility of his work. It was assorted that surveys on an astronomical basis "would be equally accurate, and more economical than geodetical operations. The futility of "these views was ably exposed by the Colonel, and being supported by the Astronomer Royal "of the day, the Reverend K. Maskelyne, all open opposition was withdrawn, and Major "Rennell, who was the chief advocate of the astronomical basis, afterward concurred in the "trigonometrical system. As this view of the subject has been confirmed by the practical "testimony of every nation in Europe, and the importance of trigonometrical operations is now "universally admitted, by all practical scientific men, as the only trustworthy basis for exten-"sive national surveys, it is unnecessary to discuss the first principles any further in this place. "and they are only adverted to in illustration of the formidable prejudices the trigonometrical "survey in India has, all along had to contend with. Colonel Lambton's operations detected "an error of no less a quantity than 40 miles in the breadth of the Peninsula, as previously "laid down astronomically in the way Major Rennell proposed. All the principal places " on the old maps, which had been fixed astronomically, were found considerably out of posi-"tion. For example, Arcot was out 10 miles, and Hyderabad no less than, 11' in latitude "and 32' in longitude. In fact for the survey of an enormous empire, the trigonometrical "system is not only the most rigorous, but the cheapest in the end."

10.

Geographical Operations.

About three years after the commencement of his operations, Colonel Lambton was called on by the Government of Madras to furnish all possible information regarding "the appearance "and resources of the country, it's roads, it's supply of water, and whether favorable for military "movements; also to represent it's general features, such as rivers, vallies, passes, mountains, "the state of fortified places &c; and in short to notice every circumstance that may afford useful "information in time of war." Eventually four officers, who had been trained in the Madras Military Institution, were appointed to assist Colonel Lambton in these operations; they were employed in delineating the principal geographical features of the country, on the basis of the triangulation, in such a manner as to indicate every thing that was considered to be of importance for military operations. The runs of the mountain ranges, the courses of the principal rivers, and the lines of the great military roads, were laid down in a general manner, by determining the positions of the principal points and places on them, and more particularly the positions

XXVII

[•] Very little information on the subject of these proposals is to be found in the records of the Department, and the above details are taken from a *Report on the Progress and Expense of the Great Trigonometrical Survey of India* which was prepared by Colonel A. Scott Waugh-then Surveyor General and Superintendent of the Great Trigonometrical Survey-for the information of the Houses of Parliament, and was printed on the 15th April 1851, by order of the Heuse of Commons.

which were or might be halting places for troops. In fact, whenever the triangulation entered a district of which no regular survey had been or was being made, and political reasons, or the physical difficulties of the country, rendered it improbable that such a survey would soon be made, Colonel Lambton and his few assistants were required to make a generalized preliminary survey, and report on the condition and capabilities of the country; also to furnish sketches of forts, and supply all other information which would be useful for military purposes. Thus by the year 1814 he was able to furnish the Government with a series of Maps exhibiting all the most prominent geographical features of the Peninsula, as far north as Goa on the west and Musulipatam on the east coast.

These operations were frequently suspended for a while; the assistants were removed, and Colonel Lambton was on one occasion instructed to restrict his operations to the principle triangulation only, and to stop all secondary triangulation and all measures for acquiring geographical details. Some alarm appears to have been felt of evils which might result from multiplying copies of maps or other materials connected with the survey of the country; in 1810 Colonel Lambton was directed to transfer all the geographical and topographical materials in his office to the Quarter Master General; he was even prohibited from retaining any copies of those documents, but he was graciously informed that the Governor in Council did not require him to render any account of the materials which he had collected at his private expense, during the progress of the general survey. Eventually however these objections were overruled, and Colonel Lambton was requested to combine his materials with those of other surveys into a series of geographical maps.

The operations were also frequently interrupted by the disturbed political condition of the country; in some of the Native States, though the Rulers were anxious to render all necessary assistance to the surveyors, there was no sufficient authority to prevent opposition, which was manifested sometimes actively by hindering the surveyors from erecting stations on the most commanding points in the country, sometimes passively by refusing to allow them to purchase food and endeavouring to starve them away. The Travancore war brought matters for a while to a stand-still, and Colonel Lambton took a share in the military operations; he served at the capture of the Arumbulli lines, the fortifications which protect the neck of the promontory on the extremity of which Cape Comorin is situated.

11.

The Survey transferred from the control of the Madras Government to that of the Government of India.

The success which had attended Colonel Lambton's early labors had naturally induced the Hon'ble Court of Directors of the East India Company to desire that the Survey should be gradually expanded, so as to embrace the whole south of India, and then be advanced progressively to the north. Thus by the year 1817 the Great Arc had been carried northwards as far as the Beder base, in latitude 18° 3', while the general triangulation had reached the parallel of 16° ; the operations had passed beyond the limits of the Madras Presidency and entered into Provinces which were politically connected with the Bengal Presidency, and the British Authorities in which were under the sole orders of the Governor General in Council

XXVIII

As regards the appointment of a Chief Assistant, the Governor General observed that "the intense mental and bodily labour of conducting the Trigonometrical Survey has been performed heretofore by "Colonel Lambton alone, and the rank and the advancing age of that zealous and distinguished person now demand, "some relief from such severe fatigue. But independently of the consideration so eminently due to the individual, the "Governor General is decidedly of opinion that the strongest reasons of public expediency exist for associating an assis-"tant in this great employment. The mathemetical qualifications for conducting such labours are of a very high order, and possessed by few in India; they require to have been kept up by habitual exercise; and moreover the extreme "accuracy indispensable in trigonometrical calculations on the scale of Colonel Lambton's undertaking, demands a "dexterity in the use of the instruments, and a scrupulous degree of attention in what may be termed the practical part of the labor, which can scarcely be conceived by persons unaccustomed to it, and which is to be learnt only by a "rigorous apprenticeship. The regretted time must one day arrive when Lieutenant Colonel Lambton's task is to de-"volve on a successor. It would not be wise to trust to chance for producing one fully equal to the duty at the "individual. Lieutenant Colonel Lambton himself has urged this point to the Governor General and has pressed on his "Lordship the propriety of giving him an associate. The Governor General therefore has selected for this Office, Cap-"tain Everest, of the Artillery, of whose eminent degree of science as a mathematician he is assured, and whose talents "are known to the Vice-President in Council, both by his surveys in Java, under the Quarter Master General's Depart-"ment, and by his successful exertions as an Engineer, in recently clearing the navigation of the Matabanga and other "rivers."

In May 1818 Dr. Voysey was appointed to be Surgeon and Geologist to the survey.

Hitherto Colonel Lambton had been carrying on the principal triangulation and the geodetic operations almost single handed[†], for the officers of the Military Institution, who had served under his orders for some years, had been solely employed in secondary triangulation and in the geographical operations. His normal establishment consisted of a sufficient number of the natives of the country to carry the instruments about, and a few chain-men and signallers; also three European or East Indian subordinates, who were originally employed as computers in carrying on the several calculations of the triangulation, but eventually were trained to render assistance in the field also. All the principal operations hitherto, whether in the field or in recess quarters, whether in the actual observations and measurements, or in the

Digitized by Google

[•] The instructions were conveyed in a letter No. 111, dated 25th October 1817 from the Governor General to the Madras Government, from which the above extracts are taken.

the menty from which the above extracts are taken. + "In his early operations Colonel Lambton was assisted by Lieutenant Warren of his Majesty's 33rd, and Captain Kater, of his "Majesty's 12th Foot. The first named officer belonged to the ancient noblesse of France, to which country he returned after the peace. "His stay with Colonel Lambton was of short duration, as he was, at a very early period of the work, appointed to the charge of the "Madras observatory. Captain Kater's health having failed, obliged him to quit the department. This officer afterwards acquired an "European reputation as a scientific man, having become a member of almost every academy in Europe, been employed on every business "of national research, appointed a member of the Board of Longitude, and finally elected Vice-President of the Royal Society. Thus it "appears that, during the greater portion of his career, Colonel Lambton worked nearly single handed in the extensive and arduous opera-"tions which he carried on, amidst the formidable trials and obstacles that the baneful nature of the climate and the want of resources in "the country everywhere presented." Extracted from Colonel Waugh's Parliamentary Report on the Progress and Expense of the Great Trigonometrical Surrey of India.

calculations connected therewith, had been performed by Colonel Lambton and his three subordinates. Thus simultaneously with the transfer of the survey to the direct control of the Supreme Government, the strength of the establishment was materially increased, and the Marquis of Hastings, so deservedly celebrated for his happy selections of able men for public business, made a fortunate choice in his selection of Captain Everest as Colonel Lambton's chief assistant.

12.

Continuation of the narrative to the death of Colonel Lambton in 1823; the operations embracing the country between the parallels of 16° and 19°, and the meridians of 77° and 80°.

When the survey had been carried to the north of the parallel of 16°, and had reached the basins of the Kistna and the Godavery Rivers, it's further progress was much impeded, and for several years the advance was very slow in comparison with the rapid strides which had been made in the southern portion of the Peninsula. The scene of the operations was now the country of the Deccan, the Dominions of a Native Prince—the Nizam of Hydrabad—whose authority was at all times very feebly exerted over his subjects; many of the petty Chieftans were in open rebellion against the native government, and all were more or less suspicious of the operations of the surveyors, viewing the planting of flags and signals with much jealousy and apprehension, as mere preliminaries to taking possession of the country.

Thus it was a matter of some delicacy on the part of the British Resident at the Nizam's Court to support the surveyors, and on that of Colonel Lambton of some hazard to venture into these regions, which did not settle down into repose until the Marquis of Hastings had destroyed the Pindara confederacies in 1818; and even after that event the survey parties had to be strongly guarded, and it was frequently necessary to send soldiers of the Nizam's army with the native subordinates as well as with the European officers, for their protection.

But the chief causes of delay arose from the physical difficulties and the comparatively meagre resources of the country, and from the deadly nature of the climate at the season of the year when—for the reasons already explained at page XIX—it was considered necessary to carry on the principal triangulation.

The face of the country was covered with extensive forests which had spread over the sides and the summits of the hills, so that several days and sometimes weeks had to be spent in clearing the hill tops and preparing them for stations of observation; the commanding positions which were most favorable for the operations were frequently situated at great distances from the nearest inhabited localities; and, worse than all, the heavy rains which cleared the atmosphere sufficiently to permit of observations being taken to distant signals, were invariably followed by a deadly season of some months duration, caused by the influence of a powerful sun on a moist soil and rank vegetation teeming with the germs of malaria.

Captain Everest joined Colonel Lambton late in the year 1818, and was deputed in June of the following year, at the commencement of the rainy season, to extend the general

Digitized by Google

XXX
THE EARLY OPERATIONS OF THE SURVEY.

triangulation eastwards, from the sides of the Great Arc near Hyderabad to the meridian of 80°. He has given vivid descriptions of his operations in the Introduction to the Arc-Book of 1830, and in his reports to Government. One of his first duties was to quell a mutiny of the detachment of Nizam's troops which formed his escort; he had to carry the operations through a country which he describes as a "dreadful wilderness," a region than which "no part of the earth was more dreary, desolate and fatal"; he had to improvise means for crossing numerous streams which had been swollen to rivers by the heavy rains; at some of the hill stations nearly a square mile of forest had to be cleared away before observations could be commenced; and when all these difficulties were successfully surmounted and he was hoping to complete the observations in course of a few days—and thus, in Colonel Lambton's words, "have performed a very magnificent work indeed to start with"—he and his assistants and the entire native establishment were struck down by a malignant fever, many perished miserably by the road side, and the survivors had to be carried into Hydrabad, whence the whole of the public elephants, litters and vehicles of all descriptions had been despatched to their succour, on the receipt of the first intelligence of the calamity.

Captain Everest's constitution suffered so much that he was obliged to go to the Cape of Good Hope for a year, to seek the advantages of a change of climate. There he employed himself in investigating La Caille's meridional arc, which had presented an unaccountable anomaly when compared with similar measurements executed on the opposite side of the equator, giving rise to the hypothesis that the opposite hemispheres of the globe were of different forms. Captain Everest showed* that the discordance most probably arose from the disturbing influence occasioned by the attraction of the mountains in the neighborhood of the two terminal stations of the arc; and twenty years afterwards his views were fully corroborated by Sir Thomas Maclear's operations for the verification and extension of this arc.

Doctor Voysey, who had joined the survey a few months before Captain Everest, shared all the perils and privations of that officer's first campaign as a surveyor, but fortunately with less harm to himself. He remained with Colonel Lambton, and was of great assistance to him, aiding in the measurement of the Takal Khera base-line, in the year 1822, and completing the surrounding principal triangulation, while his chief was engaged in observing zenith distances. Colonel Lambton earnestly recommended that Doctor Voysey should be formally appointed to the Survey as his assistant, but the Governor General "doubting the expediency of combining in one individual the functions of Surgeon, Geologist and Surveyor" withheld his consent from the measure.

After the year 1819 Colonel Lambton ceased to take an active part in the triangulation, which was then chiefly carried on by his principal sub-assistant Mr. J. De Penning; and the operations at Takal Khera, in the year 1822, were the last in which he took any personal share. He was proceeding from Hydrabad to Nagpore, to make arrangements for extending the operations of the Great Arc northwards, across the Mahadeo and the Vindhya ranges and into the plains of Central India, when, on the 20th January 1823, he died at Hingunghat, a now well known commercial town which is situated about 50 miles to the south of the city of Nagpore.

XXXI

^{*} See Grant's History of Physical Astronomy, page 147.

INTRODUCTION.

Colonel Lambton was 47 years old when he commenced the operations which have now been reviewed; he had thus already reached an age when, in India, men are mostly thought old, or at least are considered to have passed the prime of life, and are within eight years of the age at which the servants of Government are liable to be superannuated; but he was still in the prime of his life, and the full vigor of an unusually robust and energetic manhood. Until within a few years of his death, at the age of 70, he seems to have scarcely known what it was to have had a day's ill-health, though he never spared himself, nor shrank from accepting his full share of the privations to which all the members of the survey were exposed, and which even Captain Everest thought reckless and almost unjustifiable; he accepted these as a matter of course, and seems to have thought little, and said less, about them, rarely alluding to them excepting when he was endeavouring to obtain promotion for his subordinates who had shared them with him. His life was an entire devotion of self to the interests of the public service and the advancement of science, without a thought of ever ceasing from his labors while life lasted; and, as he had ever looked forward to dying, so he died, at his post.

By far the greater portion of the operations hitherto had been performed by Colonel Lambton with his own hands, and it is much to be marvelled at that he should have succeeded in doing all that he did, with the limited means at his disposal. He had however contemplated extending his researches to other subjects than those to which his energies were so unsparingly devoted; he had formed a project for the investigation of the laws of terrestrial refraction, and was making arrangements for the determination, by pendulum observations, of the relative force of gravity at the several stations of the Great Arc, and at "corresponding stations in the same latitudes on the sea coast." But it was only permitted to him to complete a part of the programme of achievement which he had set before himself; the rest he was compelled to bequeath to his successors. The investigations into the laws of terrestrial refraction were made a few years after his death by Colonel Everest and Captain Waugh. The project for investigations of the force of gravity was set aside for several years and eventually forgotten; but in 1864. General Sabine, then President of the Royal Society, recommended that pendulum observations should be taken at the stations of the Indian Arc, in conjunction with the operations of the survey, and the measure having been approved of by the Government, has been subsequently carried on by Captain Basevi, and is now all but completed; the principle, which was originally enunciated by Colonel Lambton, of comparing inland with coast stations, has been strictly followed; and the results promise to throw much light on the laws of the local variations of gravity which are superposed on the normal variation from the poles to the equator.

These are not the pages of a biography, nor is this the place to enter into further details of the career of the first chief of the Trigonometrical Survey of India; but even here it may be added—in the words of his pupil Captain Everest—that "Colonel Lambton was ever the kindest of masters, and used his authority with so gentle a hand as hardly to leave a consciousness of it's existence."*

• The whole of the triangulation executed in the period reviewed in this Section 1 is shown in two "Plans of the Triangulation in the Nizam's Dominions, extending from Kurnool to the Godavery, and lying to the eastward of Nirmul and Kurnool", published by James Horsburgh in 1827.

Digitized by Google

IIXXI

÷

13.

The Operations during the period 1823-30.

Captain Everest returned from the Cape of Good Hope in 1822, and was employed in carrying a series of principal triangles from the Great Arc westwards towards Bombay, when the news reached him of Colonel Lambton's death. Shortly afterwards, on being appointed by the Government of India to succeed Colonel Lambton, he postponed all further operations in the direction of Bombay, and proceeded to extend the Great Arc northwards, in fulfilment of his late chief's intentions.

Hitherto these operations had not advanced beyond the neighborhood of Ellichpoor, in the valley of Berar, between which and the plains of Central India on the north, three nearly parallel chains of mountains are situated, trending in an east-and-westerly direction; the two southern chains are known indifferently as the Sautpoora or the Mahadeo Ranges, the northern is the Vindhya Range, and they form the basins of the Taptee and the Nurbudda Rivers, which flow between them, on either side of the central range, from east to west.

Considerable difficulties having been anticipated in carrying the operations across this region, Dr. Voysey had been deputed in the previous year to march through it and explore the country northwards as far as Agra, with the expectation that it might be found necessary to make a considerable detour to the east in order to avoid the direct passage of the mountain ranges; but he reported that though the mountains were wild and desolate, and covered with forests which would be deadly in the rainy season, he had seen no difficulties at all equal to those which the survey had already encountered and successfully surmounted between the Godavery and Ellichpoor.

In two years Captain Everest carried the Great Arc over the mountains and into the plains of Central India, advancing as far north as the town of Sironj, in the parallel of 24° 7'. Every effort having been made to guard against a repetition of the catastrophy which had previously arrested the operations, and great assistance being rendered by the Political Officers who represented the British Government at the Courts of the Native States, what had once been conceived to form an impenetrable barrier was surmounted with a rapidity which surpassed the most sanguine expectations, and without any loss of life.

But Captain Everest experienced a return of the typhus fever which he had originally contracted in the forest-clad basin of the Godavery River, and which now attacked him with still greater virulence; he was in a great measure deprived of the use of his limbs, and was liable to convulsive paroxysms, attended with agonizing pain; yet, with a courage and endurance worthy of his late chief, he persisted in the undertaking, though constantly warned that he must fall a sacrifice; during the whole of his observations with the zenith sector, he had to be lifted into and out of the observer's chair; at the great theodolite his arm had to be supported when extended to reach a tangent screw, and on some occasions his state of weakness and INTRODUCTION.

exhaustion was such that without being held up he could not have stood to the instrument.* Nevertheless he persevered, and succeeded. He carried the operations northwards until the entire length of the Arc, including the several southern sections which had been measured by Colonel Lambton, exceeded that of the longest European Arc. He then suspended all further operations, and at the end of the year 1825 he proceeded to Europe; there he brought up the calculations of the operations in which he had been engaged, and published a description of them in the work entitled "An Account of the Measurement of an Arc of the Meridian between the parallels of 18° 3' and 24° 7" London 1830, to which reference has been frequently made in these pages.

Mention has already been made of Doctor Voysey's services to Colonel Lambton, in the actual operations of the survey, and to Captain Everest, in the exploration of the country between Ellichpoor and Agra with a view to ascertaining it's suitability for future operations. While thus employed Doctor Voysey was also collecting materials for a report on the Geology of India, and, during the period of five years, 1819-23, of his association with the Trigonometrical Survey, he completed "two principal barometrical and geological sections, one extend-"ing from Bombay to the north of the Godavery and one from Agra to Madras; in addition "he had completed several minor sections of 3, 4 and 500 miles each, and a geological section "of the country between Calcutta and Agra." He had been under tents or marching the whole of that time, with the exception of a period of a few months, and had travelled by land upwards of eight thousand miles; he was constantly on duty notwithstanding that he had been twice subjected to fever contracted in the jungles on the banks of the Godavery. He died in 1824, on his way to Calcutta, unfortunately before the value of his indefatigable services and assiduous devotion to his duties had been recognized by the Supreme Government.

Colonel Everest did not return to India until the year 1830. During his absence the geodetic operations were suspended, and the situation of Superintendent was held open until his return. The subordinates were employed, under the principal Sub-Assistant Mr. Joseph Olliver, in carrying a triangulation from the terminal stations of the Great Arc near Sironj, eastwards, to Calcutta, a distance of 671 miles; "notwithstanding the frequent ravages of jungle fever, which has all along been the most baneful enemy of the trigonometrical survey, as well as one of the chief retarding causes,"† this operation was accomplished in about six years, at the rate of 112 miles per annum, with branching series of secondary triangles.

14.

Concluding observations.

The operations of the three first decades of the Trigonometrical Survey of India, which have now been reviewed, form a group by themselves, and have little in common with the subsequent operations. They were executed at a time when the science of geodesy was in it's

Digitized by Google

XXXIV

<sup>See the Arc Book of 1830, pages 36 and 37. Colonel Everest seems to have suffered much from a want of sleep; in a letter, dated 5th October 1825, he inveighs against the "indecent conduct" of one of his assistants, who had brought neighing horses into his camp, notwithstanding that a positive order had been passed "the necessity of which was obvious to the most common understanding, that no noises were to be made by man or beast which might be likely to disturb his rest."
† Colonel Waugh's Report to the House of Commons, pars. 22.</sup>

THE EARLY OPERATIONS OF THE SURVEY.

infancy, when the several instruments which are necessary for the linear and the angular measurements of a survey were still far from their present state of—practically—almost absolute perfection, and when the methods of reduction and analysis were still rude and imperfect.

Thus the geodetic measurements have shared the fate of all similar operations which were contemporaneously executed in Europe and other parts of the globe, in that they have been or are being superseded by revisionary operations with modern instruments of superior accuracy and value; they have answered the purposes for which they were immediately required, and have furnished data for a fairly approximate determination of the figure of the earth.

But for geographical purposes, for providing points on which to base topographical, cadastral or fiscal surveys, the whole of the operations are still most valuable, and they must continue to be so as long as the trigonometrical stations and the points laid down from them remain in existence. Little is now required for their completion in this respect beyond the extension of the modern triangulation southwards, from Madras to the points at which a suitable junction may be made with the triangulation of the Island of Ceylon, which has not yet been connected with that of India. When this operation and the revision of the southern sections of the Great Arc have been completed, the results of the old triangulation may be reproduced on the basis of the modern, which should leave nothing to be desired to satisfy the most fastidious requirements of topographical surveyors. But such a measure cannot be carried out until the triangulation which is now in progress shall have been completed. Thus the final reduction and publication of the results of the early operations will probably form the last stage of the work of the Trigonometrical Survey; the operations subsequent to the year 1830 must first be finally reduced, and afterwards those of the preceding years.

The only parts of the early operations which might have been employed in the first stage of the final reductions are the linear measurements; but it will be found, from the critical examination of the base-lines of that period, which forms Chapter V of the present volume, that these linear operations are worthless for the purpose of controlling any portion of the principal triangulation of this survey, and that they would certainly introduce larger errors than are liable to be generated in the course of the modern angular measurements.

_

SECTION I.

ı

THE STANDARDS

OF

MEASURE.

-•

SECTION I.

THE STANDARDS OF MEASURE OF THE GREAT TRIGONOMETRICAL SURVEY OF INDIA.

CHAPTER I.

Description of the Standards.

Several standards, of various dimensions and different metals, have been used in the course of the operations of the Trigonometrical Survey; these will now be described in the order in which they were obtained.

1.

Cary's three feet brass scale.

This scale is 3.15 feet in length, 1.51 inches in breadth and .14 inch in depth; it was laid off by Cary from the scale of Alexander Aubert Esq., and is referred to by Captain Kater in the Philosophical Transactions for 1821. It was received in India in May 1802, and from that time until the year 1825 it was employed in defining the lengths of the steel chains by Ramsden which were used by Colonels Lambton and Everest in the measurements of various base-lines. The processes followed on these occasions have been described by Colonel Everest at pages 51 and 52 of his first account of the measurement of an arc in India (London 1830). This scale does not appear to have ever been directly compared with any of the standards which were subsequently constructed for the Indian Survey; an indirect comparison might however be obtained if necessary, for the steel chains by Ramsden were compared with standard A by Colonel Everest in 1832, see pages CI to CIII of his Arc Book of 1847. The scale however has long ceased to serve the purpose for which it was originally employed. It was used at the 8 base lines which were measured between the years 1830 and 1864, with the Colby apparatus of compensating bars and microscopes, but simply for the purpose of measuring the distance-never exceeding 5 feet-between the end of a last set of bars, and a section station or the closing extremity of a base line, and also for determining the values of the runs of the micrometers for comparing the lengths of the compensated bars with standard A.

These runs were invariably determined from inch 7 to 8 of the scale, which was assumed to be exactly equal to the $\frac{1}{120}$ part of the Standard; it has recently been found to differ from that quantity, but—as will be subsequently shown—by so small an amount as to have no appreciable effect on the reductions.

(2)

THE STANDARDS OF MRASURE.

2.

The 10-feet iron standard bars A and B, and the 6-inch brass scales A and B.

These were constructed in England under Colonel Everest's Superintendence, and were brought out to India about the year 1832.

The 10-feet standards are of wrought iron, 122 inches in length, 9 in breadth and 2 in depth. Each bar is supported on two rollers, at one fourth and three fourths of its length, secured to the bottom of the wooden box by which the bar is encased; the ends of the bar are cut away to half its depth, so that the dots, marking on platinum pins the measure of 10 feet, are in the neutral axis of the bar. On the upper surface, 30 5 inches from the middle of the bar towards either extremity, are two wells for thermometers.

The brass scales are 10.25 inches long, 2 in breadth and .5 inch in depth, the standard measure being defined by dots engraved on silver pins let into the brass at 6 inches apart. Each is fitted with a thermometer resting flat on the scale and having a round bulb for which there is a slight indentation on the surface of the scale. Each is also provided with a micrometer, for measuring the difference between the 6-inch space on the scale, and the distance between the visual axes of the compensated microscopes.

The iron standard **B** was compared with the Ordnance Survey 10-feet standard O_2 in London in 1831, by Lieutenant Murphy R.E., (Account of Lough Foyle Base Appx. V). It was twice compared with the iron standard **A** at Dehra Doon in India, in November 1834, and February 1835, by Colonel Everest. The 6-inch brass scales A and B were also compared by Colonel Everest in India in June 1835. **A** and A have remained in India ever since, and been employed, the former at all, the latter at all but the two last, of the ten base lines which have been measured with the Colby apparatus of compensated bars and microscopes, between the years 1832 and 1869. **B** and B were sent to England in 1843-4, and were conveyed by Colonel Everest to Southampton, and made over to the office of the Ordnance Survey. In 1846, **B** was compared with the 10-feet Ordnance Standard O_1 , and B with the Ordnance 6-inch scale. **B** was subsequently taken to Russia, where it was compared by M. Struve with several continental standards. In 1865 it was compared in the Ordnance Office at Southampton, by Captain Clarke, with the new 10-feet Indian Standards which will now be described.

The 10-feet steel standard $|_{s}$, the 10-feet bronze standard $|_{B}$, and the standard steel foot, IF.

Questions had been raised as to the possible variation in length of the 10-feet standard **A**; and certainly it was not inconceivable that the length might have varied in the course of the many journeys which this bar had been made to perform, each of several hundred miles in length, by land and sea, from the Head Quarters of the Survey to the eight base-lines

^{3.}

(3)

DESCRIPTION OF THE STANDARDS.

to which it was conveyed between the years 1832 and 1863, viz. those at Calcutta, Dehra Doon, Sirouj, Beder, Sonakhoda, Attok, Karachi, and Vizagapatam.

To remove all doubts on this subject, two new standards, of 10 feet in length, were constructed for this Survey by Messrs. Troughton and Simms, in 1864; one, known as I_S , of cast steel, hammered; the other, known as I_B , of bronze, or more correctly Baily's metal, an alloy formed in the proportions copper 16, tin $2\frac{1}{2}$, zinc 1.

These bars are similar in section and dimensions. The section is in the form of a girder with equal flanges above and below; breadth of flanges 1.57 inches, breadth between flanges .74 inch, depth between flanges 1.55 inches. total depth 2.55 inches; total length 1229 inches. Each is divided, on its upper surface, into six spaces, by seven gold pins about a tenth of an inch in diameter, drilled, one at the centre of the bar and three on each side of the centre, at one foot, two feet, and five feet from the centre; this arrangement affords two spaces of a yard each, on the right and left, and four contiguous spaces of one foot each in the centre. The small circular surfaces around the gold pins are slightly depressed below the general surface of the bar. The divisions are indicated by lines drawn on the gold pins perpendicularly to the length of the bar.

In the upper surface of each bar there are three contiguous pairs of thermometer wells, one pair in the centre of the right yard, another in that of the left yard, the third in the centre of the bar; each of these pairs of wells is intended to receive two thermometers,—with the bulbs close together and scales lying outwards—one ranging from 45° to C5°, the other from 65° to 85°, and having degrees of about '40 inch long, divided into tenths; with this arrangement the temperature of the bars between 45° and 85° is indicated by three thermometers, which can be read to the thousandth part of a degree, with the aid of a microscope having a sliding system of converging lines in the eye piece. There are also two more thermometers wells, at one-fourth and three-fourths of the bar's length, intended for thermometers ranging from 30° to 105°, the degrees being subdivided into halves only; this arrangement is adapted for the measurement of occasional extreme temperatures.

Each of the bars rests upon eight rollers which are framed in two systems of levers, care being taken in the construction that the levers balance accurately on their axles, and that the rollers revolve freely. By this system of levers the pressure upwards of each roller upon the bar is the same, and the bar is thus supported by eight equal pressures applied at equal intervals. The distance apart of the rollers is 15.5 inches, as given by Mr. Airy's formula

$$\frac{a}{\sqrt{n^2-1}}$$

where a is the length of the bar and n the number of rollers. (See Memoirs of the Royal Astronomical Society Vol. XV.)

Of the eight rollers supporting the bar, one is a true cylinder, the others are slightly convex or barrel shaped, by which means a proper bearing is secured.

(4)

THE STANDARDS OF MEASURE.

The standard foot |F, is a bar of steel, an inch square and 13 inches in length. There are two wells for thermometers, 3.5 inches on either side of the centre of the bar. Lines marking the inches and smaller sub-divisions are drawn on gold pins let into the bar; the extreme inches are sub-divided into twentieths.

The standard 10-feet steel and bronze bars and the cradels for their support, were copied —with very slight modifications—from the Ordnance Intermediate Bar $0l_1$, and it's system of cradels. The standard foot, was also copied from the Ordnance Foot 0F. See Captain Clarke's Comparisons of Standards of length, Chapters XVI to XX. London 1866.

As the 10-fect standards are sub-divided into yards and feet, and the foot standard into inches and twentieths of an inch, it is possible to ascertain the relative lengths of the small spaces on which the micrometer runs depend, and of the six inch standard scales, to the 10-feet standards and the Standard Yard, and thus to refer all the measurements to a common unit.

Digitized by Google

CHAPTER II.

The Thermal Expansions of the Standards.

1.

An accurate knowledge of the variation in the length of a standard bar, corresponding to a given change in the temperature of the bar, is essentially necessary for a correct determination of the comparative lengths, at a given normal temperature,—as 62° Fahrenheit—of standards which have been actually compared at temperatures differing by more than a very few degrees from the normal temperature; it is also necessary for the reduction of the lengths of base-lines which are measured with metal bars of various temperatures, to the lengths at the normal temperature.

But the determination of the absolute thermal expansion of a metal bar is a problem of very great delicacy and difficulty, as will be readily seen on comparing the discrepancies which are so frequently met with when the expansion of the same bar has been determined on several occasions. Such discrepancies have given rise to the hypothesis that the expansion is not constant, but is liable in course of time to vary. Thus the expansion of the 10-feet Ordnance Standard $\mathbf{0}_1$ has been determined no less than six times, with the following results, for a variation of temperature equal to 1° Fahrenheit. (See Principal Triangulation of the Ordnance Survey. London 1858; pages 205 and 221.)

Year.	Co-efficient of expansion.	Expansion in millionths of a yard.
1827	·00000652	21'74
1844	·00000613	20.33
1844	•00000607	20.23
1845	·00000620	20.65
1846	*0 0000592	19'74
1849	•00000637	21'23

With reference to the last of these determinations Captain Clarke observes that "it seems that the expansion of the standard $\mathbf{0}_1$, must have increased since 1846, and is again approaching its former value, namely .0000065."

It remains to be seen how far such differences between numerical values as are here exhibited are due to actual changes of expansibility, in course of time, and how far to errors in the determination of the expansion. As regards the possibility of changes, sufficient information does not appear to be at present forthcoming to enable any valid conclusions to be formed; it is therefore only practicable at present to investigate the influence of errors in the observations.

THE STANDARDS OF MEASURE.

The examination of any group of good observations of the expansion of metal bars will at once show that whatever errors exist, of a nature to exercise a sensible influence on the results, must be *constant errors*, due to defects in the apparatus, or the modus operandi, or possibly to both causes, for the theoretical probable errors of the results are almost invariably far smaller than the differences between the results of independent groups of observations.

Two methods appear to have been most commonly followed hitherto, in investigations of this nature.

In one of these methods the bar has been placed under a pair of microscopes, and it's length (relatively to the distance between the microscopes) been determined by observations at a natural temperature; it has then been heated by steam to a temperature approaching 212°, and it's length again determined. But the violence to which the bar is subjected has brought this method into disfavor, as it appears liable to alter the normal length of the bar, temporarily, if not permanently.* Moreover there is much reason to doubt whether the factors of expansion thus derived for such high temperatures are strictly applicable to measures at lower temperatures.

The other method is to remove the bar from the comparing room into a chamber artificially heated to a temperature of about 100°—which is slightly greater than the maximum occurring in practical operations—and allowing it to remain there until it has acquired a steady temperature; then bringing it back into the comparing room, carefully enveloped in blankets, and adjusting it quickly under the microscopes. In Russia a converse method has been followed, and the bars have been cooled down in sheds pervaded by the extreme cold of the winter, and then brought into a warm comparing room.

Frequently the microscopes have been assumed to hold an invariable position throughout the comparisons—an assumption which is very questionable—but occasionally the experiments have been conducted so as to be independent of the stability of the microscopes, by comparing the bar under treatment with another bar of which the temperature remains nearly constant, the expansion being known with sufficient accuracy to indicate the variations in length for slight changes in temperature.

It is manifest that the accuracy of the results of all such experimental observations must depend very materially on the accuracy with which the temperatures of the bars are indicated by the thermometers. But when the temperatures of the bars are changing, the temperatures of the thermometers, whose bulbs are fixed in the wells of the bars and are protected from external influences, necessarily *lag* behind those of the bars, and consequently the indications of the thermometers must be to some extent erroneous.

In order to guard against errors of this nature, Captain Clarke—before determining the expansions of the new Steel and Bronze Standards described in the preceding chapter—devised

Digitized by Google

(6)

^{*} Norg.—Captain Clarke remarks that "if a bar of iron be heated from 62° to 212° , it is so extended $150 \times 6 = 900$ millionths of its length; and if the modulus of elasticity be, say, 30,000,000 and the section two square inches, the force required to produce the above extension is $60 \times 900 = 54,000$ lbs., or 24 tons. As a standard of length can seldom be used at a temperature exceeding 90°, it seems unnecessary that it should be heated in expansion experiments above 100° at the outside."

(7)

THE THERMAL EXPANSIONS OF THE STANDARDS.

an apparatus for artificially raising the temperature of a bar to any desirable point, and retaining the temperature at that point as long as might be wished. The apparatus is minutely described in Chapter XVI of his *Comparisons of Standards*, and several illustrative plates are attached in explanation. In this place therefore it is only necessary to state that the bar rests on a carriage between two copper boxes of slightly greater length than the bar, and 5 inches in height by 3 in breadth; these boxes serve as tanks for holding the water by which the bar is heated. By means of supply and discharge pipes, an unintermittent flow of water, brought from a reservoir in which its temperature is maintained at any desired point, is passed through the tanks, and the variations of temperature in the tanks are very slow and very small and in their influence on the bar generally insensible.

Captain Clarke observes that

"even with the existence of small sensible oscillations about a mean temperature, there is this advantage above "the method of observing a bar steadily cooling, that sometimes we observe the bar in the state of expanding, and some-"times in the state of contracting, the one as often as the other, and thus a constant error is avoided."

Captain Clarke has investigated the influence of an unsustained temparature on a bar under comparison. After closing his observations of the expansions of the Steel Bar, he cut off the supply of warm water, which was than at a temperature of 63° , the temperature of the room being 43° ; six comparisons were made at various intervals within the following thirty hours, at the end of which the temperature of the bar had fallen to about 51° ; it was then again heated to above 65° and allowed to cool, and, when cooling, two more comparisons were made. The resulting values of the expansion are very satisfactorily accordant *inter se*, but they are smaller than those previously deduced with *sustained* temperatures, in the proportion of 20.740 to 21.194; this indicates that the temperature of the thermometers was on an average about 0.3° Fahrenheit greater than that of the bar, and was consequently lagging behind the bar, though the latter was cooling at the slow rate of only about 0.4° in an hour.

Similar results were obtained by Captain Clarke in experiments on the Ordnance iron Standard $0l_2$ while cooling. Moreover, on determining the expansions of this bar and the sister bar $0l_1$, with his heat sustaining apparatus, he obtained larger values than had been obtained from previous determinations which had been made under falling temperatures. The resulting expansions, expressed in millionths of a yard, for 1° of Fahrenheit, were respectively as follows, (See *Comparisons of Standards Chap. VI and XVII.*)

> With a falling temperature, expansion of $\mathbf{0}\mathbf{I}_1 = 21.055 \pm .089$ With a sustained temperature, expansion of $\mathbf{0}\mathbf{I}_1 = 21.576 \pm .010$ With a falling temperature, expansion of $\mathbf{0}\mathbf{I}_2 = 21.400 \pm .050$ With a sustained temperature, expansion of $\mathbf{0}\mathbf{I}_2 = 21.591 \pm .011$

In the case of $\mathbf{0}\mathbf{1}_1$ the difference is material, the magnitude thereof being about six times the amount of the probable error of the first determination, and fifty times that of the second, thus illustrating the imperative necessity of guarding against the presence of constant errors in investigations of this nature.

THE STANDARDS OF MEASURE.

Certain comparisons which were made at Dehra Doon in May 1869, to determine the difference between the expansions of the iron standard bar A, and the steel standard I_s , tell the same tale. The observations were made in a base line tent, in order to secure the greatest range obtainable from the natural variations of daily temperature. They were taken early in the morning and late in the afternoon—at the hours of maximum and minimum temperatures—commencing a little before and ending a little after the highest and lowest points had been reached, in order that the momentary variations of temperature might be a minimum and that the errors arising therefrom might be practically cancelled. The comparisons furnish—*inter alia*—two groups of observations, each containing seven determinations of the value of I_s — A, one group under a decidedly rising, the other under a decidedly falling temperature; the mean temperatures of the two groups differ by less than 3°, so that no possible error in the adopted value of expansion of either bar can affect the reduction of the observations of one group to the temperature of the other. The results are as follows,

Under a falling temperature $I_{\bullet} - A = 72^{\circ}$ Under a rising temperature $I_{\bullet} - A = 57^{\circ}$ millionths of a yard at 89°.48*

The difference far exceeds any possible errors of observation, and clearly arises from the circumstance that the variation of temperature of the iron bar A was much more rapid than that of the steel bar I,; the mass of the steel bar is about half as much again as that of the iron, and its diurnal range of temperature was only two-thirds of that of the iron; in neither bar could the thermometers have exactly indicated the temperature of the bar, but the lagging of the thermometers in the iron bar, which expanded most rapidly, must have been greater than the lagging of the thermometers in the steel bar; probably by about 0.3°, for the error of either determination as compared with the mean, is 7.3, and the expansion for 1° about 21; the mean of the two values is almost identical with the mean which is derived from the whole of the comparisons—about sixty in number—and with the value which has been independently deduced from other observations.

From a consideration of the preceding facts it must be clear that determinations of the thermal expansion of metal bars are only to be relied on when taken with the utmost care to exclude constant errors, and consequently that apparent variations of expansibility, in course of time, may in reality have been caused by errors in the respective determinations of the expansion by different methods and different observers.

Digitized by Google

(8)

[•] The millionth part of the yard has been adopted by Captain Clarke, in his Comparisons of Standards of Length, as a unit of reference for small quantities. It is a convenient unit, being uncumbered with the large number of decimal places which are required when the inch is adopted as the unit. It will be frequently used in this volume, and always whenever the results of the operations of this survey have to be combined with the results of Captain Clarke's comparisons, and his investigations of the expansions, of the standards.

THE THERMAL EXPANSIONS OF THE STANDARDS.

2.

The Expansion of the 10-feet Standard A.

The factor of expansion of this bar was first determined in 1832, in Calcutta, by Mr. James Prinsep and Captain Wilcox. The observations are given in detail in No. XV of the Asiatic Journal (*March* 1833) in an article by Mr. Prinsep; and Colonel Everest has given a synopsis of the results which he has deduced from them, at page XCVII of his Arc Book of 1847.

The method of operation was briefly as follows; the bar was placed inside a double case formed of two concentric tin tubes, soldered together at the extremities, but separated by a space into which steam might be admitted. The bar was then brought under two microscopes which were fixed on isolated piers of stone. The microscopes were first read when the bar was at the natural temperature of the comparing room, which appears to have ranged from 71° to 79°. Then "the stop cock of a pipe which communicated with the boiler of a small steam engine was turned, and a stream of steam, entering at one end, was made to pass longitudinally along the whole space between the tin tubes. and discharge itself at the opposite end. When the steam had been applied for a sufficient period, and both thermometers and micrometers continued to agree in indicating no change, the readings of both were again noted, and the communication with the boiler being cut off by turning the stop cock, the whole was allowed to cool down to the ordinary temperature of the room, in which state the readings were made for a third time."

The factor of expansion thus deduced was :000,006,801 for 1° Fahrenheit, and the corresponding linear expansion is 22.67 millionths of a yard.

Up to the present time this value has been employed for the reduction of all measures of the standard at various temperatures, to the normal length at the temperature of 62°.

But an analysis of the numerous comparisons which have been made at each base-line, between this standard, and the compensated bars used in measuring the lengths of the baselines, has shown that the discrepancies between the several comparisons on each occasion would be materially reduced were a smaller value of the expansion of the standard to be employed. Such comparisons in themselves afford a means of determining the expansion of the standard, with very tolerable accuracy, and they have been used for this purpose by Captain Clarke, in determining the expansion of the Ordnance Standard $\mathbf{0}_1$, for the reduction of the measurement of the base-line on Salisbury Plain. (*Principal Triangulation of the Ordnance* Survey, page 220.)

(10)

THE STANDARDS OF MEASURE.

The following values of the expansion of the standard bar A have been thus obtained for eight out of the ten base-lines, no such investigations having been made for the bases at Beder and Cape Comorin :—

Base-Line.		Year of mea- surement.	Mean temperature of standard during comparisons.	Expansion in millionths of a yard for 1° Fahrenheit.	
Calcutta		1832	67 [°]	20.02 + .51	
Dehra Doon,	••••	1835	66	21·13 ± ·06	
Seronj,	•••	1838	63	20°46 ± °09	
Sonakhoda,	•••	1848	64	21.31 ± .09	
Attok,	•••	1854	53	20'92 ± '09	
Karachi,	•••	1855	68	20 [.] 80 ± [.] 11	
Vizagapatanı,	•••	1863	73	21.39	
Bangalore,	•••	1868	71	22'0I	

These expansions are all considerably in defect of the value obtained by direct observation at Calcutta; it is noticeable that one of the largest differences occurs at the Calcutta base-line, which was measured in the year in which the direct determination was made; the difference therefore is clearly due rather to the observations themselves, than to an actual change in the expansion.

Colonel Everest observes that his factor agrees very closely with the one given in Mr. Ure's tables, of '000,006,779, derivable from an increment between 32° and 212°. On the other hand it considerably exceeds the factors determined for the wrought iron standards of the Ordnance Survey, from temperatures not exceeding 100°, by the two processes already described; the excess is least when the comparison is made with observations at sustained temperatures, but even then it is considerable, being more than 5 per cent of the total amount. As compared with the expansions of the wrought iron standards of the Russian Arc, Colonel Everest's factor is 7 per cent greater, (see Struve's Arc du Meridien, pages 49 to 51). Thus a re-determination of the expansion of this standard was evidently called for.

(11)

THE THERMAL EXPANSIONS OF THE STANDARDS.

3.

Re-determination of the Expansion of Standard A.

The expansion of the steel standard I_S having been very accurately determined by Captain Clarke, under temperatures which were carefully sustained, at points not rising above 100°, by means of the apparatus which has been already described, (see also *Comparisons of Standards. Chapter XVI*) an attempt was made at Dehra Doon, in May 1869, to deduce the *difference* between the expansions of I_S and of A, by means of comparisons at the highest and lowest natural daily temperatures. The comparisons were made in a base-line tent, the microscopes being set up on isolated masonry pillars. The range of temperature was about 20°, the mean temperature being 89°. Adopting for I_S the value of 21°159, as determined by Captain Clarke, the result was

Expansion of A, for 1° Fahrenheit = 21.760.

These are the experiments which have been already described at page 8, and it has been shown that they indicate large differences between the observed measures of $I_s - A$ when taken under rising temperatures, as compared with those which were obtained when the temperatures were falling. For this reason the results could not be considered conclusive, and it was decided to make a new determination, with the aid of a heat sustaining apparatus, similar to that devised by Captain Clarke.

In order to secure as low natural temperatures as possible, the final experiments were carried on in the winter, on the hill station of Masuri, in a room attached to the summer offices of the Trigonometrical Survey. They were conducted by Mr. Hennessey, who also supervised the entire details of the construction of the apparatus, and the measures for retaining the comparing room at a temperature as nearly constant as possible. Mr. Hennessey's account of his procedure will be given at length in the Appendix; in this place it is only necessary to give a brief sketch of the operations and to epitomize the results.

The steel standard I_s was again employed on this occasion. The observations were divided into 4 groups, each containing 30 comparisons of I_s with **A**.

In group No. 1, both bars were heated.

In group No. 2, both bars were cold, *i. e.* at the natural temperature of the comparing room, which was about 52° .

In group No. 3, I_s was hot and A was cold.

In group No. 4, I_s was cold and A was hot.

The hot temperatures were altered at pleasure from 88° to 98°, and so thoroughly were they controlled that the bars never varied in temperature by more than 0°1 during the whole of the observations on any day, and the average range of temperature in the same time was not

(12)

THE STANDARDS OF MEASURE.

more than 0°03; whenever the temperature was raised or lowered, a long interval was always allowed to elapse before resuming observations, and the changes of temperature were invariably made very gently and slowly.

Combining groups 1 and 2, a value of the difference between the expansions of I_s and A is obtained. Combining groups 2, 3, and 4, absolute values of the expansions of both bars are obtained.*

Employing the symbol E to denote the expansion of a bar, in millionths of a yard, for an increase of temperature of 1° Fahrenheit, and the symbol F to denote the corresponding factor of expansion, the following symbols will indicate these quantities for each of the 10-feet standards of the Indian Survey.

\boldsymbol{E}_{a}	the expansion,	F_a	the factor,	of	the	wrought	iron	standard	A
$\tilde{E_b}$	- ,,	F_b	,,		•	"		,,	B
E_s	"	F_{g}	,,				steel	standard	$ _{s}$
$\vec{E_{R}}$,,	$\tilde{F_B}$,,			· b	ronze	e standard	I_B

Combining groups 1 and 2, by the method of least squares,

$$E_a - E_s = \overset{\text{m.y}}{\circ} 557$$

combining groups 2, 3, and 4,

$$E_a = 21.747 \pm .0078$$

 $E_s = 21.337 \pm .0077$
 $E_a - E_s = 0.410$

combining all four groups,

$$E_a = 21.797 \pm .0079$$

 $E_s = 21.290 \pm .0080$
 $\therefore E_a - E_s = 0.506$

The expansions of $|_{S}$ and $|_{B}$ have been twice determined by Captain Clarke, (See Comparisons of Standards, Chapter XVI). The first set of observations was taken in February and March 1865, the second in April and May of the same year.

[•] Though group 2 is thus employed in both combinations, the results are practically independent, for the errors of the observations of this group are insignificant in comparison with these of either of the other groups.

(13)

THE THERMAL EXPANSIONS OF THE STANDARDS.

The first series consists of 50 comparisons, at temperatures ranging from 39° to 99°; the second of 27 comparisons at temperatures ranging from 56° to 96°; the results are as follows,—

by the first series	$E_B = 32.957 \pm .013$ $E_S = 21.194 \pm .014$
by the second series	$E_B = 32.759 \pm .019$ $E_S = 21.159 \pm .019$

Captain Clarke accepts the results of the second series only, apparently for the reason that in the first series the bars were suspended from above, while in the latter they rested on rollers—" under circumstances more similar to those in which they will be actually used"—and because in the first series there were irregularities in the distance, about $\frac{3}{16}$ of an inch, of the hot water tanks from the bar, at different parts of it's length, whereas in the second, the tanks were somewhat improved as to straightness, and were placed at a greater distance from the bar than before, namely about $\frac{7}{16}$ inch.

The discrepancies between the results of the preceding investigations are much smaller than those which are frequently met with in similar investigations, and are thus a satisfactory proof the advantages which are secured by the employment of a heat sustaining apparatus. Still however they are materially larger than the probable errors would lead one to expect, the difference between the lowest and highest values of the expansion of the steel standard amounting to nearly 1 per cent. of the total expansion. Clearly the differences between the results by the same observer cannot be due to any change in the expansibility of the bars in the intervals of only a few weeks duration between the successive series of observations. The difference between Captain Clarke's value of the expansion of the steel standard and that obtained by Mr. Hennessey, may be due to a change in the expansibility of the bar in the intervening period of 41 years; but it is most probably due to constant and inconstant errors in the temperatures indicated by the thermometers during the investigations, such as may arise either from the intrinsic errors of the thermometers or from actual differences between the temperatures of the bars and those of the thermometers; in both investigations however the thermometers were carefully tested in ice and compared with very accurately calibrated standards, and the operations for sustaining the temperatures must have materially tended to equalize the thermal conditions of the bars and the thermometers, but for which circumstances larger discrepancies might have been met with.

The differences between the results obtained by the same observer, must evidently be assumed to be due to the intrinsic errors of the operations, and it may also be assumed that the differences between Mr. Hennessey's results and Captain Clarke's are due to this cause and not to any appreciable physical influence. These assumptions are equivalent to admitting that .

(14)

THE STANDARDS OF MEASURE.

the most elaborate and exact observations for determining the expansion of a metal bar which it appears possible to make are liable to errors not materially less than 1 *per cent*. of the amount of the expansion.

Adopting mean results, the value of the expansion of A must be that obtained by combining the whole of Mr. Hennessey's observations, whence

$$E_a = 21.797, \quad F_a = .000,006,539$$

For I_S , I adopt the mean of the result from all Mr. Hennessey's observations and the result from Captain Clarke's second series of observations, as he himself rejects his first series; thus

$$E_8 = 21^{225}, \quad F_8 = 000,006,368$$

For $|_{B}$, I have simply to follow Captain Clarke, and accept the value of expansion which he has accepted, or

$$E_B = 32.759, \quad F_B = .000,009,827$$

4.

Adoption of a rate of expansion varying with the temperature for the 10-feet standard A.

The value of the expansion of A which has been finally arrived at in the last section has been determined from measurements of the increments of the bar between temperatures of about 52° and 96°; on the other hand the value of the expansion of this bar which was obtained in Calcutta in 1832—*vis.* 22.669 *m.y*—was determined from measurements of the increments between temperatures of 76° and 212°. Thus the difference between the two results—which is as much as 0.872 *m.y.*, or precisely 4 *per cent.* of the whole expansion—is not necessarily due to errors in the first determination; and the results obtained from the comparisons of the standard with the compensated bars at the several base-lines—which have been given in the table in the preceding section of this Chapter—indicate that there is a considerable probability that it cannot be due to absolute changes in the expansibility of the bar.

I shall assume therefore that it is mainly due to the circumstance that the average increment of the bar, for a change of 1° of temperature, is greater at the high temperatures which were employed in 1832, than at the comparatively low temperatures which were employed in 1870. That the co-efficients of dilatation increase with the temperature, when the temperature is between the boiling point of water and the melting points of metals, has been sufficiently shown by the investigations of Dulong and Petit. That the increase is appreciable between the temperatures of the freezing and boiling points of water, does not appear as yet to

(15)

THE THERMAL EXPANSIONS OF THE STANDARDS.

have been generally established. But investigations of the factors of expansion of the wrought iron standards which were employed in the verification of La Caille's Arc of the Meridian at the Cape of Good Hope, have lead the Astronomer Royal to the conclusion that, between 40° and 140°, "the expansion increases rapidly with the rising temperatures"; the reductions of the measures of the standards, to the normal temperature of 62°, during the operations at the Cape, were consequently made with factors varying with the temperature. (See Sir Thomas Maclear's Verification and Extension of La Caille's Arc, pages 350,351).

The law of the expansion of standard **A** has been empirically determined in the following manner. Putting l_{τ} for the length of the bar at τ , the lowest temperature of the observations, and l_{t} for the length at t, any other temperature, it is assumed that

then l_{τ} and τ being constant, the expansion for 1° at any temperature t will be

$$dl_t = x + 2 (t - \tau) y \quad \dots \quad \dots \quad \dots \quad \dots \quad (2)$$

The lowest temperature of observations being 52°, and the other temperatures being 76°, 96°, and 212°, we have the following equations

$$l_{76} = l_{52} + 24x + (24)^2 y$$

$$l_{96} = l_{52} + 44x + (44)^2 y$$

$$l_{212} = l_{52} + 160x + (160)^2 y$$

The observed increment during the experiments in 1832 was = $(212 - 76) \times 22^{\circ}669$; during the experiments in 1870 it was = $(96 - 52) \times 21^{\circ}797$

$$\begin{array}{rll} \therefore \ l_{96} - l_{52} &=& 44 \ x + (44)^2 \ y &=& 44 \ \times \ 21'797 \\ \text{and} \ l_{212} - l_{76} &=& 136 \ x + (160^2 - 24^2) \ y &=& 136 \ \times \ 22'669 \\ \end{array}$$
Thus $\begin{array}{rll} x + & 44 \ y &=& 21'797 \\ x + & 184 \ y &=& 22'669 \end{array}$

whence
$$x = 21.523$$

 $y = .00623$

It is necessary to find the mean expansion for 1° between the normal temperature 62°, and any temperature t. The entire increment of the bar, between the temperatures t = a and t = b, is

$$l_{b} - l_{a} = \int_{a}^{b} dl_{t}$$

= (b - a) {x + (b + a - 2 \tau) y}

(16)

THE STANDARDS OF MRASURE.

Thus, \cdot being = 52°, the mean expansion for 1° between 62° and any temperature t is

$$\frac{l_t - l_{62}}{t - 62} = x + (t - 42^\circ) y$$

or ${}_tE_s = 21.523 + (t - 42^\circ) \times .00623$

The corresponding numerical values for certain given temperatures will be found in the last section of this chapter.

5.

The Expansion of the 10-feet Standard B.

No direct experiments have ever been made for determining the expansion of this bar. Colonel Everest assumed it to be equal to that of standard A; both bars were constructed at the same time, and, as was supposed, of the same metal, and they are similar to each other in every respect.

Colonel Everest compared A with B in 1834 and again in 1835; the observations having been taken over a large range of temperature— 18° in the first instance, and 30° in the second can be treated so as to furnish values of the difference of the expansions of the standards as well as of the difference of length. This has been done, and the method which was followed will be found described in detail in the Appendix, in the section on the comparisons of the lengths and of the expansions of standards A and B. The results will be shown in this place.

Adopting the symbols at page 12, and putting

$$E_b = E_a + y$$

and $E_a = s - ds$

where e = 22.669, Colonel Everest's value of the expansion of **A**, and de denotes the error of that value, the following values of y have been obtained by the method of least squares;

from the first group of	observations,	y	=	 o [.] 575	+	•008 de
from the second group	99	y	=	 0 .109		.015 de
from both groups	,,	y	=	 0.145		•009 de

Assuming de to be equal to $+ \circ 872$, the amount by which Colonel Everest's value of the expansion exceeds Mr. Hennessey's, we get from the mean of both groups

whence
$$y = -0.153$$

 $E_b = 21.644$

The value of y being so small, it is clear that Colouel Everest's assumption that the expansion of **B** is the same as that of **A**, is sufficiently exact for the reduction of observations at temperatures not differing very materially from 62°.

(17)

THE THERMAL EXPANSIONS OF THE STANDARDS.

6.

The Expansions of the 6-inch brass scales A and B, and of the steel foot IF.

No determinations of the expansions of these small bars have been made.

The co-efficient of expansion of the brass scales has been uniformly assumed to be •000,010,417, which is probably too large, having been deduced from experiments over a great range of temperature;—a more probable value is, •000,009,855; (see Account of the Lough Foyle Base, Appendix, Page 12.)

The expansion of the steel foot has been assumed to be the same as that of the 10-feet steel standard I_s .

7.

On the possible increments of expansion of the steel and bronze Standards $|_{s}$ and $|_{b}$, for an ordinary increase of temperature.

The expansions of these bars have been twice determined by Captain Clarke, and that of l_s has been re-determined by Mr. Hennessey, with the results which have already been stated in section 4 of this Chapter. In both instances the observations were restricted to temperatures not exceeding 100°, and thus they do not furnish sufficient data for determining the variation of expansion with temperature. Captain Clarke however, having noticed that there was an inclination to a predominance of + errors at the lower temperatures and - errors at the higher temperatures, in his observations, has given tables of the result of each comparison, and the temperature at which it was made. From these tables the following one has been prepared, by grouping together the expansions at the highest and lowest temperatures.

Bar.		Number of	TEMPERATI	JRES.	T-monsion	Series of	
		measures.	Range.	Range. Means.		experiments.	
Steel,	{	4 · 5	42 [°] to 88 [°] 42 to 97	65 [°] 69 [.] 5	m.y 21°130 21°220	} First.	
Do.,	{	4 4	56 to 75 56 to 96	65 · 5 76	21.103 21.122	} Second.	
Bronze,	{	5 6	44 to 74 44 to 98	59 71	32'747 33'023	} First.	
До.,	{	4 4	57 to 76 57 to 96	66·5 7 ^{6·5}	32 [.] 607 32 ^{.82} 7	} Second.	

(18)

THE STANDARDS OF MEASURE.

There is an apparent increase of expansion with the temperature in the four comparisons between the observations of each group; it is greatest for the bronze bar, but is sufficiently marked for the steel, and indicates the probability that the expansions of both bars increase with the temperature, by appreciable amounts, even at temperatures between 60° and 80°.

8.

Recapitulation of the adopted Expansions.

I have assumed that the expansion of the 10-feet Standard A has not varied during the interval between 1832, when it was determined at high temperatures, and 1870, when it was determined at ordinary temperatures; also that the values obtained on the two occasions indicate—with all practicable accuracy—the expansions at the respective temperatures of the observations, and that the difference between the results is due to an increase of expansibility for an increase of temperature.

I have shown that there is much reason to believe that the expansions of the steel and bronze standards, I_S and I_B , increase with the temperature; but that whereas there are sufficient data for indicating, with fair probability, the precise amount of the expansion of **A** at various temperatures, no such data are forthcoming for I_S and I_B , or **B**, the bars with which **A** has been compared for the determination of it's relations to the European Standards of length. In reducing the comparative lengths of these bars, at the temperatures of observation, to the corresponding lengths at the normal temperature, it would be manifestly incorrect to recognize the expansion of **A**, and to ignore that of the other bars. For supposing **A** to be compared with I_S , and that at a temperature *t*, which is practically identical for both bars,

$I_s - A = m$,

then, putting e_a and e_s for the expansions of the bars, it follows that at the temperature of 62°

$$I_{s} - A = m - (e_{s} - e_{a}) (t - 62^{\circ})$$

thus the reduction depends on the *difference* of the expansions and is scarcely affected by the small changes in this difference which may occur within the ordinary ranges of temperature. On the other hand, in reducing the comparative lengths of the standard \mathbf{A} and the *compensated* bars—which have been employed in the measurement of the base-lines, and which do not vary materially with the temperature but are nearly of a constant length—it is necessary to employ the value of the expansion of \mathbf{A} which corresponds to the temperature of the observations. Hence therefore one value of expansions will be employed in the final reductions of the comparisons of standards, and other values in the final reductions of the base-lines; as are shown in the following tables.

(19)

THE THERMAL EXPANSIONS OF THE STANDARDS.

Bar.	Expansion in millionths of a yard.	Co-efficient of expansion.
10-feet Stand A, (wrought iron)	21.797	•000,006,539
, B (,)	21.644	•000,006,493
, I_S (steel)	21.225	•000,006,367
, I_B (bronze)	32.759	•000,009,828
Standard Foot IF (steel)	2.122	•000,006,367
6-inch Standards A & B (brass)	1.736	•000,010,417

Expansions, for 1° Fahrenheit, used in reductions of comparisons of standards.

Expansions, for 1° Fahrenheit, of Standard A, at various temperatures, for reductions of comparisons with compensated bars.

Temperatures.	Expansion.	Co-efficient.
42 52 62 72 82 92	<i>m.y</i> 21 [•] 523 21 [•] 585 21 [•] 648 21 [•] 710 21 [•] 772 21 [•] 835	·000,006,457 ·000,006,476 ·000,006,494 ·000,006,513 ·000,006,532 ·000,006,551

This table has been computed with the formula at the end of the 4th section of this Chapter.

It should be here repeated that the propriety of employing the value of the expansion of **A** which was determined at Calcutta in 1832 has only recently been questioned; that value had been already used in all the reductions of the comparisons, both with the other Standard Bars and with the Compensated Bars. Differential expressions have therefore been added to the several reductions to show the extent to which the comparisons of length between the standard bars will be affected by changes in the adopted values of the expansions of either of the bars.

For the base-lines, the mean temperatures of A, during the comparisons with the compensated bars, will be shown, and corrections for the difference between the adopted value of the expansion, and that given in the second table, for the corresponding temperature, will be applied to the lengths of the base-lines.

Digitized by Google

(20)

THE STANDARDS OF MEASURE.

CHAPTER III.

Comparisons of the Standards.

1.

The influence of Personal Equations.

The extremities of the old 10-feet and the 6-inch standards are defined by dots on platinum or silver pins, which are drilled into the bars.

The extremities, and the several sub-divisions, of the new 10-feet steel and bronze bars, and of the steel foot, are defined by lines which are drawn—perpendicularly to the length of the bar—on gold pins, drilled into the bars.

The dots on the old standards vary from 50 to 100 millionths of a yard in diameter, or from about 40 to 80 divisions of the micrometers which have been generally used for the comparisons.

A perfectly symmetrical dot of these dimensions may either be intersected by a single wire of the micrometer, or it may be brought between a pair of wires, with a probable error less than one micrometer division for a single reading, and materially less for the mean of a number of readings. But comparisons of standards by different observers frequently exhibit far larger discrepancies than can be explained by the differences between the several measures made by any individual observer; such differences are generally due to accidental errors of observation only, and the magnitudes of the corresponding probable errors will not vary materially for different persons who, from long practise, are well skilled in the operations; but the discrepancies between the results of the observations of several persons will usually be far larger than the probable errors of observation only, and the observation only, and they may be frequently traced to the personal equations of the observers.

When the dots are unsymmetrical, the errors of observation are much increased; large discrepancies may be expected whenever the intensity of the light by which the dots are illuminated is varied, as when the light of a lamp is substituted for sunlight reflected from a heliotrope. A true dot is of the form of an inverted cone with its axis at right angles to the surface of the bar; a jagged dot is irregular in outline and depth; thus while changes of illumination will not affect the appearance of the former or disturb the estimate of the position of the central point, they may considerably affect the appearance of the latter, and indicate new centres with every change of illumination. Here then there will be a still greater tendency to differences between results obtained by different observers.

The influence of the personal equation will now be investigated in two groups of comparisons of small lengths, not exceeding 6 inches, in which the micrometer microscopes at both extremities were read by the same person. Such observations are evidently better suited for the purposes of the present investigation than the comparisons of the 10-feet bars, for

(21)

COMPARISONS OF THE STANDARDS.

two observers are always required for the latter, and the results are liable to be materially affected by errors in the apparent temperatures, and in the adopted values of the expansions.

Comparisons of the 6-inch Standard A, and the 6-inch scales used in the base line operations, with the central 6-inch space [d.l] of the foot 1F.

The scales are respectively known by the letters M, N, R, S, T, U, V, and W, and are similar in all respects to standard A. Each was compared four times with $|\mathbf{F}|$ by five of the Officers of this Survey, with the following mean results by each observer, which are expressed in millionths of a yard, as reduced to the temperature of 62°, the temperatures of observation ranging from 66° to 70°.

and the second se									
Observer's initials.	[d.l] - A	[d.l] — M	[d.l] - N	[d.l] - R	[d.l] - S	[d.l] - T	[d.l] - U	[d.l] — V	[d.l] - W
M. W. R.	+ 1.03	- 2.67	- 10.08	- 6.59	+ 0.98	+ 1.90	- 8.55	+ 5.94	+ 3.38
W. J. H.	8.96	4.69	12.50	7.64	2.84	3.11	9.74	4.60	2.11
Т. G. M.	4.91	5.22	14.72	7.17	1.62	3.10	7 .97	1.62	- 0.90
J. B. N. H.	7:36	3.93	13.28	10.92	0.02	- 0.13	12.30	3.77	+ 1.24
H. R. T.	5.48	1.12	9.30	9.86	2.40	+ 2.27	11.60	5.89	3.41
Mean	+ 5.55	- 3.24	-11.98	- 8.44	+ 1.20	+ 2.06	- 10.03	+ 4.37	+ 1.01

Computing the value of the probable error of the result obtained by a single observer from the squares of the differences between the individual results and the mean of each group, and calling this probable error e, we get

$$e = \pm .67 \sqrt{\frac{131.88}{45-9}} = \pm 1.28$$

The value of e thus determined may be considered to be the *entire* probable error of the result obtained by a single observer, and to include both the personal errors, and the accidental errors of observation; so that if p be the probable personal error, and o the probable error of observation, we may put

$$e^2 = p^2 + o^2$$

the other errors being, from the circumstances of the observations, presumably constant for all the comparisons. The several observations by each observer are given in the appendix; the

(22)

THE STANDARDS OF MEASURE.

differences between single comparisons and the mean of the group to which they appertain indicate that, in a single comparison, the probable error of observation only is $= \pm 81$, and as four comparisons were made by each observer

Thus

$$p^2 = e^2 - o^2 = (1.28)^2 - (.40)^2 = 1.48$$

 $p = \pm \frac{m.y}{1.22}$

 $o = \pm \frac{\cdot 8_{\rm I}}{\sqrt{4}} = \pm \cdot 40$

Thus the entire error appears to be almost wholly due to the *personal equations* of the observers.

Comparisons of 5-inch and 6-inch spaces on the standard steel foot, with corresponding spaces on Cary's brass scale.

These comparisons were made in order to determine the relation to Standard A of inch 7 to 8 of Cary's brass scale, on which the runs of the micrometers had been taken, at every occasion of comparative measurements between the years 1832 and 1867. The space 7 to 13 of Cary's scale was compared with the space a to g of the standard foot, and 8 to 13 with b to g, whence the value of inch 7 to 8 of Cary's scale is determined relatively to inch a to b of the standard foot, the relative value of which to standard A is known.

Each space was compared five times by six of the Officers of this Survey, with the following results, which are expressed in millionths of a yard, as reduced to the temperature of 62°, the temperatures of observation ranging from 64° to 68°.

Observer's initials.	a to $g = 7$ to 13	b to $g = 8$ to 13	$a ext{ to } b - 7 ext{ to } 8$
Т. G. M.	— ¹ .7	- 20.5	+ 18.8
J. B. N. H.	4 'I	16.1	12'0
н. к. т.	9.8	21.6	11.8
С. L.	4'3	18*2	13.9
Н. К.	5.2	13.9	8.4
Т. Т. С.	3.5	19,1	15.9
Mean	- 4.8	- 18.2	+ 13.4

(23)

COMPARISONS OF THE STANDARDS.

Computing the entire probable error, as above, from the squares of the differences between the results by each observer and the mean for the corresponding group of the *direct* comparisons, we obtain

$$e = \pm .67\sqrt{\frac{78.96}{12-2}} = \pm \frac{m.y}{1.88*}$$

From the details of the observations which are given in the appendix it can be shown that, in a single comparison, the probable error of observation only is $= \pm .72$, and as five comparisons were made by each observer

$$o = \pm \frac{.72}{\sqrt{.5}} = \pm .33$$

 $e^2 - o^2 = (1.88)^2 - (.33)^2 = 3.43$

 $p^{2} =$

whence

$$\therefore p = \pm 1.85$$

Comparing p and e the entire error is again seen to be almost wholly due to the *personal* equations of the observers.

In the observations of the foot and the 6-inch scales, the comparisons were made between good lines and dots which—with a very few exceptions—were fairly symmetrical. In the observations of the foot and Cary's scale, the comparisons were made between good lines on the former and coarse lines on the latter, for Cary's scale was constructed some time before the year 1802, when the art of dividing had not reached its present perfection. Thus p is much larger in the second case than in the first.

For the probable personal errors of comparisons of small bars which can be made by a single observer, it may be assumed that, with fairly good lines or dots,

$$p=\pm \overset{m.y}{1\cdot 2}$$

while for long bars, in which the comparisons must be made by two observers, the probable personal error will be

$$p = \pm 1.5 \sqrt{2} = \pm \frac{m.y}{1.7}$$

It is clear from these results that personal errors are liable to be of considerable magnitude as compared with the ordinary accidental errors of observation, and consequently that

* The probable error of a single determination of a to b - 7 to 8, deduced from the differences of the *direct* comparisons and their mean, is

$$= \pm .67 \sqrt{\frac{65.18}{6-1}} = \pm 2.42$$

which is, as it should be, somewhat less than $e \sqrt{2}$.

THE STANDARDS OF MEASURE.

when great accuracy is required, standards should be compared by as many skilled observers as possible ;— it is further evident that the differences between comparisons of standards at different periods may be due to the personal equations of the observers, rather than to any actual change in the length of either standard, in the interval between the comparisons.

2.

Comparisons of the 10-feet Standards A and B, in 1834-35.

Comparisons were twice made at Dehra Doon under the superintendence of Colonel Everest, the first time in a house, the second time under tents, after the measurement of the Dehra Doon base-line. Full details of the comparisons, and their reduction by the method of least squares, are given in the Appendix. The resulting values, at the temperature of 62°, are as follows :—

In 1834	B – A =	3.75 the mean	n temperature of	observation being 66.4
in 1835	$\mathbf{B} - \mathbf{A} = -$	• 0'42	»» »	59.0

Combining both groups of observations by the method of least squares, it follows that in 1834-35 **B** – **A** = 0.64 the mean temperature of the observations being 62.7

3.

Comparisons of the 10-feet Standards **B**, $[I_s, I_B]$, and Ordnance Survey O_1 .

On reference to Chapters XX and XXII of Captain Clarke's *Comparisons of Standards* of *Length*, it will be seen that the Indian Standard **B** — therein called $|_{\delta}$ — was compared in England with $\mathbf{0}_{2}$ in 1831, with $\mathbf{0}_{1}$ in 1846, and with $|_{B}$, $|_{S}$ and $\mathbf{0}_{1}$ in 1865.

Taking into account the difference of $\mathbf{0}_1$ and $\mathbf{0}_2$, the results given by Captain Clarke are as follows, as reduced to the normal temperature of 62° ;

							m.y				v
In	1831,	B		0 ₁	=		22.25,	the mean	temperature	of observation	being 51.0
in	1846,	B	-	0 1	=		24.03		,,	"	73·5
in	1865,	ls		B	=		86.20		"	"	61.3
	"	$ _{B}$		B	=	:	218.58		"	33	63 ·2
	"	I _g	_	01	=		63.28		"	22	63.6
	"	$ _{B}$		0,	=	:	195.36		"		62 ·7

and from the last four comparisons it follows that

in 1865 **B** – $\mathbf{0}_1 = -23.22$, the mean temperature of observation being 62°.7

(25)

COMPARISONS OF THE STANDARDS.

The first four comparisons in 1865 have however been combined with comparisons of I_s and the Ordnance Standards O_1 , O_1 , and Y_{55} , by Captain Clarke, who has thus obtained the following Final Results; see *Chapter XXII*.

- $\begin{bmatrix}
 I_S B &= 86.81 \\
 I_B B &= 218.27 \\
 I_S 0_1 &= 64.21 \\
 I_B 0_1 &= 195.67 \\
 B 0_1 &= 22.60
 \end{bmatrix}$
 - 4.

Comparisons of the 10-fect Standards A, I_s and I_B , in 1867–70.

These bars were compared at Dehra Doon in 1867, shortly after the arrival of I_s and I_B from England. Full details of the comparisons will be found in the Appendix; the results, reduced to the temperature of 62° with the latest and most probable values of the factors of expansion, are as follows;

$I_s - A$	=	^{m.y} 80 [.] 84,	the mean	temperature	of	observation	being 71.7
$I_B - A$	=	212.64		"		,,	71 ·9
$ _{B} - _{S}$	=	132.06		,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	720

Adopting Captain Clarke's final value of $I_B - I_S$ (= 131.46), we get,

 $I_s - A = 81.18$, through I_B ,

and combining with the direct value, as above, we get

 $I_s - A = 81.01$, the mean temperature of observation being 71°.9

But the comparative length of I_S and A was re-determined by Mr. Hennessey, in 1870, in the course of his operations for investigating the factor of expansion of A; the result, as reduced to the temperature of 62° with the latest and most probable values of the expansions, was,

 $I_s - A = 84.03$, the mean temperature of observation being 51°8.

The mean of the two series of comparisons in 1867 and 1870 gives

 $I_s - A = 82.52$, the mean temperature of observation being 61°9.

(26)

THE STANDARDS OF MEASURE.

5.

Examination of the comparative lengths of the 10-feet Standards A and B, as deduced from the observations of 1834-35 and 1865-70.

By the comparisons of 1834-35

$$\mathbf{B} - \mathbf{A} = + \overset{\mathbf{m},\mathbf{y}}{\circ}$$

Combining the value of $I_s - A = 82.52$, for 1867-70, with Captain Clarke's value of $I_s - B = 86.81$, for 1865, we get,

$$\mathbf{B} - \mathbf{A} = -4.29$$

As the mean temperatures of the comparisons in both instances almost exactly coincide with the normal temperature of 62° , the results are unaffected by any errors in the adopted values of the expansions of the bars. Thus the difference between the two results might be supposed to arise from a change in the relative lengths of the bars, during the intermediate interval of upwards of 30 years, when the bars remained, one in the warm climate of India, the other in northern Europe. Unfortunately however when the first comparisons were made, as much care was not taken in determining the calibration and index errors of thermometers as is done in modern observations; the thermometers appear to have been compared with a standard belonging to the Royal Society, but for index error only; recent examinations have shown that the calibration errors are large, but corrections cannot now be applied, for the thermometers were divided, not on their own stems, but on metal plates, and there is considerable play in the attachments. Hence there is an uncertainty of at least $\pm 0^{\circ}2$ in the temperatures of either bar during the first comparisons, which of itself is sufficient to be the cause of the difference between the two results. See *Descriptions and Comparisons of Thermometers, in the Appendiz.*

For these reasons I have decided to assume that the relative length of the 10-feet Standards A and B has not altered appreciably, and that the true difference in length is most probably indicated by the latest comparisons, whence

$$\mathbf{A} = \mathbf{B} + \frac{\mathbf{m} \cdot \mathbf{y}}{4.29}$$

6.

Final Results. The relations of the Indian 10-feet Standards to each other and to the Principal European Standards of Length.

The comparisons lately made in India furnish additional equations of condition, for the relations between the Indian and the Ordnance Survey Standards, which might be combined with the equations resulting from Captain Clarke's comparisons in England, so as to furnish a

(27)

COMPARISONS OF THE STANDARDS.

simultaneous solution of the relations of all the Standards. This would however disturb the results already obtained by Captain Clarke, but so slightly that the differences would be far within the probable errors of the respective determinations. I have therefore adopted Captain Clarke's results as final.

Thus the lengths in terms of the Ordnance Standard yard Y_{55} are

$$\begin{aligned} \mathbf{B}^* &= (3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 5 \cdot 9 \circ) \mathbf{Y}_{55} \\ \mathbf{A} &= (3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 2 \circ, 1 \cdot 9) \mathbf{Y}_{55} \end{aligned}$$

On the following page a table of the relative length of the Standards will be found which is taken from page 280 of Captain Clarke's *Comparisons of Standards of Length*, with the addition of the length of the Indian 10-feet Standard A, which is the unit of the operations of this Survey. The Yard, the Toise, and the Metre, the lengths of which are given in the three last lines of the table, may be here briefly defined, with the aid of the information given by Captain Clarke.

The Yard is the mean length, in the year 1864, of five copies, No. 29, 55, 65, 66, & 67, of the National Standard Yard. Captain Clarke states, on the authority of the Official Account of the Construction of the new National Standard of Length, and its Principal Copies, that if **P** represents the length of the yard in abstract idea, the mean length of the five yards was originally, in 1853,

ou re-comparing the bars in 1864, he assumed that the mean length had not altered, and thus determined the length of the Ordnance copy of the Standard Yard to be

 $Y_{55} = 2 - 0.40$

The Toise is the *Toise of Peru*, at the temperature of $13^{\circ}.00$ Reaumur = $16^{\circ}.25$ Centigrade = $61^{\circ}.25$ Fahrenheit.

The original Toise was constructed in 1735 for the measurement of the Arc of Peru; in 1823 it was compared with Bessel's Toise, and in 1852 with the Prussian Toise No. 10, and with the Belgian Toise No. 11, which were compared by Captain Clarke with the English and other standards in 1864.

The Metre is by definition 443.296 "lignes" of the *Toise of Peru*, and it would appear "that the platinum bars which were to represent the metre at the temperature of melting ice, " $(0^{\circ} \cdot 00 \ C = 0.00 \ R = 32^{\circ} \cdot 00 \ F)$ were laid off from the *Toise of Peru* at 13°. Reaumur, allow-"ance being made for the contraction of the bars, according to the rate of expansion of plati-"num, as ascertained by Borda."

* See Captain Clarke's Comparisons of Standards of Longth, page 270.

(28)

THE STANDARDS OF MEASURE.

Standards.		Expressed in Terms of the stan- dard yard. 39.	Expressed in Inches. Inc. $=\frac{1}{36}$ 3 .	Expressed in Lines of the Toise. Line $= \frac{1}{864} \mathfrak{C}$.	Expressed in Millimeters. Millimeter=100 .9 ft.
Endian 10-feet bar A at temperature,	62°00 F	3.333 318 86	6466.611	1351.148 21	3047'959 42
Indian 10-feet bar B "	00, 79	3.333 314 57	337	1351'146 47	3047.955 50
" " I _s "	00. 79	3.333 401 38	120.002 450	1351.181 66	3048.034 88
, , , , , , , , , , , , , , , , , , ,	00. 79	3.333 532 84	120.007 182	1351.234 95	3048155 08
Ordnance 10-feet bar \mathbf{O}_1 ,	00. 29	3.333 337 17	361 000.021	1351.155 63	3047.976 16
Russian double Toise P "	61 .25	4.263 007 98	153.468 287	1727.994 19	3898.059 52
Ordnance copy of standard yard, \mathbf{Y}_{55} ,	00. 29	09 666 666.0	35.999 986	405.346 06	914.391 43
The Ward		00 000 000.I	36.000 000	405.346 22	914.391 80
The Toise		2'131 511 16	76.734 402	864.000 00	1949.036 32
The Metre		11 823 800.1	39.370 432	443.296 00	00 000,000 I

RELATIVE LENGTHS OF STANDARDS.

Digitized by Google
COMPARISONS OF THE STANDARDS.

7.

The relations of the Foot IF, and it's sub-divisions, to the 10-feet Standard A.

The lengths of this bar and it's sub-divisions, relatively to the standard yard Y_{55} have. been very carefully determined by Captain Clarke, See *Comparisons of Standards, Chapter XIX*. The 13 inch lines are marked *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*, *k*, *l*, *m*, *n*, and *p*. The definite values of the entire length and of the different spaces are as follows:—

•

$$\begin{bmatrix} a \cdot p \end{bmatrix} = \frac{1}{3} Y_{55} + 2 \cdot 91 \pm 0 \cdot 134$$
$$\begin{bmatrix} a \cdot b \end{bmatrix} = \frac{1}{36} Y_{55} - 1 \cdot 41 \pm 0 \cdot 76$$
$$\begin{bmatrix} a \cdot c \end{bmatrix} = \frac{2}{36} Y_{55} + 0 \cdot 14 \pm 0 \cdot 98$$
$$\begin{bmatrix} a \cdot d \end{bmatrix} = \frac{3}{36} Y_{55} + 0 \cdot 91 \pm 0 \cdot 83$$
$$\begin{bmatrix} a \cdot d \end{bmatrix} = \frac{4}{36} Y_{55} - 0 \cdot 11 \pm 0 \cdot 112$$
$$\begin{bmatrix} a \cdot f \end{bmatrix} = \frac{5}{36} Y_{55} + 0 \cdot 01 \pm 0 \cdot 128$$
$$\begin{bmatrix} a \cdot g \end{bmatrix} = \frac{6}{36} Y_{55} - 0 \cdot 19 \pm 0 \cdot 035$$
$$\begin{bmatrix} a \cdot g \end{bmatrix} = \frac{6}{36} Y_{55} - 0 \cdot 19 \pm 0 \cdot 035$$
$$\begin{bmatrix} d \cdot l \end{bmatrix} = \frac{6}{36} Y_{55} - 0 \cdot 01 \pm 0 \cdot 134$$

The corresponding values in terms of the 10-feet Standard A will be as follows :----

$$\begin{bmatrix} a \cdot p \end{bmatrix} = \frac{1}{10} \quad \mathbf{A} + 4 \cdot 22$$
$$\begin{bmatrix} a \cdot b \end{bmatrix} = \frac{1}{120} \quad \mathbf{A} - 1 \cdot 30$$
$$\begin{bmatrix} a \cdot c \end{bmatrix} = \frac{2}{120} \quad \mathbf{A} + 0 \cdot 36$$
$$\begin{bmatrix} a \cdot d \end{bmatrix} = \frac{3}{120} \quad \mathbf{A} + 1 \cdot 24$$
$$\begin{bmatrix} a \cdot e \end{bmatrix} = \frac{4}{120} \quad \mathbf{A} + 0 \cdot 33$$
$$\begin{bmatrix} a \cdot f \end{bmatrix} = \frac{5}{120} \quad \mathbf{A} + 0 \cdot 56$$
$$\begin{bmatrix} a \cdot g \end{bmatrix} = \frac{6}{120} \quad \mathbf{A} + 0 \cdot 47$$
$$\begin{bmatrix} d \cdot l \end{bmatrix} = \frac{6}{120} \quad \mathbf{A} + 0 \cdot 65$$

(30)

THE STANDARDS OF MEASURE.

8.

The relations of the 6-inch brass scale A, and of the corresponding scales which are employed in the measurements of the base-lines, to the 10-feet Standard A.

The method by which it was orginally intended to determine the relation of the 6-inch to the 10-feet standards, appears to have been as follows. The two 6-inch scales A and B and the two 10-feet bars A and B were compared in India in 1834-35; B and B were taken to England in 1843 by Colonel Everest, and were compared, the former with the Ordnance scale of 60 inches by Troughton and Simms, the latter with the Ordnance 10-feet bar O_1 , with which the scale of 60 inches was also compared; thus the relations of A to A might have been determined. The comparisons in England are given at page 100 of the Account of the Measurement of the Lough Foyle Base, but they are not satisfactory, and have never been used; and until the year 1867 the short standard was assumed to be exactly equal to the twentieth part of the long standard. It was then compared with the central 6-inch space of the new standard Foot IF, the relation of which to the 10-feet standard A has been given in the preceding section of this chapter.

Before indicating the result of this comparison, it is necessary to state that the standard 6-inch scale was originally constructed for the purpose of determining the exact lengths of the compensated 6-inch microscopes which are employed in the measurements of base lines with the Colby Apparatus. The inconvenience of having only one scale of reference for several microscopes was found to be so great, at the measurement of the first base-line, that Colonel Everest caused seven new scales to be constructed, which were precisely similar in all respects to the standard, and were carefully compared therewith, in 1835, see page 284 of Colonel Everest's Arc Book of 1847.

In 1867 the microscope scales, as well as the standard, were compared with the central 6-inch space of the foot **IF**, and it was found that the relations of the former to the standard had altered very materially. This will be seen from the following table of the results on the two occasions, further details of which will be found in the Appendix.

•	1835.	1867.	1835—1867.
$\begin{array}{c} A - M \\ A - N \\ A - R \\ A - R \\ A - S \\ A - T \\ A - U \end{array}$	$ \begin{array}{r} $	- 9.09 - 17.53 - 13.99 - 3.96 - 3.49 - 15.58	$ \begin{array}{r} $
	•	Mean	+ 8.08

(31)

COMPARISONS OF THE STANDARDS.

On the other hand the following table shows, that the mutual relations of the microscope scales, as determined by comparing each scale with the mean of all, on the two occasions, had not altered materially, as the differences do not exceed what is possibly due to errors of observation, and to personal equation.

	•		
	1835	1867	1835—1867
$M - \text{mean of scales,}$ $N - \qquad ,,$ $R - \qquad ,,$ $S - \qquad ,,$ $T - \qquad ,,$ $U - \qquad ,,$	$ \begin{array}{r} $	$ \begin{array}{r} $	$ \begin{array}{r} - \frac{m.y}{1\cdot 58} \\ + 0\cdot 63 \\ - 3\cdot 33 \\ + 2\cdot 04 \\ + 1\cdot 88 \\ + 0\cdot 36 \end{array} $

The alteration in the length of the Standard scale is believed to be due to the displacement of the centre of one of the two terminal dots which is known to have been inadvertently burnished, instead of being dusted only, when the scale was employed in certain comparisons in 1862.

Assuming the mean length of the microscope scales to have been the same on both occasions, but the Standard to have been $8 \cdot 1 m \cdot y$ longer on the first than on the second occasion the relations to **A** will be as follows:

$$A = \frac{1}{20} \mathbf{A} + \frac{1}{3} \mathbf{2}, \text{ in } 1835$$
$$A = \frac{1}{20} \mathbf{A} - 4\mathbf{9}, \text{ in } 1867$$

Having the microscope scales, we are able to dispense with the standard 6-inch scale in the reduction of the microscope lengths to the unit of the 10-feet standard **A**, at all the base-lines, with the exception of the one at Calcutta, which was measured before the microscope scales were constructed.

In the corrections for unit the mean length of the microscope scales will be assumed to be unaltered, but the relative length of each to the mean of all will be given two values; the first value will be that which was determined in 1835, and has already been used in the calculations of the lengths of all base-lines measured before 1867, calculations which it is not desirable to disturb; the second value will be the mean of the two determinations in 1835 and in 1867, and it will be employed in the calculations of the base-lines measured after 1867.

(32)

THE STANDARDS OF MEASURE.

Scale	Before 1867	After 1867
M N P R S T U V W	$\frac{1}{20} \mathbf{A} + 2.6$ $\mathbf{a} + 13.3$ $\mathbf{a} + 12.9$ $\mathbf{a} + 5.8$ $\mathbf{a} + 1.1$ $\mathbf{a} + 0.5$ $\mathbf{a} + 11.1$	$ \begin{array}{c} $

Table of the adopted relations of the microscope scales to the 10-feet Standard A.

Microscope P was in England for repair in 1867; V and W are new microscopes which were first employed at the base-lines measured after 1867.

9.

The relation of inch [7.8] of Cary's 3-feet brass scale to the 10-feet Standard A.

In 1869 this inch was compared with inch [a.b] of the Standard Foot IF, and the result was as follows (see *Appendix to this volume*.)

$$[7.8] = [a \cdot b] - \frac{m \cdot y}{13.4}$$

but by section 7 of this Chapter

$$[a.b] = \frac{1}{120} \mathbf{A} - 1.3$$

therefore

$$[7.8] = \frac{1}{120} \mathbf{A} - \mathbf{14'7}$$

.

.

•

BASE LINES.

.

、 ·

OF THE

THE MEASUREMENT

SECTION II.

.

·

THE MEASUREMENT OF THE BASE-LINES.

CHAPTER IV.

Preliminary Observations.

The immense extent of the triangulation of India has necessitated the measurement of several base-lines, in order to verify and controul the results of the angular measures.

The net-work of triangulation which was thrown over southern India, between the parallels of 8° and 19° of latitude, by Colonel Lambton, covers an area of 146,000 square miles, in which nine base-lines were employed, the distances apart, of contiguous base-lines, varying from 90 to 250 miles.

The meridional and longitudinal series of principal triangles, which were initiated by Colonel Everest in place of the previous net-work system of triangulation, are already equivalent to a chain of triangles somewhat more than 15,000 miles in length, and they will attain a length of 17,500 miles when the operations, from the Coasts of the Peninsula northwards to the Himalayan Mountains, and from the Soolimani and Beloochistan Ranges eastwards to the Frontier of Bengal, will be completed. The whole of these chains of triangulation will be controlled by ten base-lines, five of which are situated on the central meridional arc—the axis of Indian Geodesy—at the points where it is crossed by the longitudinal chains of triangles, the remainder are situated at the angles of junction of the external chains with each other, and with the most important of the meridional and longitudinal chains. The distances from base to base, along the chains of triangles by which they are directly connected, vary from 275 to 750 miles ;—thus in this portion of the triangulation, the base-lines are much farther apart, and far less numerous, relatively to the extent of the operations, than in the preceding portion.

The change, in the method of procedure, from throwing a net-work of triangulation over the entire country, to constructing chains of triangles, at convenient intervals apart, on certain obligatory meridians and parallels, was contemporaneous with the supercession of the old instruments by new and improved instruments—constructed with all the accuracy and refinement of modern science—with the application of more delicate and systematic methods of observation, and with the introduction of more rigorous formulæ of calculation and reduction.

(36)

These important changes took place about the year 1832, shortly after Colonel Everest's return from a visit of several years duration to Europe, which he had turned to good account in obtaining new instruments for the prosecution of the operations of the Trigonometrical Survey of India.

Of the new instruments, the most important, in it's superiority over the corresponding appliances of former times, was probably the Colby apparatus of compensation bars and microscopes, for the measurement of base-lines. All Colonel Lambton's base-lines, as well as Colonel Everest's up to the year 1826, had been measured with a steel chain by Ramsden, whereas all subsequent base-lines have been measured with a far superior apparatus, which was constructed on the pattern of the one designed by Colonel Colby for the use of the Ordnance Survey of Great Britain; some of the chain base-lines have also been re-measured with this apparatus.

Thus the linear operations may be divided into two groups, which must be noticed separately, one comprising the base-lines which were measured with chains, the other comprising those which were measured with the apparatus of compensation bars and microscopes. It is desirable that these should be described in succession, and this will now be done, commencing with the group of base-lines which were first measured.

(37)

MEASUREMENT OF BASE-LINES.

CHAPTER V.

The Base-Lines which were measured with Chains.

1.

Description of the Chains.

At page 50 of his Account of the Measurement of an Arc of the Meridian between the parallels of 18°3' and 24°7', London, 1830, Colonel Everest observes that

"in the commencement of the Great Trigonometrical Survey under my predecessor, in 1799, one steel chain by "Ramsden was the only measuring apparatus. The history of this was rather singular. It had been sent, with Lord "Macartney's embassy, as a present to the Emperor of China, and, having been refused by that potentate, it was made "over by his Lordship to the Astronomer Dr. Dinwiddie, who brought it to Calcutta for sale, together with the zenith "sector (a beautiful instrument *for that time*) by Ramsdeu. The purchase of both was made by Lord Clive, [afterwards "Earl Powis,] the Governor of Madras, at the instance of the Earl of Mornington, Governor General of India."

"About this chain nothing was known but from the verbal account of Dr. Dinwiddie, who stated that it was "set off from Ramsden's bar at 62° of Fahrenheit. It was constantly used as a measuring chain, and no means were "known of discovering the quantity to be allowed for wear and tear until May 1802, when another steel chain was "received from the late Mr. Ramsden, which had been set off at the temperature of 50° Fahrenheit from his bar. The "last chain was never used in the field, but reserved as a standard with which the old chain was compared, both before "and after the measurement of a base-line; a plan which answered extremely well, as long as it was merely subjected "to the slight effects of friction which resulted from such short trials; but in the course of the operations it was found "that the joints of the standard chain had become oxidated, and, in cleaning these, the length became altered, so "that it could no longer be relied on as an invariable standard.

"At the time of the receipt of the new chain, the standard brass scale, three feet in length, referred to by "Captain Kater in the Philosophical Transactions for 1821,* arrived also in India, and the late Lieutenant-Colonel "resolved to use this in his future comparisons."

The chain, of curious history, with which the operations of this Survey were commenced, is thus described by Colonel Lambton; †

"The chain is of blistered steel, constructed by Mr. Ramsden, and is precisely alike, in every respect, with that "used by General Roy in measuring his base of verification on *Rumney Marsh*. It consists of 40 links of 2½ feet each, "measuring, in the whole, 100 feet." It has two brass register heads, with a scale of six inches to each; these scales "slide in the brass heads, and are moved by a finger screw, for the purpose of adjusting exactly the two extremities of "the chain when extended. In short every part of it is the same as the one above mentioned, which has been fully "described in the Philosophical Transactions of 1790."

The second chain, which was received in the year 1802, was also constructed by Mr. Ramsden, and was probably similar in all respects to the first; it was stated to have been measured off from "the standard in London," at the temperature of 50° Fahrenheit, and as there was no positive information regarding the unit of length of the first chain, the second was employed as a standard of reference only, and was not used in measuring any of the base-lines;

^{*} For further details regarding this scale see Section 1 of Chapter I, of this volume.

⁺ See page 321 of volume 7 of Asiatic Researches, Calcutta, 1801.

(38)

MEASUREMENT OF BASE-LINES.

thus it served the two-fold purpose of affording a unit of measure—which at the time was supposed to be invariable—and of determining the correction for the elongation, by wear and tension, of the old chain with which the measurements were made, and which was invariably compared with the standard chain, before and after each measurement.

2.

The method of using the Chains.

Several strong wooden pickets were prepared, of three inches in diameter, and from three to four feet in leugth, hooped and shod with iron; each picket was capped by a piece of hard wood, eight inches in length and four in breadth, for the purpose of receiving and supporting the ends of the 'coffers'. The coffers, in which the chains were supported during the measurement, were a few inches less than twenty feet in length, and were six inches wide in the middle, three at the extremities, and about four inches deep; they were constructed of planks, the sides being seven inches in depth, and passing two inches below the bottom plank, in order to increase the rigidity. The brass register heads, carrying a graduated slider which was moved by a slow motion screw, were each mounted on a strong picket, and were set up at the end of every successive length of 100 feet. In stony ground, tripods were used instead of pickets, the heads of the tripods being fitted on a 'common wooden press screw', to permit of their being raised or lowered.

The measurement was made in hypothenusal lengths; the pickets or tripods were first aligned in the direction of the base, their tops were then made parellel to the hypothenuse, and the coffers were put on them; the coffers were all of the same thickness, and formed the plane in which the chain was to be extended. The rear end of the chain was attached to a drawing post beyond the rear register, to which it could be drawn, by a screw, until the extremity of the chain coincided with any required line on the register; the chain was drawn out in the coffers by the weight of an $8\frac{1}{2}$ inch shell suspended from its advanced extremity; the rear end was then adjusted over the corresponding register, after which a register was adjusted under the advanced end.

Five thermometers were put into the coffers, one into each, and allowed to remain there "for some minutes, a cloth at the same time covering them". They were then taken out and the mean temperature was recorded.

Colonel Lambton states that, in the measurement of the first base-line at Bangalore, in 1800,

"when any hypothenuse was terminated, a line, with a plummet, was let fall from the arrow upon the feather "edge of the chain; and the point, on the ground, was marked, which was defined by the point of the plummet (for a "brass register head was there unnecessary) and the height of that extremity of the chain, from the ground, was "carefully taken. The new hypothenuse, therefore, commenced from that same point, and the arrow at the beginning "of the next chain was made to coincide with a plumb line falling to the said point."

(39)

THE BASE-LINES MEASURED WITH CHAINS.

At the subsequent base-lines, a special apparatus was made for marking the points at which it was necessary to carry on the measurement at a higher or lower level than that of the termination of the last length measured; but the transfer of the terminal extremity of a length to the register, and from the register to the initial extremity of the subsequent length, was always done by means of "a plumb line freely suspended."

In some instances Colonel Lambton dispensed with the use of the coffers, and put the chains on the ground, which was first carefully prepared by having all impediments removed and all hollows filled up. The registers were inserted into leaden slabs, sunk into the ground, and the extremities of the chain were drawn out by a pair of small capstans, acting on pulleys, one at each end of the chain, but without any apparatus for regulating the tension, such as the weight of the 8½ inch shell which was used at the forward end when coffers were employed. Colonel Lambton was under the impression that there would be no sensible difference between the length of a base-line thus measured on the ground, or, as formerly, on coffers; and he states that "as much may be measured in one day in this manner, as can be done in "six by the coffers."

3.

The Localities of the Base-Lines.

The first operation of the Trigonometrical Survey of India was the measurement of a base-line in the vicinity of Bangalore, by Colonel—then 'Major of Brigade'—Lambton, in the year 1800. Certain particulars regarding this operation are given in Vol. VII of the Asiatic Researches, but I have been unable to find any information regarding the positions of the extremities, or to ascertain whether this base was ever connected by triangulation with the base which was measured in the neighbourhood, in 1804, by Lieutenant Warren, under Colonel Lambton's instructions. The steps which were taken for leaving permanent marks at the extremities of subsequent base-lines are so minutely described, that the absence of any such information in the present instance indicates that permanent marks were probably not constructed. This base-line appears to have been set aside, when it was found that a new line might be measured in the vicinity, on very much more favorable ground. It need not be further noticed.

The next measurement of a base-line was made in the year 1802, in the vicinity of Madras, shortly after the arrival of the second steel chain from England, which was then, and on all subsequent occasions, employed as a standard for the old chain to be compared with, before and after the measurement of any base-line.

The latitudes and longitudes of the middle points of the several chain base-lines, and the year of measurement, are given in the following table :---

40)

MEASUREMENT OF BASE-LINES,

Year of mea- surement.	Chain Base-Lines.	Latitude.	Longitude.	By whom super- vised.	Whether on the ground, or on Coffers.
1802 1804 1806 1808 1809 1811 1812 1814 1815 1822 1825	Madras, Bangalore, Coimbetoor, Tanjore, Palamcotta, Gooty, Guntoor, Coomptee, Beder, Takal K'hera, Sironj,	0 12 57 12 57 10 58 10 44 8 47 15 3 16 17 14 28 18 3 21 7 24 7	80 16 77 42 77 43 79 8 77 43 77 43 77 40 80 31 74 25 77 41 77 42 77 52	Colonel Lambton. Lieut. Warren. Colonel Lambton. "" "" "" "" Captain Everest.	Coffers. " Ground. Uncertain. Ground. " Uncertain.

It is highly probable that all the base-lines in longitude 77° to 78° were measured with the aid of the coffers, as they were required for the triangulation of the 'Great Arc', where the utmost possible accuracy was aimed at; on the other hand the base-lines at Tanjore, Guntoor and Coomptee, which were measured on the ground, were considered of secondary importance.

4.

The Ihermal Expansions of the Chains.

The thermal expansions were determined by Colonel Lambton, at Madras, by extending a chain in the coffers, and adjusting each of it's extremities over a register, in a manner precisely similar to the ordinary procedure of the measurement; the chain was held in this position for some days, and it's extremities were compared with the registers at sunrise, and at 2 P. M., the coolest and hottest times of the day.

Seven comparisons were thus made with each chain the diurnal ranges of temperature varying from 25° to 42°, between the minimum of 80° (*Fahrenheit*) and the maximum of 124°. The resulting linear expansions, on the entire length of 100 feet, and the co-efficients, for 1° of temperature, were as follows:—

Old chain	Expansion	inch •00737	Co-efficient	·000,006,14
New, or standard chain	"	. 00742	,,	•000,006,18

These results are remarkable for their close approximation to the expansions of steel bars, which have been obtained by very much more delicate and laborious processes; thus the co-efficient of expansion of the Steel Standard I_s is '000,006,37; see page 19 of this volume.

(41)

THE EASE-LINES MEASURED WITH CHAINS.

5.

Comparative lengths of the old chain and the new or standard chain.

The comparisons appear to have been made by placing the chains successively in the coffers, and, when extended by the weight of the 8½ inch shell, adjusting one extremity over a register, and bringing a register under the other extremity, by means of the slow motion screws, as in the ordinary operations of the measurement. The results are as follows, the old chain being invariably the longer of the two.

		Excess o	Lengthening of		
Year.	Base-Line or Locality.	Before the bas	After se-lines.	Mean.	old chain during measurement of a base line.
1802 1804 1806 1809 1811 1813 1814 1815 1822 1825	Madras Base, Bangalore ,, Coimbatoor ,, Palamcotta ,, Gooty ,, Bellary Hyderabad Bider Base, Takal K'hera ,, Sironj ,,	.04346 .07428 .08736 .14256 .14616 .21072 .20904 .22981	•05306 •08592 •12012 •18767 •17376 •21936 •22476 •23833	•04826 •08010 •10374 •16513 •15996 •19560 •21072 •21504 •21690 •23407	•00960 •01164 •03276 •04511 •02760 •00864 •01572 •00852

No comparisons were made at the Tanjore, Guntoor, or Coomptee base-lines.

6.

Investigations of supposed variations in the length of the standard chain.

It will be noticed that the old chain was steadily gaining in length over the standard until the year 1811, when the excess was found to be less than it had been in 1809. This circumstance led Colonel Lambton to suspect the hitherto assumed invariability of the standard chain, and he determined to test the standard by comparing it with his only other standard of length, viz., the 3 feet brass scale by Cary. At Bellary, in 1813, Colonel Lambton caused a wall to be built, 2½ feet high, 2 feet thick, and 106 feet long, of brick and mortar, well leveled and plastered with the finest 'chunam'. A series of brass 'buttons' was inserted into the surface of the wall, in a straight line, the first five at 2½ feet, the remainder at 10 feet asunder. A space of 2½ feet was than taken off the scale with a beam compass, and transferred to the wall until the first 10 feet were marked off on the buttons; this 10 feet was then set off,

MEASUREMENT OF BASE-LINES.

in successive spaces, by a large beam compass, until the whole hundred feet had been attained. Tents had been previously pitched over the entire length of the wall, and the chain and the five thermometers had been kept by the side of the wall for several hours previously.

Immediately after the length of one hundred feet had been laid off, the chain was extended, at full length, on the wall, in the usual manner, one end being fixed firmly, and the weight being applied to the other end. The chain was found to exceed the length marked off on the wall, by '0341 inches, the mean temperature indicated by the thermometers being 72°.

Colonel Lambton was under the impression that Cary's (brass) scale was of the exact length of a brass standard in London, and that the chain, when originally constructed, measured exactly 100 feet of the London standard, at the temperature of 50° . On these assumptions, he reduced the result of the above comparison to the temperature of 50° ,* and thus found the length of the chain to be 1430 inch in excess of 100 feet of the London standard, at that temperature.

At Hyderabad, in 1814, Colonel Lambton again compared the chain with Cary's scale, in much the same manner as he has done at Bellary, but the comparisons of the chain with the space laid off on the wall were made three times, on successive days, instead of once only, the wall being assumed to be unaffected by changes of temperature.

Similar comparisons were again made at Hyderabad, in 1821, under Colonel Lambton's superintendence.

At Sironj, in 1825, the chain was again compared with Cary's scale, in much the same manner as on the former occasions, but by Captain Everest, whose account of the operation and the results are given at pages 51, 52, and 124 of his Arc Book of 1830; instead of a wall, Captain Everest employed "large slabs of sand-stone, ten feet long, supported on stone pillars, "under the idea that they might be less liable than the masonry to be affected by the changes "of temperature which took place during the measurement".

The excess of the chain over one hundred feet of the standard scale, as reduced to the temperature of 50° Fahrenheit, on these several occasions, was as follows :----

at	Bellary,	in	1813,	excess	=	$\cdot 1428$	inch
at	Hyderabad,	in	1814,	"	=	·1889	,,
at	,,	in	1821,	,,	=	·2480	,,
at	Sironj,	in	1825,	,,	=	·1593	**

While the length of the chain appeared to be increasing, relatively to that of the scale, this was supposed to be due to the removal of rust from the joints of the former; but the apparent decrement in length, at the last comparison, raised a suspicion that the accuracy of the whole of the comparisons was exceedingly questionable. Nothing better was practicable at the time and with the available appliances. But it is clear that any measuring chain, however perfectly constructed, must necessarily be a most uncertain standard of reference for delicate

^{*} Employing the following co-efficients of expansion, '000,006,18 for the chain, and '000,010,31 for the scale, for 1° of Fahrenheit.

(43)

THE BASE-LINES MEASURED WITH CHAINS.

measures; the joints may rust, or became clogged with dust, the friction of the chain on the surface on which it is supported may prevent it's being always drawn out to the same length by the drawing weight, the action of the weight has a tendency to increase the length of the chain, and the temperature of the chain cannot be very exactly ascertained.

Moreover the transfer of the length of a fractional portion of a small scale, by successive operations, until a length of one hundred feet has been laid off, and that with the aid of beam-compasses only, is a process which cannot be expected to lead to results of the precision that is required for operations of this nature.

If we might assume that the comparative length of the standard chain and Cary's scale had been accurately determined by these operations, there would still be no evidence forthcoming, as to whether the chain had increased in length, in the interval of eleven years, between it's arrival in India, and the time when it was first compared with the scale, for the unit of length of the scale was merely *assumed* to be equal to that of "the London standard," from which the chain had been laid off by Mr. Ramsden, and the relative lengths of these two scales does not appear to have ever been directly determined.

The chain was eventually compared, by Colonel Everest, in 1832, with the 10-feet iron Standard Bar **A**, which was sent out to India in 1830, and has ever since been the unit of measure of the Trigonometrical Survey. The comparisons are described in detail at pages CI to CIII of Colonel Everest's Arc Book of 1847. The excess of the chain over ten lengths of this standard, at the temperature of 62°, was found to be = .1011 of an inch.

7.

The impossibility of ascertaining the unit of length of the chain base-lines, otherwise than by re-measurement.

The uncertainty which exists regarding the invariability of length of the standard chain, and the impossibility of ascertaining the length of that chain in terms of the only other standard—Cary's 3-feet scale—with much exactness, have already been set forth in the preceding section; and these facts are sufficient to show that the unit of length of the chain baselines cannot possibly be obtained otherwise than by re-measuring the lines with better instruments. But, in order to complete the history of this subject, it is necessary to state that, on the publication of Captain Kater's paper in the Philosophical Transactions of 1821, Colonel Lambton ascertained, for the first time, that the unit of length of "the London Standard", from which the chain was laid off, was not the same as that of Cary's scale. Captain Kater had arrived at the conclusion that the former was to the latter in the proportion of 999930 to 1000018, all measurements by the former requiring a multiplier of 100007, and by the latter a multiplier of 999982, to reduce them to units of "Mr Bird's scale of 1760," which had been adopted as the Parliamentary or Imperial Standard, by Act 5 of George IV, Chapter LXXIV.

(44)

MEASUREMENT OF BASE-LINES.

Captain Kater, however, had not compared either of these standards with the Parliamentary Standard, but instead thereof* he had employed "a standard supposed to represent Colonel Lambton's, and a 40-inch bar supposed to represent Ramsden's". Thus the comparisons are wholly inconclusive.

Another point of still greater importance is the uncertainty which exists as to whether the standard chain was laid off from Ramsden's brass scale, as Colonel Lambton believed or from Ramsden's Prismatic cast-iron bar—which was laid off from his brass scale expressly for laying off the chains which were used in the Ordnance Survey base-lines-as Captain Clarke thinks most probable.⁺ Colonel Lambton, in one of his papers, alludes to the scale and the bar indifferently as if they were one and the same thing; and in a memorandum on the subject of certain corrections which he applied to the Arc between 8° 9' 38" and 10° 3' 24", to reduce it to the Parliamentary Standard, by means of Captain Kater's determinations, he states that the standard chain had been "laid off from Ramsden's Bar, at the temperature of 50°". §Colonel Everest also, in the paragraph quoted in the first section of this chapter, specifies the bar, and not the scale, but, on the other hand, he has corrected his chain base-lines as if the scale had been employed. It seems probable that Colonels Lambton and Everest were neither of them aware that the bar and the scale were two different things. As the measurements were finally reduced to the normal temperature of 62°, and the bar was of cast-iron, while the scale was of brass, the uncertainty from this cause is equivalent to a doubt of about 7° in the mean temperature of the measurement.

It is thus clear that the only means of determining the unit of length of the chain baselines was by re-measuring them, with the admirable apparatus which Colonel Everest brought out to India in 1830, in supercession of the chains and standards which had been employed up to that time.

It may also be shewn that, even when the unit of length of the standard chain was best determined—viz., by Colonel Everest's comparisons at Sironj, in 1832, with the new 10-feet standard bar **A**. when micrometer microscopes were first employed in the comparisons —the results were unsatisfactory, evidently because of the intrinsic defects of the chains. The comparisons between the measuring and the standard chains, before and after the base-line measurements the results of which have been given in a preceding section of this Chapter—indicate that the lengthening of the former was by no means as uniform as might be expected, being very much greater for the operations in 1806 to 1811 than it was either before or afterwards. Thus a doubt is thrown on the accuracy of the comparisons.

And it would also appear that the measuring chain was stretched out to a greater length during the comparisons than it was during the measurements, for the length of the Sironj Base,

^{*} See page 5 of Mr. Airy's Account of the Construction of the new National Standard of Length and it's Principal Copies, 1858. † See pages 753 and 754 of the Account of the Principal Triangulation of the Ordnance Survey, 1858, and pages 209 to 212 for the

account of the Prismatic Bar and it's thermal expansion.

¹ See page 18 of the 6th volume, in manuscript, of the operations of the Trigonometrical Survey, a copy of which is lodged in the India Office.

[§] See pages 126, 129, and 132 of his Account of the Indian Arc, 1830

(45)

THE BASE-LINES MEASURED WITH CHAINS.

as determined by the chaining, is $2\cdot 8$ feet less* than the length subsequently determined by the apparatus of compensation bars and microscopes, both lengths being expressed in terms of the same unit, viz., the newly obtained 10-feet standard bar.

Taking all these circumstances into consideration, the conclusion is inevitable and irresistible that the chain base-lines are worthless for the purpose of controlling the Principal Triangulation of this Survey, and more particularly that great portion of it which has been completed since the year 1830, with the best modern instruments. They have served the purpose for which they were more immediately required, but they have been superceded by the base-lines which were subsequently measured with the Colby apparatus of compensation bars and microscopes; thus they need not now be further noticed[‡].

^{*} See Colonel Everest's Arc Book of 1847, pages CIV and 280.

[†] All extant details regarding these base-lines will be found in the first 6 volumes of the General Report of the Trigonometrical Survey, which are deposited at the India Office in manuscript; in volumes VII, VIII, X, XII, XIII of the Asiatick Researches, in the Philosophical transactions for 1818 and 1823, and in Colonel Everest's Accounts of the measurement of the Indian Aro, 1830 and 1847.

46

)

(

MEASUREMENT OF BASE-LINES

CHAPTER VI.

The Colby Apparatus of Compensation Bars and Microscopes.

1.

Description of the Apparatus.

The apparatus of compensation bars and misroscopes which was brought out to India by Colonel Everest, and has been employed at all the base-lines which have been measured in the course of the operations of this survey since the year 1830, is precisely similar, in almost all respects, to the apparatus which was invented by Major General Colby for the measurement of the base-lines of the Ordnance Survey; both apparatuses are believed to have been constructed by the same makers, viz., Messrs. Troughton and Simms. Elaborate descriptions thereof, with numerous illustrations and full details of the method of operation, have already been published in Captain Yolland's Account of the measurement of the Lough Foyle Base, 1847, in Colonel Everest's Account of the measurement of the Meridional Arc of India, 1847, in Captain Clarke's Account of the Principal Triangulation of the Ordnance Survey, 1858, and in Sir Thomas Maclear's Verification and Extension of La Caille's Arc of Meridian, 1866. A minute description of the several parts of the apparatus and of the method of operation is therefore unnecessary in this place, where such particulars only need be given as are required for the understanding of the investigation of the probable errors of base-lines measured with this apparatus, which will be the subject of the following Chapters.

Each compensation bar consists of two bars, one of iron the other of brass, each 10.1 feet in length, .55 inch broad, 1.5 inch deep, and placed 1.3 inch apart; rigidly connected at their centres by a pair of small transverse steel cylinders, these bars are free to expand from or contract towards their centres, independently of each other; at each extremity they are connected together by a flat iron tongue-6.3 inches in length, 25 inch thick, and of a breadth tapering from 1.1 to 6 inch-which is attached by pivots, in such a manner as to permit the bars to expand freely while the tongue oscillates on the pivots; the attachment to the brass bar is made near the broad end of the tongue, while the narrow end projects to a distance of 3.4 inches beyond the iron bar.

(47)

WITH THE COMPENSATION APPARATUS.

The compensation point is marked on a silver pin near the extremity of each tongue; the distances of this point from the axes of the pivots of attachment to the brass and iron bars, should be exactly in the same proportion as the co-efficient of expansion of the brass bar is to that of the iron bar. Were this condition fulfilled, the length of the compound bar—viz., the distance between the compensation points on the two tongues—would be constant, whatever might be the temperature of the bar, provided that both the components were of precisely the same temperature; the length is, by construction, slightly greater than that of the 10-feet standard, at 62°F.

The compound bar is boxed into a deal case, and each of the components rests—at one fourth and three fourths of it's length—on brass rollers which are fixed to the bottom of the box, and have raised flanges to prevent lateral motion; longitudinal motion is prevented by means of a brass stay, fixed firmly to the bottom of the box at its centre, and projecting upwards between the two steel cylinders by which the bars are rigidly connected at their centres. Here a spirit level is attached, parallel to the direction of the bars, and is read through a glass window in the lid of the box; a pair of cross levels is mounted on the top of the box. The tongues project about two inches beyond the side of the box which is next to the iron bar, and are protected by brass caps or 'nozzles', with sliders which can be opened whenever the compensation points have to be viewed.

There are six compound bars, which are respectively distinguished by the letters A, B, C, D, E, and H. When in use, the box containing a compensation bar is supported, at one fourth and three fourths of its length, on strong brass tripods, or 'camels', which are capable of communicating motion in a longitudinal, transversal, or vertical direction; for a description of these camels see *Appendix No.* 1; they rest on strong diagonally-braced wooden trestles, the heights of which are regulated by the slope of the ground.

The compensation microscope consists of a pair of microscopes which are attachedwith the visual axes nearly parallel to each other and at a distance of about six inches apartto two parallel bars, the planes of which are perpendicular to the axes of the microscopes, the bar near the eye end being of brass, and that near the object end of iron, and both being free to expand from or contract towards their centres; the adjustments are so made that the outer foci of the object glasses are compensation points at exactly six inches apart. The bars are united, at their centres, by a cylindrical tube, which is fixed at right angles to their direction, and is prolonged-beyond the iron bar-to a length of 3 inches, which fits into and is made to revolve, as an axis, in the socket of the tribrach at the base of the instrument. At the extremities of the arms of the tribrach there are foot screws, by which, and the attached level, the axis, revolving in it's bearings, can be made vertical. In some of the compensation microscopes, the axial tube is converted into a look-down telescope, by the addition of an eye piece, at one end, and an internal sliding tube-adapted to receive object glasses of various focal lengthsat the other end. The axis is capable of being moved, over the centre of the tribrach, both in a longitudinal and in a transverse direction, by slow motion screws, acting on horizontal plates in grooves on the head of the tribrach. Thus the instrument may be centered in the normal of an obligatory point below, with the aid of the look-down telescope, The axis of

(48)

MEASUREMENT OF BASE-LINES

rotation is indicated to the alignment officer by a 'director', a thin bar—about 2.5 inches in length and '3 inch in breadth, with a fine silver line down the middle—which is fixed, at right angles, to a circular plate of the same diameter as the cap of the eye piece of the lookdown telescope, and, projecting through it, fits into the aperture of the eye piece; the silver line on the director is in the prolongation of the axis of rotation of the instrument.

The visual axes of the component microscopes are so adjusted that a line joining their external foci, or compensation points, would pass through the axis of rotation at right angles; a 'side telescope', moving in a plane, parallel to that which passes through the foci and the axis of rotation, is attached to the instrument on one side, and when it is made parallel to the line by a process which will be subsequently explained—and the axis is in the line, both the microscopes will also be in the line; and when the axis is vertical, the focal points will be in the same horizontal plane.

In the arrangements for comparing the microscopes with their scales, or with the standard 6-inch scale,* an important improvement was introduced by Colonel Everest, which may be described in this place. The microscopes of the Ordnance Survey do not contain any micrometers for measuring the difference between the length of the microscope and that of the scale of reference; it is therefore necessary, in making comparisons of verification after a measurement, either to watch for the temperature at which the length of the scale becomes equal to that of the microscope, or to attempt to estimate the small differences in length by comparing them with the known diameters of the dots or of the wires. But at the measurement of the first base line in India-the one at Calcutta-so much inconvenience was found to arise from this imperfection of the apparatus, that Colonel Everest caused micrometers to be attached to the scales, for the purpose of measuring the distance between the dot on a scale and the wire of a microscope. The micrometer screw acts on a thin narrow brass plate, carrying a diaphragm into which a piece of transparent talc is inserted; thus the dot can be seen under the microscope through the talc; two cross lines are cut on the talc, the intersection of which is brought by the micrometer screw either over the cut on the scale, or under the wire of the microscope, the distance between which is thus measured with a degree of accuracy unattainable by mere estimation.

Two new compensation microscopes, which were received in India in 1866, are each provided with micrometers in the eye piece of one of the components, for the purpose of making these small measurements.

2.

The method of using the apparatus which has been followed in the operations of this Survey. The apparatus is adapted to measure a length, at one time, of 63 feet, of which 60 feet

^{*} The relative length of all these scales to the 10-feet standard have been given in Section 8 of Chapter III of this volume.

In his Verification and Extension of La Caille's Arc, Sir Thomas Maclear alludes to this defect in the Ordnance Survey Microscopes as causing the comparisons to "fall short of the precision attainable by means of micrometer microscopes."

(49)

WITH THE COMPENSATION APPARATUS.

is obtained from the six bars, 2.5 feet from the five microscopes connecting the bars, and .5 foot from the half lengths of the two end microscopes.

The measurements being invariably horizontal, and not hypothenusal, considerable care is taken to select a strip of ground, which is either quite level or is gently undulating, for the operations. The measurements are performed most rapidly and satisfactorily when the slopes permit of their being carried on with the complete set of six bars and seven microscopes, and when the differences of level between contiguous lengths are not more than a few inches. The ground is roughly leveled over, in the first instance, in order to determine the angles of inclination, that trestles, of various heights to suit the slopes, may be prepared for supporting the bars. When a slope exceeds 1 in 20, the measurement is carried on in sets of three or of two bars, with a proportional number of microscopes, in order that the stability of the apparatus may not be impaired by mounting any portion of it to a considerable height above the ground, and also that the distances of the end microscopes from the subjacent 'registers' may not be too great for the exact centering of the axis of a look-down telescope over an obligatory point below, or, conversely, for centering such a point exactly under the telescope.

The alignment is marked out, in the first instance, by points on pins at intervals of a few hundred yards apart, over which vanes are erected or heliotropes are exhibited, for the guidance of the alignment officer. This officer employs for his operations a 'boning instrument' which may be described as a transit telescope riding, on Y's, on a frame to which motion can be communicated in a direction transverse to that of the telescope, in order to enable the telescope to be brought into the alignment which is indicated by the forward signals. The boning instrument is put up near the the rear end of the measuring apparatus, and is moved forwards with the apparatus after each length or every alternate length is measured; it's greatest distance from any point of the apparatus is not allowed to exceed $2\frac{1}{2}$ sets or 157.5 feet, the shortest distance usually being a half set, or 31.5 feet.

The operations are invariably conducted under tents, in order that the apparatus may be sheltered from wind and—what is of more importance in India—from the direct rays of the sun. Two sets of tents are provided, that one set may always be ready in advance to shelter the bars by the time they are moved forwards; a small tent is also provided for the boning instrument. Eight officers are required to manipulate the apparatus when the whole of the bars are used, one at the boning instrument, and one at each of the seven microscopes: an assistant is employed in advance, in laying the trestles.

The first stage in the operations is the laying of the trestles, as approximately as possible, in the line—with the aid of a small theodolite—and raising or lowering them until their heads are nearly in the same horizontal plane. This done, the camels are placed on the trestles, the bars on the camels, and the microscopes on tribrachs which are attached to the ends of the bars, and contain grooves for the feet of the microscopes to rest in without shake. The first or rear bar carries a microscope at each end, the other bars carry one at the forward end only.

The first bar of a set having been leveled, the microscopes at its extremities are leveled and each is adjusted to focus on the compensation point on the contiguous tongue of the bar;

(50)

MEASUREMENT OF BASE-LINES

the rear end microscope is centered in the normal of the point on the register head which marks the termination of the measurement of the preceding set of bars, the director is then placed on the eye piece of the look-down telescope, and the boning instrument is brought exactly into the line, by observations of the director and of one of the forward signals. The director is then carried forward and placed on the axial tube of the microscope at the advanced end of the bar, which is brought into the line—by the officer in charge guided by signals from the officer at the boning instrument—by means of the transverse screw at the head of the camel which supports that end of the bar. Watching the number of turns of the screw which are made for this purpose, and giving one third of that number of turns to the transverse screw of the camel under the rear end of the bar, the officer at that end is able to keep his microscope so nearly in the alignment, that, when it is subsequently brought back to it's exact position over the register, by moving the bar, the second microscope will probably not be sensibly displaced : otherwise the operation must be repeated, until the axes of rotation of both microscopes are brought into the line.

The compensation points of the bars have now to be aligned, by a process which introduces us to the 'horns' of the boning instrument. These horns are a pair of parallel bars cut out of a plate of thin metal, and firmly secured, in a vertical position, to the front of the boning instrument, one on either side of, but not touching, the telescope, which moves freely up and down between them; the distance between parallel planes passing through the inner edge of each horn and the visual axis of this telescope, is made equal to the average distance between the parallel planes passing through the visual axis of the side telescopes and the compensation points of the several microscopes. Thus when the axis of rotation of a microscope has been aligned by the boning instrument, the compensation points of the two components are brought on the line, by setting the side telescope on the corresponding horn of the boning instrument. If, when this is done, the point on the contiguous tongue of the bar is truly centered under the corresponding microscope component, the alignment of that point is correct; if not, the microscope must be brought over the point by a motion of the whole instrument, parallel to the alignment, which is communicated by means of it's transverse screw. The microscope is then brought back to the line by the transverse screw of the camel at that end of the bar. Similar operations are performed on the microscope at the other end of the bar, with this exception that it is directed into the line by the boning instrument, instead of being brought into the line by reference to a point below. These operations are repeated until, by successive approximations, the axis of rotation of each microscope, the visual axes of it's components, and the compensation points of the bar, have all been brought exactly into the line.

Then the second bar is adjusted to the height of the first and aligned, by bringing the compensation point at it's rear end into the focus, and under the centre, of the contiguous component of the microscope on the adjacent end of the first bar; the microscope and compensation point at the further end of this bar are then aligned, in the same manner as at the advanced end of the first bar. By similar processes the whole of the bars are brought successively into the line.

The measurement of the length is the last part of the process; it is complete when the

(51)

WITH THE COMPENSATION APPARATUS.

look-down telescope of the rear end microscope is centered in the normal of the point on the register below, and when the compensation points of all the bars are exactly bisected by the central wires of their microscopes; a register is then centered under the look-down telescope of the microscope at the forward end of the bars, in order to mark the termination of the length of this set of bars and microscopes.

Thus the method of operation is one of successive approximations, each of which disturbs a preceding adjustment, but to an extent which diminishes with every succeeding approximation, until, finally, the residual errors should be far too small to exercise any appreciable influence on the result.

The registers are of three descriptions, viz., solid equilateral slabs of cast-iron, which are used when the ends of the apparatus are very slightly raised above the ground; cast-iron triangular frames, carrying a brass sliding tube that can be raised or lowered at pleasure, which are ordinarily employed; and stout wrought iron pins, from 18-inches to 4 feet long, which are used whenever the measurement is likely to be suspended for more than a few minutes, as at night and when the ground is soft and unsatisfactory. The heads of the two first descriptions of registers contain a single point of reference, on a brass plate to which lateral or longitudinal motion can be communicated by slow motion screws; the heads of the pin registers are larger and contain several points, in rows, each point having a number engraved beside it, to ensure it's identification, an arrangement necessitated by the difficulty of driving the pins accurately into the ground.

The differences of level between the successive sets of bars are determined by measuring the heights of the end bars above the surfaces of the registers.

3.

Comparisons of the Compensation Bars and Microscopes with the 10-feet and the 6-inch standards.

As the compensation bars and microscopes are necessarily more liable to be altered in length, by accidents and misadventures, than is a simple bar of iron or brass, they are never relied on as retaining an invariable length, but are frequently compared, the former with the 10-feet standard bar **A**, the latter with their respective 6-inch scales, in the process of the measurement of each base-line. And this is the more necessary in order to guard against the errors which may have been made in fixing the compensation points, as well as those which may arise from the brass or the iron component acquiring a different temperature to that of the other component, in the course of the ordinary diurnal variations of temperature under which the

MEASUREMENT OF BASE-LINES

operations are carried on; it is evident that the effects of these errors will be eliminated if the comparisons with the standards are made under precisely similar-circumstances to those which obtain during the measurement.

In the comparisons at the Calcutta base, which was the one first measured in India with this apparatus, and in those previous to the measurement of the second base—that at Dehra Doon—the first of the above objects was alone contemplated; the comparisons were made, not in the base-line tents, but in buildings attached to the Surveyor General's Offices at those places, and, at Calcutta, they were made during the night. But the comparisons after the two measurements of the Dehra Doon Base, and on all subsequent occasions, were made in the base-line tents, under circumstances very similar to those of the measurement,—that is to say they were commenced early in the morning, suspended for a short time and resumed before noon, and concluded in the evening, at the same times as the corresponding operations of the measurement. They have invariably been made for at least three or four days before and after each measurement, and, at the fifth base (Sonakhoda) Colonel Waugh intr oduced the system—which has been followed on all subsequent occasions—of making compariso ns at the centre of the base, in addition to those before and after the measurement.

An equal amount of attention has not been devoted to the compensation microscopes, as the length of only the $\frac{1}{21}$ st part of the base is dependent on them; each microscope has however been generally compared with its scale several times, during the course of the measurement.

The following remarks on this subject are extracted from Colonel Waugh's report (in manuscript) on the Chuch base, near Attock.

"Colonel Everest, in his work on the Indian Arc, has stated, that no dependence can be placed on the perma-"nent length of the compensation bars. It is this uncertainty, in fact, which renders it necessary at every base-line, "after every march, or any change of circumstances, to compare them with the standard. An attentive consideration "of a day's comparisons will shew that their length is not constant during a single hour of the day. From sunrise "their length first increases a little, and then diminishes for a time, although the temperature is increasing rapidly. "After which they again expand, the heat still increasing. These alterations may be explained, almost entirely, by "the effects of dissimilar radiating power in the brass and iron bars. There is a great difference between the heating "and cooling capacities of brass and iron, and this difference prevents the two bars having the same temperature for "any length of time. The want of identity in temperature between the metals, will apparently produce, under some "circumstances, the effects of over-compensation, while in other circumstances the bars will appear under-compensated. "The cause of the observed change in length appears to be the difference of temperature between the two metals in the "compound bar, independent altogether of absolute temperature. The alterations in length, in fact, varying according "to the rate or velocity at which the temperature of the air is undergoing change.

"A rapid change of temperature will produce a great alteration in the length of the compound bar and vice "versa. At sunrise, under tents, the bars go on cooling for a short time, and their apparent length increases in a cor-"responding ratio. Then as they begin to acquire caloric, their length decreases, until both bars are uniformly heated, "when the length of the compound bar increases until the hottest period of the day is attained, when the bars again "begin to measure shorter as the temperature decreases. These phenomenæ are obvious from an inspection of a day's "comparison at any base line. It is clear also that the fluctuations in length are independent of absolute temperature, "as far as it is possible to judge. The only remedy available to us for this inconstancy in the length of the compensa-"tion bars, is to compare them with the standard under circumstances exactly indentical with those prevailing during "the measurement. It is from a consideration of the vast importance of this rule, that the bars were compared at "Sonakhoda and Chuch bases, at the centre of the line. For the same reason also, at this latter base, the measurement "and comparisons have been divided into morning and evening sets for the purpose of computations.

52)

(

WITH THE COMPENSATION APPARATUS.

4.

The lengths of the base-lines, the time occupied in their measurement, and the verificatory triangulation.

It will be readily understood, from the foregoing descriptions, that the operations for the measurement of a base-line, with the compensation bars and microscopes, are exceedingly tedious and laborious. This is more particularly the case at the commencement of a measurement, when the several persons employed are imperfectly familiar with the manipulation of the apparatus and each has still to learn how to execute his own share of the operations with the least possible obstruction to his coadjutors. During the first week, it rarely happens that more than six or seven sets—equivalent to about $\frac{1}{12}$ th of a mile—are measured in one day. But after three or four miles have been finished, the measurement advances at the daily rate of twenty to twenty-five sets, or rather more than $\frac{1}{4}$ of a mile.

That this circumstance has exercised considerable influence in determining the lengths of the base-lines, will be seen from the following extract from Colonel Waugh's "Instructions for selecting Base-Lines."

"Scientific men entertain various opinions regarding the proper length for bases. Continental geodesists of "the greatest celebrity are in favor of short lines from $1\frac{1}{2}$ to 3 miles in length, and have practically carried out this "principle in modern operations. English base-lines, on the other hand have always been of considerable length, "varying in fact from 5 to 10 miles. Nothing seems to be gained by very short lines, except a triffing saving of time "and labor. It is clear that the short bases in fashion on the continent, cannot be connected with great triangles, "without several supplemental stations, which is an evil because the stations of a series should be as few as possible, "and the length of the sides of triangles ought only to be limited, by considerations connected with distinct vision of "the signals. The chief part of the expense, difficulty, and delay attending the measurement of bases, consists of "preparatory arrangements, common to short as well as long bases; such as transport of apparatus to the spot, as-"sembly of establishment from distant parts of the country, and training them to the duties. The measurement of "the first mile always occupies a considerable time, but after facility has been acquired by practice, the work proceeds "preparating rate. After the first 2 or 3 miles, the measurement usually proceeds at the rate of 4 days "per mile, or even less, according to the length of day light available. Two or three additional miles seem 'therefore "to be a matter of small- importance, as the time occupied in measurement will not be extended thereby beyond 8 to " 12 days.

"12 days. "In India, 7 miles is considered an average length of line, and as nothing can be gained by departing from the "example of our English predecessors and running after modern continental fushions, it appears desirable that a base "should not fall short of 6 miles, nor exceed 8 miles. The character of the ground will generally give limits to the "length] of the base, for it is always difficult to obtain unexceptionable ground averaging 7 miles in length."

Of the ten base-lines which have now been measured with the apparatus of compensation bars and microscopes, all but the last are of lengths varying from 6.43 to 7.87 miles;—the last was restricted to about one-fourth only of the average length, but it was measured four times over, in order to furnish data for the determination of the probable errors of measurements with this apparatus.

The following table gives the position of each base, the length in miles and in sets, the number of working days and the average and the maximum daily progress of the measurement;

(54)

MEASUREMENT OF BASE-LINES

but it does not include the time occupied by the comparisons of the compensation bars with the standard.

	Co-ordii CEN	NATES OF TRE.		LENG	TH IN.	ays.	DAILY P IN 8	ROGRESS ETS.
Year of measure- ment.	Latitude.	Longitude.	Base-Line.	Miles.	Sets.	Number of d	Average.	Maximum.
1831-32 1834-85 1835 1837-38 1841 1847-48 1853-54 1854-55 1862-63 1868 1869	 , ,<	 88 25 77 58 77 51 77 37 88 17 72 29 67 13 83 15 77 40 77 45 	Calcutta, Dehra Doon, first measure, ,, second ,, Sironj, Bider, Sonakhoda, Chuch, or Attok, Karachi, Vizagapatam, Bangalore, Cape Comorin, first measure, ,, second ,, ,, third ,, ,, fourth ,,	6.43 7.42 7.28 7.87 6.95 7.83 7.32 6.59 6.83 1.68 	539 622 609 660 583 656 613 552 574 142 	45 5 ⁰ 3 ¹ 3 ⁸ 39 34 40 3 ² 40 9 7 7	12.0 12.4 20.1 16.0 17.1 14.9 20.4 17.2 14.4 14.2 15.8 20.3 20.3	23 23 35 24 23 25 26 32 23 21 22 23 21 22 23 21 22 26 27

All the base-lines, with three exceptions, have been divided into three or four sections, the relative lengths of which have been compared by triangulation along one or both flanks, for the purpose of verification. The exceptions are the Calcutta base, the Sironj base—which had been previously measured with the old standard chain—and the Cape Comorin base, which was measured four times with the Colby apparatus.

(55)

WITH THE COMPENSATION APPARATUS.

CHAPTER VII.

On the errors of the compensation bars and microscopes.

1.

Preliminary Observations.

Compared with the measuring chains, which were used in the early operations of this Survey, the apparatus of compensation bars and microscopes may be considered to be perfect, being as superior to the former as a first class chronometer to a village clock. Instead of a chain of short bars linked together, which is liable to alterations in length—by changes in temperature that cannot be precisely determined, by the strains to which it is necessarily subjected, and by the wear and rust of the joints—it furnishes a number of unconnected bars, the lengths of which are, comparatively, invariable, and these bars are never brought into contact with each other, but are placed at short distances apart which are measured optically; instead of plummets, it furnishes look-down telescopes, rotating with levels on their axes; and instead of verniers, unsusceptible of recognizing smaller quantities than the one-thousandth part of an inch, it furnishes powerful micrometer microscopes, in which quantities even less than the twenty-thousandth part of an inch are sensible and susceptible of measurement.

But while the power of measuring such minute quantities is the strong point and special characteristic of this apparatus—by which not only is it widely separated from such rude appliances as measuring chains, but is placed on a par with all the more modern apparatuses which have been constructed for similar purposes—this very capability has brought it's intrinsic defects into prominent display, and revealed errors which, though very minute, are systematic and force themselves into notice.

Thus a sensation of dissatisfaction with the performances of the apparatus has been experienced, to a greater or less degree, by all the officers of this survey who have been brought into contact with it, and there has always been a feeling of disappointment that the accuracy of the operations was not in keeping with the powers of micrometric measurement; * for the compensation bars and microscopes, instead of retaining a constant length under all temperatures and circumstances, are found to vary in length by amounts which, when expressed in terms of the divisions of the comparing micrometers, are frequently very considerable.

• Thus Colonel Everest, at page XCIX of his Arc Book of 1847, avows it as his conviction that

[&]quot;Whereas in former years, by the use of simple glass or metallic rods, considerable deviations existed, of which the law was known, so now by the principle of compensation, those deviations, though decimated or still further subdivided, seem to follow a law of which we are ignorant."

^{*} Colonel—now Major General Sir Andrew—Waugh, in his report (in manuscript) on the Chuch Base Line, remarks that "a "feeling of scrupulous refinement and extreme accuracy has always been cultivated in this Department, and so important has the sense of "extreme accuracy been considered, that a straining after inappreciable niceties has never been discouraged, lest in abandoning the inap-"preciable, the sense of refinement should itself be blunted."

MEASUREMENT OF BASE-LINES

The errors arising from these deviations have been guarded against, as much as possible, by endeavoring that the comparisons of the bars with the standard should be made under similar circumstances and conditions to those of the measurement, as has already been set forth. The verificatory triangulation, by which each section of a base-line is compared with the others, has rarely indicated discrepancies of a larger magnitude than $\frac{1}{200,000}$ th part— of the measurement, and this circumstance has materially tended to allay the alarm which the erratic behaviour of bars and microscopes had occasioned.

2.

On the construction of the compensation bars, and the measures taken for equalizing the thermal capacities of the components.

The variations in the length of a truly compensated bar are well known to arise from the differences of temperature of the brass and iron components of the bar. If the ratio of the expansion of the brass to that of the iron component is as 3 to 2, then the change in the distance between the compensation points, for a difference of 1° of temperature between the two components, will be three times the change in the length of the iron component for a variation of 1° of temperature; thus the compound bar may be regarded as a very accurate differential thermometer, which measures the difference of temperature of it's two components with greater precision than could be attained by any but the most delicate thermometers.

Now a brass bar has a greater capacity for heat—greater powers of radiation and absorption—than an iron bar of the same dimensions; thus the brass component of a compensation bar has a tendency to acquire the ordinary diurnal variations of temperature more rapidly than the iron component, and consequently the length of the bar is liable to corresponding variations.

These circumstances were all well known to Colonel Colby—who was the first person to apply the principle of compensation to the construction of bars for the measurement of base lines—and to his assistant. Lieutenant Drummond, who supervised the construction of the bars for the Ordnance Survey. They ascertained that, in order to produce the desired equality of temperature, it was necessary^{*} "either to make the bars of different dimensions, or to vary their surfaces till, by means of increased or diminished radiation or absorption, the desired equality was produced." The second method was chosen, and experiments were made on the heating and cooling of brass and iron cylinders, with a view of ascertaining the best means of so coating their surfaces, "as to induce them to acquire or part with equal increments of temperature (when similarly exposed) in the same periods of time." These experiments showed that, without altering the relative dimensions of the bars, it was possible, by appropriate coatings, to reverse their normal capacities for heat, and therefore to equalize their rates of changing temperature. For this purpose the brass bars were bronzed and varnished; the iron bars were browned and lacquered, and smoked until a sufficient surface of lamp-black was obtained to produce the requisite effect, they were then varnished.

* See Account of the Measurement of the Lough Foyle Base, pages 9 and 10.

(57)

WITH THE COMPENSATION APPARATUS.

No very detailed information is forthcoming regarding the processes by which the compensation points of the bars for the Indian Survey were laid off, and the thermal capacities of the brass and the iron components were equalized. From a memorandum by Colonel Everest it appears that the bars were heated "to 180° Fahrenheit and upwards", in an oven, and then placed under a pair of microscopes, the distance between which was equal to the length of the standard bar at 62°, and

"The points were then noted which, in the course of cooling, retained the same relative positions; this opera-"tion was repeated several times on each compensation bar, and the points so determined were ultimately marked "by dots on their silver disks, as neutral points."

"Coatings of varnish were partially applied, the due adhibition of which rests on trial, and is another point "of difficulty in determining the nodal points."

The apparatus was completed by Messrs. Troughton and Simms in the year 1830, and was tested by a short measurement, on Lord's Cricket Ground, at which Lieutenant Drummond assisted; it appears probable that the makers availed themselves of the experience which had been acquired in the construction of the Ordnance Survey bars, to satisfy all the requisite conditions, as closely as was possible, in the construction of the bars for India.

Nevertheless the fluctuations in the lengths of the bars clearly indicate that the brass and the iron components are liable to acquire different temperatures; thus very material errors may arise when the circumstances of the comparisons of the bars with the standard are not similar to the circumstances which prevailed during the measurement. It is essentially necessary therefore to ascertain the amount of error to which a base-line measured by this apparatus is liable.

This may be done either by comparing the sections of the line by triangulation executed for that purpose, or by investigating the probable errors of every successive operation in the process of the measurement, and combining these to obtain the entire probable error, or by an examination of the discrepancies between two or more measurements of the same distance, which may have been made for the purpose of deciding this question. The two last methods are preferable, as they are independent of extraneous errors, such as are introduced in the first method, by the measurement of angles.

Colonel Everest measured his second base-line—the one in Dehra Doon—twice over; and he has given the results at pages 288 to 292 of his Arc Book of 1847; unfortunately the value of this operation is materially diminished because the comparisons of the bars with the standard, before the first measurement, were made "under a thatched building", and not in the bar tents, under circumstances as similar as possible to those of the measurement, as was done during the after comparisons at this base-line, and on all subsequent occasions.

At the Cape Comorin base—the tenth and last which has been measured with the apparatus—the probable errors of every successive operation in the process of the measurement were independently ascertained; the line was measured four times, thus furnishing additional means of ascertaining the probable error of the entire operation, but it's length was restricted to about one-fourth of the ordinary length. The results of these investigations will be indicated further on, but first it will be necessary to enter on a theoretical examination of the variations of compensation bars.

MEASUREMENT OF BASE-LINES

(58)

3.

Theory of the changes in the length of a compensation bar, relatively to the normal length of a standard bar.

Let A B C, D E F F' be the halves of the two components of a compensation bar, firmly fixed in the plane A D P, but free to expand or contract in length, A B Cbeing the brass component.

Let BEMO be the axis of the tongue, O being the the true point of compensation, while M is the point marked by the maker, at a distance OM from O which is to be ascertained from the performances of the bar.

Let P M M' M'' be drawn through M parallel* to A B or D E, and let the distance P M be considered as equal to half the normal length of the compound bar, viz. the distance between the compensation points, when the temperature of both the components is 62° *Fahrenheit*.

Let the linear expansion of the brass component, for 1°F, be e_b and ,, iron ,, ,, e_i

and let MB = m, ME = n.

Then, when both components are at the temperature of $T + 62^\circ$, the half length of the bar will be PM', exceeding PM by MM', and the increase of the whole bar over it's normal length will be

$$2 \mathbf{M} \mathbf{M}' = 2 \mathbf{O} \mathbf{M} \cdot \frac{\mathbf{E} \mathbf{F}}{\mathbf{O} \mathbf{E}} = 2 \mathbf{O} \mathbf{M} \cdot \frac{e_i}{n + \mathbf{O} \mathbf{M}} \cdot \mathbf{T} \cdot \cdots \cdot \cdots \cdot \mathbf{O}$$
(1)

Thus 2 M M' is the measure of the change in the length of the compound bar for a temperature T° above the normal temperature, alike for both the components; representing this quantity, which may be called the error of compensation, by η ,

Now suppose the two components to be of unequal temperatures, that of the brass bar being $T_b + 62^\circ$, and that of the iron being $T_i + 62^\circ$, also let

Strictly speaking, if the bars are parallel to each other at the aermal temperature, they cannot be parallel at any other temperature; they are made to diverge by the expansion of the included portion of the tongue, and to converge by it's contraction and deflection from the perpendicular, but by amounts which cannot have any sensible effect on the results; thus at temperatures as much as 40° above or below the normal temperature, the deflection of the tongue from the perpendicular is less than 16', while at the higher limit the angle of divergence is 1"6 and at the lower the angle of convergence is 1"7. The effect on the length of a bar due to the contraction or expansion of the included portion of the tongue in it's deflected positions at those temperatures would be 0'8 m.y.

(59**)**

WITH THE COMPENSATION APPARATUS.

so that the half length of the compound bar is now

$$\mathbf{P} \mathbf{M}'' = \mathbf{P} \mathbf{M} + \mathbf{M} \mathbf{M}' + \mathbf{M}' \mathbf{M}''$$

in which equation

and

Putting B for the normal length of the compound bar, and B' for its actual length then,

$$\mathbf{B}'-\mathbf{B}=e_i\,t.\,\frac{m}{m-n}+\eta\,\mathbf{T}_b\,\ldots\,\ldots\,\ldots\,\ldots\,(6)$$

Now the changes in length can only be ascertained by comparing the compound bar with a standard bar; and when the standard is at some other temperature than the normal temperature, the result will be affected by the error in the adopted value of the expansion of the standard; this error must therefore be recognized.

Let A be the length of the standard at 62° F, A' its length at the temperature $T + 62^\circ$, E_a its actual expansion for 1° of temperature, while the adopted value thereof is E'_a , having an error dE'_a , so that

then

Finally putting X = B - A, or the excess of the normal length of the compensation bar over the normal length of the standard, and putting e'_i for the adopted value of the expansion of the iron component, and de'_i for the error of that value, we get from equations (6) and (8)

$$\mathbf{X} = \mathbf{B}' - \mathbf{A}' - (e'_i - de'_i) t \frac{m}{m - n} - \eta \mathbf{T}_b + (\mathbf{E}'_a - d\mathbf{E}'_a) \mathbf{T}_a \dots \dots (9)$$

Thus it is evident that in order to determine the normal relations of the compensation bar and the standard, from comparisons made at any (known) temperatures other than the normal temperature, it is necessary to know the expansion not only of the standard but of one of the two components of the bar, also the error of compensation, and the distances of the compensation points from the two components; and it appears to be more particularly necessary that the difference of temperature of the components should be accurately known, because it alters the length of the compound bar by about three times the amount that a simple bar of iron would be altered by an equal change of temperature.

MEASUREMENT OF BASE-LINES

4.

The data for the investigation of the changes in length of the Indian compensation bars, relatively to the length of the 10-feet standard A.

The operations which have been performed for the determination of the thermal expansion of the 10-feet standard \mathbf{A} , have been fully described in sections 2, 3, and 4 of Chapter II, and the results thereof are set forth in section 8 of the same chapter. It will seen that the original value of the expansion, or $\mathbf{E'}_a$, was = 22.67 m.y for an increment of temperature of 1° Fahrenheit, this value being determined from the measured increment between the temperatures of 76° and 212°, at Calcutta, in 1832.

It will also be seen that the most probable value of dE'_a , the error of E'_a , must be ascertained by subtracting from 22.67 the value of the expansion of the standard for the mean temperature of the observations, which is given in the second table of section 8.

The distances of the dots on the tongues of the compound bars, from the axes of the pins by which the tongues are fixed to the brass and the iron components, have been recently measured very carefully, with the following results; it is necessary however to premise that whenever the bars have to be manipulated, whether in the measurement of a base-line, or in the comparisons with the standard, the observers invariably occupy a position behind the brass component, or on the side of the bar opposite to that from which the tongues project, and thus the compensation point which is on the right hand, when the observer is facing in the direction that the tongues are pointing, is usually called the 'right dot', and the other the 'left dot'.

RAD	Bra	ss Compone	NT8.	IBON COMPONENTS.				
DAR.	Right.	Left.	Mean.	Right.	Left.	Mean.		
A B C D E H Mean of bars.	5.176 5.179 5.178 5.178 5.180 5.180 5.173	5°165 5°172 5°180 5°162 5°167 5°179	5'171 5'176 5'179 5'170 5'174 5'176 5'174	3:369 3:370 3:370 3:377 3:377 3:374 3:374	3`364 3`371 3`366 3`354 3`365 3`370	3·367 3·371 3·368 3·366 3·370 3·372 3·372 3·369		

Distances,	in	inches,	of	the	dot s	0n	the	tongues	from	the	axes	of	the	bra ss	and	the
						ir	m c	omponen	ts.							

(

(61)

WITH THE COMPENSATION APPARATUS.

The close agreement between the corresponding distances for each of the bars, would indicate that the compensation points of one bar were first fixed by repeated trials, and that then those of the other bars were laid off at the same distances from the respective components; but in the passage quoted at page 57, Colonel Everest expressly states that the operation of determining the positions of the points "was repeated several times on *each* compensation bar". It is therefore highly probable that the materials of which the respective components of the bars were constructed must have been very similar; and this is corroborated by the circumstance that the hourly variations between the lengths of the compensation bars and the standard, during the course of the daily comparisons, have invariably been found to be much the same for each of the bars, as will be seen to be the case in the curves of the excess of each of the bars over the standard, at the Cape Comorin base-line, which are indicated in plates I to XVI.

The expansion of the wrought iron components has never been determined, but as these bars were constructed at the same time as the standard bar—which is also of wrought iron—and by the same makers, it is probable that they were made of very similar metal, and consequently we may assume that their expansion is, practically, identical with that of the standard, and may therefore be considered = $E'_a - dE'_a$

There were no means of ascertaining the actual temperatures of the components of the compensation bars at either of the nine base-lines which were first measured; but before the measurement of the last base—the one at Cape Comorin—two wells were sunk, to a depth of $\frac{1}{3}$ ths of an inch, into each of the components of the bar B, at a distance of two inches outside the points of support, in order to receive the bulbs of the thermometers which were required to indicate the temperatures. As very delicate thermometers were needed for this purpose, and the available number of such thermometers was limited, no arrangements were made for determining the temperatures of the bar B. From what has been already stated regarding the similarity of the hourly curves of the excess of each of the bars over the standard, it is obvious that any one of them may be taken as a fair representative of the others, and the bar B was selected for this purpose.

These are the data which are forthcoming for the solution of equation (9); but it is still necessary to determine the error of compensation, η , for which no special investigations have been made; the value of this error must therefore be deduced from the equations of condition which are furnished by the numerous comparisons of bar B with the standard, at the Cape Comorin base-line.

. Digitized by Google

(62)

MEASUREMENT OF BASE-LINES

CHAPTER VIII.

Investigation of the probable errors of the Cape Comorin base-line.

1.

The fluctuations of the compensation bars found to be due to the relative positions—with regard to external thermal influences—rather than to the respective thermal capacities, of the brass and the iron components.

Thermometers were attached to the compensation bar B, for the reasons already stated at Bangalore, during the interval between the measurements of the base-lines at that place, and at Cape Comorin. After the arrangements were completed, the bar was placed in an open verandah, on the north side of a house-where it was sheltered from the direct rays of the sun-and hourly readings of the thermometers were made throughout the day and night, in order to ascertain the differences of temperature of the brass and the iron components.

Happily it occurred to Captain Herschel, who was conducting these investigations, to reverse the bar, on the second day, so that the component which had been on the inner side of the verandah, or that nearest to the wall, became transferred to the opposite side, the bar remaining at much the same distance as formerly-about three feet-from the wall. It was then found that the relative temperature of the components was reversed, the one which had been hottest at a certain hour of the first day, being coldest at the same hour of the next day; evidently one of the components was acquiring or parting with heat more rapidly than the other, not so much in consequence of it's thermal capacity, as in consequence of it's position relatively to the wall and to the open air. So far as could be gathered from the evidence of two days observations, the influence of the thermal capacities of the two components, in causing differences of temperature, appeared to be insignificant in comparison with that of the positions of the components relatively to external objects; in fact it now appears that the operations performed by the makers of the apparatus, with a view to equalizing the thermal capacities of the two components of this bar, which have been described in the preceding chapter, have been very fairly successful, and that the observed thermal inequalities are due-for the most part-to external circumstances.

This discovery of Captain Herschel's is of much significance, and has helped to unravel some of the perplexities which the fluctuations in the lengths of the bars had previously presented. It indicates that these fluctuations must be contingent on the positions of the bars relatively to the sun, and to prevailing winds, during the comparisons, and consequently that they are functions of the azimuths of the base-lines, for the bars and standards are, as a rule,

(63)

WITH THE COMPENSATION APPARATUS.

placed parallel to the line during the comparisons. Thus maxima and minima values will be obtained at base-lines when the direction is east and west—maxima when the tongues are pointing to the south, minima when pointing to the north—and intermediate values will be obtained at base lines of which the direction is meridional, whether the tongues are pointing to the east or to the west.

Of all the external influences which are liable to affect the lengths of the bars, that of the sun is, in India, the most important; every precaution is therefore taken to prevent the rays of the sun from falling directly on the bars, during the measurements, and the comparisons. It is necessary to roll up the cloths of the tents on the side towards which the tongues of the compensation bars are pointing, in order to obtain sufficient light for the operations; thus the baselines have usually been given an east-and-westerly direction, and have been measured with the tongues of the bars pointing to the north; for then, by closing the tent cloths towards the sun and opening those in the opposite direction, operations may be commenced at sunrise, whereas otherwise they cannot be begun until an hour or two later.

2.

Preliminary arrangements; programme of operations.

In the vicinity of Cape Comorin it was found impossible to obtain suitable ground for a base-line in any direction approaching that of east and west; the configuration of the coastline, the off-shoots of the great range of hills which, trending southwards from the parallel of 21°, terminate at the Cape, and the numerous groves of valuable palmyra trees by which the surface of the country is covered, combined to render the selection of a suitable line a very difficult matter, and eventually necessitated the adoption of one running almost exactly north and south. The line was to be divided into three sections of which the central section only was to be measured, while the length of the whole was to be determined by triangulation, on both flanks, from the measured section; in order therefore that the accuracy of the whole should not be inferior to what would have been obtained had the entire length been measured, it was necessary that the ground should be generally as favorable as if the entire length were to be measured. The actual arrangements were in fact very similar to those of all the other base-lines, but with this difference, that whereas formerly the triangulation served the purpose of verifying the linear measurements, by affording comparisons of the relative lengths of the sections, it was now needed to determine the length of the entire line, while the linear measurements would be verified by repetitions.

The object which was contemplated was not so much the measuring the base with very great accuracy, as ascertaining the errors to which base-lines measured with the apparatus are liable; this was to be effected by two methods of investigation, *viz.*, by comparing the results of four independent measurements of the base, and by determining the magnitudes of the errors which may possibly occur in each of the several processes of the operations.

(64)

MEASUREMENT OF BASE-LINES

The facts which had been recently ascertained regarding the thermal inequalities of the brass and the iron components of the compensation bars, indicated the propriety of reversing the positions of the components, after each measurement, in order to obtain a measure of the differences due to position. Thus, the direction of the line being almost exactly north and south, two measurements were made with the brass component occupying a position to the east of the iron, and the two other measurements with the brass component to the west. In order that the four measures might be strictly independent, the compensation bars were compared with the standard throughout the two days immediately preceding and following each measurement, with the components holding the same relative position to each other that they were to hold or had held during the measurement. Thus each measurement may be reduced singly, in terms of the lengths of the bars which were obtained from the comparisons immediately before and after it, and, as at all previous base-lines, without taking any cognizance of the differences between the circumstances of the comparisons and those of the measurement; and the several measurements may be reduced collectively, in terms of the mean lengths of the bars as determined from the whole of the comparisons, and with due recognition of the effects of the thermal inequalities and the imperfect compensation of the components, as indicated by the representative bar B.

Brass Co	MPONENTS WEST.	Brass Components East.				
Day of 1869.	Operation.	Day of 1869.	Operation.			
January 9	Comparisons I, 1.	January 28.	Comparisons II, 1.			
" 11	,, I, 2.	,, 29.	" II, 2.			
"12 to 24	Measurement I.	Jan. 30 to Feb. 9.	Measurement II.			
,, 25	Comparisons I, 3.	February 10.	Comparisons II, 3.			
,, 26	,, I, 4.	" 11.	" II, 4.			
February 12	Comparisons III, 1.	February 26.	Comparisons IV, 1.			
,, 13	,, III, 2.	,, 27.	,, IV, 2.			
" 14 to 28	Measurement III.	Feb. 28 to March 8.	Measurement IV.			
,, 24	Comparisons III, 3.	March 9.	Comparisons IV, 3.			
,, 25	,, III, 4 .	" 10.	" IV, 4.			
		1 1				

The order of procedure will be clearly gathered from the following table, in which the numerals I, II, III, IV, distinguish the respective measurements, and the numerals 1, 2, 3, 4 indicate the days of comparison before and after each measurement.
(

65)

WITH THE COMPENSATION APPARATUS.

The length of the base was 141 entire sets of six bars and seven microscopes, *plus* a set of three bars and four microscopes, *minus* a distance of about 31 inches which was measured with a beam compass. Stones were sunk at the end of the 35th, 70th, and 105th entire sets of bars and microscopes, from the north end of the line, carrying brass plates on which marks were engraved under the extremities of the sets, as each successive measurement passed over the stones; the distances of these marks—in the direction of the measurement and at right angles to that direction—from an arbitrary point of reference on each plate, which was used as an origin of co-ordinates, were subsequently measured.

These points are designated X, V, and Z in the following record, in which the values of the four measurements of the parts North-end to X, X to V, V to Z, and Z to South-end, are given as an additional indication of the errors of the operations to that which is afforded by the measurements of the whole length. The partial measures are designated as follows, the, numerals corresponding to the number of the measurement;

INX	ΙΧΥ	ΙΥΖ	ΙΖS
II "	II "	II "	II "
III "	III "	III "	III "
IV "	IV "	IV "	IV "

3.

Formation of the equations of conditions for determining the relative length of the compensation bar B to the Standard.

Equation (9) of the preceding chapter, indicates the form in which the equations of condition presented by the comparisons of the compensation bars with the standard may be generally expressed. In order to guard against accidental gross errors in reading the heads of the comparing microscopes, and in recording the results, it is customary to employ three assistants to register all the observations independently, and to require them to make a preliminary calculation of the reduction of the relative lengths of the bars and the standard, at the temperatures of observation, to the corresponding normal lengths at the temperature of 62° F. At the Cape Comorin base these provisional calculations were made subservient to the final reductions, in the following manner.

Equation (9) may be written thus

$$\boldsymbol{x} = (\mathbf{B}' - \mathbf{A}' + \mathbf{E}'_{a} \cdot \mathbf{T}_{a}) - (\boldsymbol{e}'_{i} - d\boldsymbol{e}'_{i}) t \cdot \frac{m}{m-n} - \eta \cdot \mathbf{T}_{b} - d\mathbf{E}'_{a} \cdot \mathbf{T}_{a}$$

Now B' - A' is directly obtained from the comparisons in terms of the divisions of the comparing micrometers; and as the runs of these micrometers are known, E'_a , or the adopted value of the linear expansion of the standard,—the value originally determined in Calcutta in 1832 may be expressed in micrometer divisions. If this is done, and we put

(66)

MEASUREMENT OF BASE-LINES

x'' will be a *preliminary* value of the excess of the bar over the normal length of the standard expressed in micrometer divisions—which is uncorrected for the difference of temperature of the brass and iron components, and for the error of compensation, and the errors of the adopted co-efficients of expansion of the standard and of the iron component.

The values of x'' for every comparison of each bar with the standard, will be found in the detailed description of the operations of this base-line; they are also graphically exhibited by curves in plates I to XVI at the end of this volume, each plate representing one day's results, on scales of micrometer divisions and millionths of a yard.

Thus we obtain the equation

$$x = x'' - (e'_{i} - de'_{i}) t. \frac{m}{m-n} - \eta \cdot T_{b} - dE'_{a} \cdot T_{a} \cdot \dots \cdot \dots \cdot \dots \cdot (11)$$

We are obliged to assume e_i , the linear expansion of the iron component, to be equal to that of the standard bar A; though the equations of condition afforded by the comparisons are upwards of three hundred in number, the co-efficients of e_i are invariably so small that a reliable value of this *quæsitum* cannot be obtained by treating it as an unknown quantity to be deduced from these equations; moreover the assumed value has been ascertained to be probably much nearer the truth than the value which would be given by the equations. Putting $e'_i = E'_a$ and de'_i $= dE'_a$, expressing E'_a in micrometer divisions, and substituting for *m* and *n* their corresponding numerical values, equation (11) becomes

$$x = x'' - 5^{1} \cdot 4 t - \eta \cdot T_{b} - (T_{a} - 2^{\cdot} 9 t) dE'_{a}$$

If now we put

$$x' = x'' - 5^{1} t t \dots (12)$$

x' will be a second preliminary value—expressed in micrometer divisions—of the excess of the bar over the normal length of the standard, corrected for the difference of temperature of the brass and iron components, but uncorrected for the errors of compensation and of the adopted co-efficient of expansion of the standard. This second approximation to the true value of x was made in order that the fluctuations in the lengths of the compensation bars which were due to the differences of temperature of their components, might be clearly indicated. Thus we arrive finally at the following equation,

in which the symbol dE'_{a} , which expresses the error of the old value of the expansion of the standard, has been retained, partly because the operations for re-determining the value of the expansion had not been commenced when the calculations for the reduction of the observations at this base-line were being carried on, and partly in order that any person who may object to the grounds on which the values in the tables at page (19) have been adopted, may have the means of readily substituting any other value which may be deemed preferable.

(67)

WITH THE COMPENSATION APPARATUS.

4.

Determination of the error of compensation of bar B.

By taking the mean of n equations of the form of (13), and subtracting it in succession from each of the n equations, x is eliminated, and n equations are obtained of the following form

The equations thus formed for the determination of η have been considered as of equal weight, and solved by the method of minimum squares. In order to indicate the errors to which the results are liable, the equations have been divided into eight distinct and independent groups, each containing the comparisons of the two days immediately preceding or following the successive measurements of the base;—the normal equations thus obtained have been solved independently, and then added together to give the equation from which the most probable value of η is obtained. The results are as follows,

Comparisons.			Malmar of a in distance dBt being		
Distinguishing numerals.	Number.	Normal equations in η , in micrometer divisions.	γ alues of η in divisions, <i>dE</i> being = 0.68 division.		
I, 1 and I, 2	33	$623 \eta = 595 - 519 dE'_a$	$\eta = 1.0 - 0.8 dE'_a = 0.5$		
I, 3 ,, I, 4	3 9	734 " = 470 - 596 "	" = 0·6 — 0·8 ", = 0·1		
II, 1 ,, II, 2	39	646 " = 664 - 576 "	y = 1.0 - 0.0 $y = 0.4$		
II, 3 ,, II, 4	40	936 " = 1443 - 878 "	y = 1.2 - 0.3 y = 0.3		
III, 1 ,, III, 2	40	640 ,, = 1196 - 672 ,,	$y_{1} = 1.6 - 1.0 y_{2} = 1.5$		
III, 3 ,, III, 4	40	840 " = 1833 - 840 "	" = 2·2 – 1·0 " = 1·5		
IV, 1 " IV, 2	40	· 731 " = 969 - 634 "	" = 1·3 – 0·9 " = 0·7		
IV, 3 " 1V, 4	40	719,, = 843 - 627 ,,	" = 1·2 – 0·9 " = 0·6		
All	311	$5869 \eta = 8013 - 5342 $	$\eta = 1.37 - 0.01$ " = 0.42		

Considering the difficulties which attend investigations of this nature, when the observations are necessarily taken under changing temperatures, and the exact temperatures are probably

(68)

MEASUREMENT OF BASE-LINES

never indicated by the thermometers, excepting at the maxima and minima, these determinations are as satisfactory as can be expected, and the final result is worthy of confidence; expressing this result in inches and in millionths of a yard,

 $\eta = .000,034,4$ inch = 0.96 millionths of a yard; this value of η was used in the reductions of the Cape Comorin base-line.

An independent value was subsequently obtained from comparisons of bar B with the 10-feet (steel) Standard I,, which were made in Dehra Doon in May 1869, after the return of the base-line apparatus from Cape Comorin; the comparisons were taken early in the morning and late in the afternoon, at maxima and minima temperatures, on four days, four comparisons being made on each occasion, and thermometers being used to determine the temperatures of the two components of bar B, as at the Cape base.

The results are as follows :---

24.54 $\eta = \frac{m.y}{38.5}$ whence $\eta = \frac{m.y}{1.6}$ 24.25 $\eta = 28.5$, $\eta = 1.2$ 21.73 $\eta = 15.8$, $\eta = 0.7$ 18.25 $\eta = 17.4$, $\eta = 1.0$

thus finally

 $88.77 \eta = 100.2$ ", $\eta = 1.13$

This result corroborates the one which was obtained at the Cape base-line very satisfactorily; probably a more accurate determination of η could not be arrived at excepting by investigations under artificially sustained temperatures, with an apparatus similar to those employed in determining the expansions of the standards of length of the Ordnance and the Indian Surveys, which have been described in Chapter II.

It is evident that since the sign of η is positive, the bar has been under compensated, or in other words, that it's length increases with the temperature.

The above results are further confirmed by the provisional determinations of the expansion of the standard from the comparisons with the compensation bars at eight base-lines, which are given on page (10). Those determinations were made on the assumption that the bars were truly compensated—an assumption which is now shown to be erroneous—and they exhibit the expansion of the standard *minus* that of the bars, since the latter are found to be under compensated, and to increase in length as the temperature increases. If to the average value of the eight determinations, viz., 21°10 m.y, the compensation error $\eta = 1°05$ — assumed to be the same for all the bars—is added, we get for the expansion of the standard the value 22°15, which exceeds the probable value, 21°67, corresponding to the mean temperature (66°) of the base-lines, by 0°48 m.y, or only 2°2 per cent of the actual expansion; see page (19). Considering that there were no means of ascertaining the temperatures of the brass and iron components of the compensation bars at the said base-lines, and that the errors in elaborate determinations

(69)

WITH THE COMPENSATION APPARATUS.

of the expansions of simple bars of metal are liable to exceed this percentage, when the temperatures cannot be controlled artificially, this result must be admitted to be very fairly corroborative of the others.*

Referring to equation (2) and the figure at page (58), it will be seen that the position of M, the mark on the tongue, falls between the true point of compensation and the bars, at a distance

$$\mathbf{O}\,\mathbf{M}=\frac{n}{2\,e_i-\eta}\,\,\eta$$

Whence, since n = 3.4 inches, $c_i = 21.8$ m.y, and $\eta = 1.0$ m.y,

$$OM = .08$$
 inch.

5.

Determination of the normal excess of the mean of all the compensation bars over the standard at 62°F; probable errors; thermometric errors.

For the reasons which have been already set forth in section 4 of the preceding chapter, the compensation bar B is assumed to be, in all respects but length, a representative of the other bars; or in other words, the recorded temperatures of it's components are considered to be the same—under like conditions and at the same times—as the mean temperatures of the corresponding components of the whole of the bars, the materials of which the respective components are composed are supposed to be similar, and the mean compensation error is assumed to be the same as that which has been determined for B.

With these assumptions, if we employ the symbols X, X' and X'' to represent, for the mean of the bars, the excesses over the normal length of the standard which have hitherto been represented by the symbols x, x', and x'', for the bar B, we get by equations (10) to (13) the following equations, in which the numerals are expressed in micrometer divisions.

Thus X" corresponds to the excess of the mean of the bars over the standard which, at all previous base-lines, was computed with the old co-efficient of expansion of the standard —determined in Calcutta in 1832—and was adopted as final, the thermal inequalities of the component bars and the errors of compensation being assumed to be eliminated by the similarity of circumstances during the comparisons and the measurements. The equations which

^{*} The operations at Calcutta, Attock and Karachi most closely corroborate the recent results, and they happen, in point of fact, to be the most reliable for the investigation; for at Calcutta the comparisons were made in a building, where the bars would be less exposed to the sun's influence than in tents, at Karachi the direction of the line was nearly meridional, and at Attock the positions of the bars were reversed during the operations.

(70)

MEASUREMENT OF BASE-LINES

give the numerical values of X" will be found in the detailed description of each base-line, and, for the Cape Comorin base, these values, as well as those of the corresponding excesses of each of the bars over the standard, are graphically delineated also on plates I to XVI. On the following plates, XVII to XXXII, the mean excess X" is repeated, and X', the mean excess corrected for temperature only, and X, the mean excess finally corrected, are shown.

These curves indicate that the positions of the components relatively to the sun, materially influences the length of the compensation bar; thus as a rule when the brass component was to the west, the length of the bar increased from 7 A.M. to $9\frac{1}{2}$ A.M., and then decreased until noon—at which time the sun arrived in the azimuth of the line—and the converse happened during the same hours when the brass component was to the east. There are occasional exceptions to the rule, and days on which the bars maintained a nearly constant length for several hours after sun-rise; but these exceptions tend to confirm the rule, as it can almost always be shown that, when they occured, the sky was more or less laden with clouds, which must have had the effect of diffusing the heat of the sun, and preventing it from striking more on one of the components than on the other. The influence of the sun and of winds on the temperatures of the bars will be examined hereafter and therefore need not be further alluded to in this place.

The curves in plates XVII to XXXII indicate that the several corrections which have been applied have considerably diminished the magnitude of the discordances between observations taken at different hours of the day; the mean of the extreme daily ranges of the values of X" and of X, for the comparisons before and after each measurement, are as follows:

	I	II	III	IV	Mean
**	m.y	m.y	m.y	m.y	m.y
X″	40.9	60.1	21.6	66.8	47'4
X	16.4	14.9	20.5	13.8	16.4

The results of 14 days comparisons are materially improved, but those of two days (comp. III. 3 and III. 4) are slightly deteriorated.

The probable error of the comparisons of the mean of the bars with the standard, as deduced from the squares of the differences between single values and the mean of all, are as follows:

for X", probable error of a single value $= \pm 13.5$ ", mean of 311 values $= \pm 0.77$ for X ", mean of 311 value $= \pm 4.7$ ", mean of 311 value $= \pm 0.27$

It may be observed that the probable error of a single determination of the relative length of the bar B to the mean of all the compensation bars—under like conditions— is only $\pm 2.4 m.y$, a quantity of which the magnitude is much the same as that of the probable error of a single determination of the relative lengths of the 10-feet standards, the details of which are given in appendix No. 3; as the bars were compared in tents during varying temperatures,

(71)

WITH THE COMPENSATION APPARATUS.

and under far less favorable circumstances than the standards—which were compared in a substantial building, and when the temperatures were steady—the smallness of this probable error tends to corroborate what has been previously stated regarding the similarity of the bars to each other in all essential respects.

These probable errors, it should be stated, in all instances include the personal equations of several observers; for the observations were invariably taken by a number of persons, in order that the constant errors which arise from personality might be neutralized as far as possible. Referring to page (23) it will be seen that the probable personal error in the comparisons of long bars, when two observers are employed—one at each of the microscopes—is as much as $\pm 1.7 m.y$.

The mean values of X, the normal excess of the mean of the compensation bars over the standard, at the temperature of $62^{\circ}F$, as deduced from the comparisons before and after each measurement, and from the whole of the comparisons, are as follows, the adopted value of η being 0.75 micr. div. and of $dE'_a 0.684$ div. and 1 div. being = 1.277 m.y.

 $X = X'' - 51.4t - T_b \cdot \eta - T_a \ dE'_a + 2.9t \ de'_i$ $I \quad X_1 = 206.3 - 18.0 - 19.8\eta - 18.8 \ dE'_a + 1.0 \ de'_i = 161.3 = 206.0$ $II \quad X_2 = 188.5 + 6.0 - 22.8\eta - 21.5\eta - 0.3\eta = 162.5 = 207.5$ $III \quad X_3 = 189.2 + 12.3 - 23.0\eta - 21.7\eta = -0.7\eta = 169.0 = 215.8$ $IV \quad X_4 = 195.8 + 4.3 - 25.0\eta - 23.4\eta = -0.2\eta = 165.3 = 211.1$

Mean, or $X = 195^{\circ} + 1^{\circ} 1 - 22^{\circ} 6_{,,} - 21^{\circ} 3_{,,} - 0^{\circ} 1_{,,} = 164^{\circ} 5 = 210^{\circ} 1$

If the probable error of the final result, viz. the general mean, is computed from the squares of the differences between the mean of all and the values respectively corresponding to the different measurements, it is found to be

p.e of mean value of
$$X = \pm 1.47$$

The magnitude of this value of the probable error is nearly six times that of the value $(\pm 0.27 \text{ my})$ which was obtained from the differences between single values of X and the mean of all, thus indicating the presence of certain uneliminated errors, constant in each group of comparisons, but varying in different groups. These errors probably arise from the state of the weather, the alternations between cloud and sunshine, and the direction of the prevailing winds, on the days when the comparisons were made; there is evidence to show that during the comparisons appertaining to measurement No. III—the result of which differs most materially, and exceeds the mean of the three others by 7.6 my—the weather differed materially from what it was during the other comparisons, as will be noticed further on in the section on the thermal inequalities of the compensation bars during the operations. Now the degree of accuracy with which the thermometers indicate the temperatures of the bars and the standard is considerably influenced by the diurnal changes of temperature, which again depend on the state of the weather; when the diurnal temperature is uniformly progressive from a minimum to a maximum, as during a day of continuous sunshine, the temperatures of the thermometers lag

(72)

MEASUREMENT OF BASE-LINES

behind and are always less than those of the bars; but when the diurnal temperatures fluctuate, and have several maxima and minima, as during a day of alternate cloud and sunshine, the thermometers are sometimes in defect and sometimes in excess of the temperatures of the bars, and thus there is less constancy of error.

It is not improbable that the observations of the standard are more influenced by this circumstance than those of the compensation bar B, for if the thermometers on both the components of this bar lag equally behind the true temperatures, the difference of temperature will be correctly indicated, which is the chief desideratum, as the absolute temperature of the compensation bar is unimportant, and does not require to be known with great accuracy.

But the absolute temperature of the standard is most important; at pages (7) and (8) instances are cited in which thermometers attached to standard bars are shown to have been lagging to an extent of about 0° 3 F behind the temperatures of the bars and that under most favorable circumstances, when the temperatures, were changing very slowly; a similar amount of lagging during comparisons I,II, and IV, in excess of what obtained at III, would suffice to explain the differences between the results on those occasions, and there is thus some probability that the exceptionally large value for III is in reality more correct than the other values.

6.

Determination of the actual lengths of the compensation bars during the measurements.

If we put $_{o}L$ for the actual length of the (mean of all the) compensation bars at the time of any observation, $_{o}T_{b}$ for the corresponding temperature of the brass component and $_{o}t$ for the difference of temperature of the two components at that time, we get, as in equation (6)

$${}_{o}\mathbf{L} - (\mathbf{A} + \mathbf{X}) = (e'_{i} - de'_{i}) {}_{o}t \cdot \frac{m}{m-n} + {}_{o}\mathbf{T}_{b} \cdot \eta$$

or ${}_{o}\mathbf{L} - \mathbf{A} = \mathbf{X} + 5\mathbf{1}\cdot\mathbf{4} {}_{o}t + {}_{o}\mathbf{T}_{b} \eta - 2\cdot\mathbf{9} {}_{o}t de'_{i} \cdot \cdots \cdot \cdots \cdot \cdots \cdot (\mathbf{18})$

Now the temperatures of both the components of the compensation bar B were observed when each 'set' was measured, and we have thus as many values of $_{o}t$ and of $_{o}T_{b}$ as the number of sets; putting r for this number, then the corresponding mean actual length of the (mean of all the) bars during the measurement of r sets will be

$$\frac{[_{o}L]}{r} - \mathbf{A} = \mathbf{X} + 5\mathbf{1}\cdot\mathbf{4} \frac{[_{o}t]}{r} + \frac{[_{o}T_{b}]}{r} \mathbf{\eta} - 2\cdot\mathbf{9} \frac{[_{o}t]}{r} de'_{i} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (\mathbf{19})$$

The symbolical and the concluded numerical values of X have already been given on the preceding page, and it will be desirable to operate with the former, in order to obtain a measure of the effects which any differences between the temperatures and other circumstances of the measurements, and those which prevailed during the comparisons, are liable to produce;

(73)

WITH THE COMPENSATION APPARATUS.

thus, substituting accordingly for X, and putting $\mathbf{L} = \frac{\begin{bmatrix} \mathbf{L} \end{bmatrix}}{r}$ we get

$$\mathbf{L} - \mathbf{A} = \mathbf{X}'' + 51^{\cdot}4 \left(\frac{\left[t \right]}{r} + 1^{\cdot}1 \right) + \left(\frac{\left[t \right]}{r} - 22^{\cdot}6 \right) \eta - 21^{\cdot}3 \ d\mathbf{E}'_{a} - \left(2^{\cdot}9 \frac{\left[t \right]}{r} - 0^{\cdot}1 \right) \ d\mathbf{e}'_{i} (20)$$

Thus the following values of the mean length of the brass are obtained for the several measurements of each section of the base-line, the sections being indicated as set forth on page (65)

	oraas t.			Co-	EFFICIENTS	5 OF	L -	- A	
Section.	Position of 1 componen	Χ"	51.4 t	$= \frac{7}{75d}$	$d\mathbf{E'_a} = \cdot 68d$	$= \frac{de'_i}{68d}$	Micrometer divisions.	Millionths of a yard.	Actual mean length of all the bars in feet of standard A.
_		d	d						
INX	West	+ 195.0	+ 10.0	- 4.8	- 21.3	- 0.7	187.2	239.0	10.000,717,0
	"	,,,	+ 13.7	-4^{2}	در		190.5	243.2	" 729,6
" Ż Ś	,,,)))))	+10.2	-3.5	, ,,	- 0.0	187.0	230.0	,, 710,7
<i>"</i>									, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	East	"	+ 0.2	+ 2.3	,,,	- 0.1	182.5	233.0	,, 699,0
,, X Y	>>	>>	- 0.8		,,,	+ 0.0	178.8	228.3	,, 684,9
	,,,	>>	+ 3.0	- 0.3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-0.2	183.3	224.0	» 073,2
,,	, "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• 3-		"			-37 -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
III N X	West	,,	+ 0.0	- oʻ <u>5</u>	>>	- 0.1	180.8	230.8	,, 692,4
,, X Y	,,,	,,	+ 2.9	- 1.8	,,	- 0'2	181.9	232.2	,, 696,6
, 12 7 5	"	"	$+ 4^{\circ}$	-2.5	>>	-0.3	102.9.	233.5	<i>,, 7</i> 00,5
), L U	,,,	,,,	44		, ,,		·/· J	/ <i>##/9</i>	,, 003,7
IV NX	East	,,	+ 11.6	+ 2.6	"	- 0.7	193.4	246.9	,, 740,7
	,,,	"	- 1.8	+ 0.0	,,,	+ 0.1	179.4	229.0	" 687,0
" V Z	,,,	,,,	+ 0.5	+ 2.9	>>	- 0.1	183.0	233.0	», 700,8 706,6
,, 23	22	,,,	T 0'0	Τ 14	, ,,	- 05	1097	242.2	,,,,,,0

Thus the fluctuations in the actual lengths of the (mean of all the) compensation bars have an extreme range of $22^{\circ}5 m.y$; they represent the effects of the differences between the circumstances of the measurements and those of the comparisons with the standard, and it will be seen that the most important of these effects is traceable to the thermal inequalities of the bars, the influence of the compensation error being comparatively small, while that of the uncertainty in the adopted value of the expansion of the iron components is still less and is quite insignificant. It will also be noticed that the fluctuations of the mean bar-length are less influenced by the relative positions of the brass and the iron components than by the differences between the

MEASUREMENT OF BASE-LINES

circumstances of the comparisons and the measurements, as might be expected from the meridional direction of the line.

At all the other base-lines which have been measured with this apparatus, the influence of the error of compensation would probably be less than at this base, for it depends on the difference between the actual and the normal temperature, which was about 12° greater on an average at this than at any other base; on the other hand the differences between the thermal inequalities of the components of the bars, during the measurements and the comparisons, may have been greater at other base-lines, for the diurnal ranges of temperature and the vicissitudes of climate have occasionally been greater than they were at this base.

7.

Determination of the lengths of the compensation microscopes during the measurement; probable errors

The lengths have been derived from comparisons of the microscopes with their scales at various stages of the operations, generally before, after and at the middle of each measurement. The comparisons will be found in the detailed account of the operations, and their results will be given in the next section: thus in this place it is only necessary to indicate the manner in which the microscope lengths are determined, and their probable errors ascertained.

The compensation microscopes are the least satisfac tory portion of the apparatus, and are far more liable than the compensation bars to accidental changes in length. It is scarcely possible to adjust a side telescope to parallelism with the microscope components, without altering the distance between the external foci of the latter, and thus disturbing what is called the length of the microscope; consequently after every such adjustment the instrument has to be compared with a 6-inch scale, and comparisons must be made at the successive stages of the operations before correcting this adjustment, should it be necessary to do so, which sometimes happens.

The mean value of the length of a microscope, as determined from the comparisons before and after the measurement of any portion of the line, during which the microscope has not been adjusted or intentionally altered in length, is considered to be the length of the microscope for that portion of the measurement.

The probable errors of these lengths are deduced from the differences of the values obtained at successive comparisons—between which there has not been any adjustment or intentional alteration—by the usual formula

p. e of a single determination = $\sqrt{\frac{[d^2]}{n-m}}$

• These so called 'single' determinations, are, in each instance, the mean of three or more comparisons of a microscope with it's scale.

Digitized by Google

(74)

(75)

WITH THE COMPENSATION APPABATUS.

n being the number of single determinations, and m the number of groups of such determinations. Assuming the probable error to be the same for all the microscopes, at this base-line,

the p. e of a single determination $= \pm 4.8 m.y$

thus, with three determinations at equal intervals, the probable error of the length measured by the microscopes, in N sets of measures—each containing five entire and two half microscope lengths, as is usual—will be

$$\pm 4.8 N \sqrt{\frac{5.5}{3}} = \pm 6.5 N m.y$$

8.

Determination of the length of the base-line, allowing for the effects of the thermal inequalities and the imperfect compensation of the bars; probable errors.

The length of a base-line measured with this apparatus is the sum of the bar lengths and the microscope lengths, \pm a short terminal length which has to be measured with a beam compass.

Combining all these	e lengths together,	the results of the	e operations are as	follows;

	of apo-	Measured lengths expressed in feet of standard A					
Measurement.	Position brass con nents	With the com- pensation bars.	With the compensation microscopes.	With the beam compass.	Total.	Mean.	
NXI	West	2100.1206	105.0162	+ 0.0143	2205.1810	1	
" II	East	•1468	·0193	+ 0.0209	·1870		
" III	West	•1454	.0187	+ 0.0129	.1800		
" IV	East	·1555	·0244	+ 0.0020	•1868	2205.1837	
ΧΥΙ	West	2100.1232	105.0166	- 0.0026	2205.1642		
,, II	East	•1438	.0193	- 0.0027	•1604		
, III	West	•1463	·01 87	- 0.0031	•1619		
" IV	East	•1443	·0236	— 0.00 <u>0</u> 0	•1619	2205.1621	
YZ I	West	2100.1555	105.0170	- 0.0033	2205.1692		
,, II	East	•1414	.0193	+ 0.0043	•1649		
,, III	West	•1471	•0187	+ 0.0038	•1686		
" IV	East	.1472	·0232	- 0.0043	•1662	2205.1672	
ZS I	West	2190.1573	109.5178	- 2.5969	2297.0782		
" II	East	•1534	•5202	- 2.6003	•0733	l l	
" III	West	•1494	.5182	- 2.5889	•0787		
. ", IV	East	•1588	.5242	- 2.6036	•07 94	2297.0774	
NSI	West	8400.0166	424.5676	- 2.2016	8012.5026		
·	East	•5854	•5781	- 2.5779	•5856		
, <u> </u>	West	.5882	:5743	- 2:5733	·5892		
" IV	East	·čo58	•5954	- 2.6069	•5943	8912.5904	
	1	· · · ·	1	1 1			

(76)

MEASUREMENT OF BASE-LINES

In the three Sections NX, XY and VZ the distances which were measured with the compensation bars are equivalent to the actual lengths of 35 entire sets of the six bars, and will be found by multiplying the mean lengths given in the table in section (6) by 210; the corresponding distances in the section ZS, are equivalent to the actual lengths of 36 entire sets and of 1 half set of bars, and will be found by multiplying the mean length by multiplying the mean lengths in that table by $6 \times 36 + 3 = 219$, and applying a correction of $-\cos 36$ f a foot to the results, to allow for the difference of the mean length of the three bars of the half set from that of the entire set of bars.

The reductions of the distances which were measured with the compensation microscopes, and the short terminal lengths measured with a beam compass, are given in the detailed account of the operations.

If the probable errors of the preceding results are determined from the squares of the differences between each result and the mean of the group to which it appertains, they will be as follows—

$$p. e \text{ of a single measurement} \\ e \pm \cdot 67 \sqrt{\frac{100008425}{16-4}} \\ = \pm \cdot 0018 \text{ (of a foot)} \\ p. e \text{ of a single measurement} \\ e \pm \cdot 67 \sqrt{\frac{100004453}{4-1}} \\ = \pm \cdot 6026 \end{aligned}$$

whence, expressing the probable error in millionth-parts, μ , of the distance measured, we obtain

from the sections, $p. e \text{ of a single measure} = \pm \circ \cdot 8 \mu$ from the entire length, $n, = \pm \circ \cdot 3 \mu$

9.

Determination of the length of the base-line by the usual method; probable errors.

The values of X_1, \ldots, X_4 , or the several determinations of the normal excess of the mean of the compensation bars over the standard, from the comparisons before and after each measurement of the line, are expressed at page 71, by equations which indicate the influences of the thermal inequalities of the bar-components, the influences of the compensation errors, and those of the errors in the adopted values of expansion for the standard and the iron components. There are no means of determining the effects of any of these influences, with the exception of that of the error of the expansion of the standard, for the base-lines which have been previously measured with this apparatus. If therefore the products of t, η and de'_i in those equations are rejected, values of X_1, \ldots, X_4 will be obtained which will be analogous to those employed in the reduction of

(77)

WITH THE COMPENSATION APPARATUS.

all the previous base-lines. By using these values, the lengths of the several measurements of this base-line may be determined in the usual way, and thus some estimate of the average probable error of the other base-lines may be formed.

Excess of mean of bars over Standard.	Mean length of all the bars in feet of A
d d m.y	
$X_1 = 206^{\circ}3 - 18^{\circ}8 dE'_a = 193^{\circ}4 = 247^{\circ}0$	10'000,740,7
$X_2 = 188.5 - 21.5$, $= 173.8 = 221.9$	10.000,665.7
$X_3 = 189^{\cdot 2} - 21^{\cdot 7}$, $= 174^{\cdot 4} = 222^{\cdot 7}$	10'000,668,0
$X_{4} = 195.8 - 23.4$, $= 179.8 = 229.6$	10.000,688,6

whence, and with the microscope and the beam compass lengths given in the preceding section, we get the following results;

	MEASURED LENGTHS EXPRESSED IN FEET OF STANDARD A							
Mcasurement.	With the compensa- tion bars.	With the microscopes and beam compass.	Total.	Mean.				
NX I ,, III ,, III ,, IV XY I ,, II ,, III ,, IV	2100 ⁻¹ 555 -1398 -1403 -1446 2100 ⁻¹ 555 -1398 -1403 -1446	105°0304 °0402 °0346 °0313 105°0110 °0166 °0156 °0176	2205'1859 '1800 '1749 '1759 2205'1665 '1564 '1559 '1622	2205:1792				
YZ I " III " III " IV ZS I " II " III " IV	2100 ⁻¹ 555 -1398 -1403 -1446 2190 ⁻ 1619 -1455 -1460 -1605	105'0137 '0235 '0215 '0190 106'9209 '9199 '9293	2205°1692 °1633 °1618 °1636 2297°0828 °0654 °0753	2205.1645				
NSI ,, II ,, III ,, IV	*353 8490.6284 *5649 *5669 *5843	421'9760 2'0002 2'0010 1'9885	8912°6044 °5651 °5679 °5728	2297 ^{.0737} 8912.5776				

(78)

MEASUREMENT OF BASE-LINES

Determining the probable errors in the same way as in the preceding section,

$$p.e \text{ of a single measurement} \\ \text{of any section} \\ = \pm \cdot 67 \sqrt{\frac{00034418}{12}} \\ = \pm \cdot 0036 (of \ a \ foot) \\ p.e \text{ of a single measurement} \\ \text{of the entire length} \\ \end{bmatrix} = \pm \cdot 67 \sqrt{\frac{00099162}{3}} \\ = \pm \cdot 0122$$

and, expressing these quantities in millionth-parts of the distance measured, we obtain from the sections, p.e of a single measure $= \pm 1.6 \mu$ from the entire length, $, = \pm 1.4 \mu$

The difference between the mean values of the entire length by the two processes of deduction is $\cdot 0128$ of a foot = 1.4μ .

10.

Determination of the probable errors of each of the several operations of the base-line, and thence the probable error of the measurement.

At the end of this volume will be found a report, by Captain Basevi, on the Practical Errors of the measurement of this base-line. The errors therein discussed are those which arise from imperfect alignment and leveling of the compensation bars and microscopes, and those also which are liable to occur in intersecting the dots on the bars and the registers. It will be found on reference to Captain Basevi's careful and elaborate investigations, that the combined effect of these errors, in a single measurement of the base-line, is probably = $\cdot 00014 \pm \cdot 00117$ of a foot, where the first term expresses the probable magnitude of the errors which are always positive, arising from inaccurate alignment and leveling, and the second term expresses the probable mount of all the several errors which may be either positive or negative.

To this quantity it is necessary to add the probable errors which are due to the errors in the adopted values of the lengths of the compensation bars and microscopes.

For the *p.e* of the mean length of the bars, we may accept the value \pm 1.47 m.y, at page 71; and since the number of bar-lengths in the entire measurement was 849,

the p.e of the length by the bars
$$= \pm 1.47 \times 849$$

= $\pm .00374$ (of a foot);

also since the number of sets of microscopes was 141.5, we get, from section 7,

the *p.s* of the length measured
by the microscopes
$$= \pm \overset{my}{6.50} \times 141.5$$

 $= \pm .00276$ (of a foot)

(79)

WITH THE COMPENSATION APPARATUS.

Thus the entire probable error of a single measurement of the base is

$$= \cdot 00014 \pm \sqrt{(\cdot 00117)^2 + (\cdot 00374)^2 + (\cdot 00276)^3}$$

= \cdot 00014 \pm \cdot 00479 of a foot

which, when expressed in millionth-parts of the distance measured, is

= 0.02 h ± 0.5 h

11.

On the observed thermal inequalities of the components of compensation bar B, during the comparisons with the standard and during the measurement of the base-line.

The differences between the temperatures of the two components of compensation bar B, at the hours of 7 A.M. 10 A.M. 1 P.M. and 4 P.M. as obtained by interpolation from the thermometer readings near those times, during the entire course of the operations, are given in the following table, for each day of the comparisons with the standard and of the measurements; they are expressed as excesses, \pm , of the temperature of the iron component over that of the brass, or $t = T_i - T_b$, see equation (3), the *plus* sign showing that the iron bar was hottest, the *minus* sign that the brass bar was hottest.

FIRST COMPARISONS AND MEASUREMENT.			Тн	IRD COMPA	RISONS AND	MEASURE	MENT.		
Dor		Values	of t at		Dev	Values of t at			
Day.	7 л.м.	10 л.м.	1 р.м.	4 p.m.	Day.	7 л.м.	10 A.M.	1 р.м.	4 P.M.
Jan. 9 11 13 14 15 16 18 19 20 21 22 28 25 26	$ \begin{array}{r} $	$ \begin{array}{c} + & \cdot & \cdot & \cdot & \cdot \\ & \cdot & 35 & \cdot & 25 \\ & \cdot & 25 & \cdot & 36 \\ & \cdot & \cdot & 22 & \cdot & 26 \\ & \cdot & 24 & \cdot & 25 \\ & \cdot & 24 & \cdot & 25 \\ & \cdot & 25 & \cdot & 53 \\ & \cdot & 25 & \cdot & 53 \\ & \cdot & 52 & \cdot & 52 \\ \end{array} $	+ [•] 39 •40 •43 •44 •19 •24 •49 •30 •56 •48 •25 •23 •55 •60	$+ \frac{32}{05}$ $+ \frac{32}{05}$ $+ \frac{32}{07}$ $+ \frac{33}{07}$ $+ \frac{33}{35}$ $+ \frac{33}{35}$	Feb. 12 13 15 16 17 18 19 20 22 24 25	+ [•] 12 •21 •17 •16 •14 •11 •08 •11 •04 •04 •05	$\begin{array}{c} & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$		$ \begin{array}{c} - & \cdot & \cdot & \cdot \\ & \cdot & 23 \\ & \cdot & 52 \\ & \cdot & 41 \\ & \cdot & 38 \\ & \cdot & \cdot & \\ & \cdot & 32 \\ & \cdot & 25 \\ & \cdot & 08 \\ & \cdot & 70 \\ & \cdot & 78 \\ \end{array} $
Means	+ .02	+ •29	+ •40	+ •25	Means	+. •11	+ •17	- •27	- '41

Brass Component West.

(80)

MEASUREMENT OF BASE-LINES

SECOND COMPARISONS AND MEASUREMENT.			Four	ТН СОМРАН	LISONS AND	MEASUREM	I E NT.		
Day		Values	Values of t at		Dev		Values	of t at	
Day	7 A.M.	10 л.м.	1 р.м.	4 p.m.	Day.	7 а.м.	10 л.м.	1. р.м.	4 р.м.
Jan. 28 29 30 Feb. 1 2 8 4 5 6 8 9 10 11	$+ \frac{0}{10} + \frac{0}{10$	$ \begin{array}{c} - & \stackrel{\circ}{\cdot} 10 \\ & & 23 \\ & \cdot 38 \\ & \cdot 32 \\ & \cdot 30 \\ & \cdot 61 \\ & \cdot 53 \\ & \cdot 61 \\ & \cdot 53 \\ & \cdot 61 \\ & \cdot 63 \\ & \cdot 64 \\ & \cdot 46 \\ \end{array} $	$\begin{array}{c} & & & \\ & - & 25 \\ & - & 23 \\ & + & 15 \\ & + & 14 \\ & + & 13 \\ & + & 12 \\ & - & 12 \\ & + & 01 \\ & - & 10 \\ & - & 19 \\ & & - & 31 \\ & - & 29 \end{array}$	$ \begin{array}{c} + & \overset{\circ}{.43} \\ & \overset{\circ}{.40} \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & $	Feb. 26 27 Mar. 1 2 3 4 5 6 8 9 10	$+ \frac{0}{00} + \frac{0}{0} + $	$\begin{vmatrix} - & \cdot & 23 \\ - & \cdot & 16 \\ - & \cdot & 34 \\ - & \cdot & 34 \\ - & \cdot & 48 \\ - & - & \cdot & 54 \\ - & - & \cdot & 65 \\ - & - & \cdot & 657 \\ - & - & - & - & 657 \\ \end{vmatrix}$	$ \begin{array}{c} - & \cdot & \cdot & \cdot \\ + & \cdot & \cdot & 0 \\ + & \cdot & 0 & \cdot \\ + & \cdot & 0 & 2 \\ + & \cdot & 0 & 0 \\ + & \cdot & 0 & 0 \\ + & \cdot & 0 & 0 \\ + & \cdot & 0 & 2 \\ + & 0 & 2 $	$ \begin{array}{c} + & \stackrel{\circ}{\cdot} 29 \\ & \cdot 37 \\ & \cdot 82 \\ & \cdot 50 \\ & \cdot 81 \\ & \cdot \\ & \cdot 72 \\ & \cdot 50 \\ & \cdot \\ & \cdot 50 \\ & \cdot \\ & \cdot 54 \\ & \cdot 60 \\ \end{array} $
Means	.00	38	00	+ .25	Means	+ .03	37	+ .11	+ .22

Brass component	East.
-----------------	-------

First comparisons and measurement. At 7 A.M. the temperatures of the bars were nearly identical; by 10 A.M. that of the iron bar, which was to the east of the brass bar, and therefore most exposed to the influence of the morning sun, was in excess; at 1 P.M. it was still more in excess, and it continued greater throughout the day, but after that hour it was gradually being overtaken by the brass bar which was most influenced by the afternoon sun.

Second, third and fourth comparisons and measurement. At 10 A.M. the temperature of whichever of the two bars was towards the morning sun was greater than that of the other bar; at 1 P.M. the temperatures were either nearly equal or were reversed, and from that time the bar nearest the afternoon sun was acquiring a higher temperature than the other, until at 4 P.M., when the operations terminated, the difference of temperature was generally greater than at any other hour of the day.

The several groups of observations show that the influence of the thermal capacities of the brass and the iron components of this compensation bar—or rather the residual influence arising from any failure on the part of the makers to equalize the capacities of the components, (as indicated at pages 56 and 57,)—is wholly inappreciable, as compared with external influences, in producing the actual thermal inequalities of the bars. It is quite clear that whichever bar happened from it's position to have been most exposed to the sun's influence, acquired most heat,

(81)

WITH THE COMPENSATION APPARATUS.

irrespectively of the material of which it is composed. The actual difference of temperature at any hour of the day must necessarily be dependent, to some extent, on the relative amounts of heat which had been previously, as well as on what is then being, acquired or lost by the bars; thus in the first group of observations, the temperature of the west bar was throughout the entire day—the afternoon as well as the forenoon—invariably less than that of the east bar, though in the three other groups the east bar was generally hottest in the forenoon and the west bar in the afternoon.

In plate XXXIII, curves are given which show the excess of the mean of the compensation bars over the standard—during the comparisons before and after each measurement corrected for the compensation error of the bars, and the error in the adopted values of expansion for the standard and the iron component, but uncorrected for the observed differences of temperature of the two components. These curves corroborate the evidence of the thermometers, by showing that the fluctuations in the lengths of the compound bars depend on the relative positions with regard to external influences, rather than on the thermal capacities of the components.

During the progress of the operations, occasional notes were made of the state of the weather, the aspect of the sky, and the direction of the wind. They will be found in the detailed account of the operations. It is to be regretted that they are so few and unsystematic; a more exact record would probably have shown conclusively-what the existing record merely suggests-that the thermal inequalities and the fluctuations in the lengths of the compensation bars are very closely connected with the aspect of the sky, the amount of cloud and aqueous vapour tending either to obstruct or to diffuse the sun's heat, and the direction of the prevailing winds. In fact, if it may be assumed that the thermal capacities of the components have been equalized, as seems very probable, the thermal inequalities and the fluctuations in length afford more evidence of the relative amounts of cloud and sunshine, than is to be obtained from the records of the weather, and this more particularly during the forenoons and afternoons, when the bars would be most affected by alternations of cloud and sunshine, whereas at noon they would only be affected by changes of wind. Thus in the first comparisons and measurement, when the west bar remained throughout the day at a lower temperature than the east bar, the mornings. must have been clear and bright, and the afternoons cloudy; the reverse must have happened during the third comparisons and measurement, when both bars had nearly the same temperature for several hours in the morning, while in the afternoon the west bar was considerably the hottest. And if the curves in plate XXXIII are examined, and compared with those in plates I to XVI, it will be seen that there are occasional jumps from peaks to hollows in the forenoons and afternoons, in which all the six compound bars behave in a similar manner, and which, as they are certainly not due to accidental errors in the comparisons with the standard, indicate a sudden change from cloud to sunshine or vice versá. The temperature curves in plates XVII to XXXII show that these fluctuations are independent of the absolute temperature.

During the first and third measurements and comparisons, strong land winds, from the north, prevailed all day and more particularly about noon; but in the second and fourth, the mornings were generally calm, and sea breezes from the east and south set in about

(82)

MEASUREMENT OF BASE-LINES

noon. This seems to have caused inequalities of temperature in the opposite halves of the bars, as will be seen by the following table of the differences of temperature of the north and south thermometers.

	Onem	tion	Mean values of $N - S$ at					
Operation.			7 м.м.	10 а.м.	1 р.м.	4 P.M.		
First comparisons and measurement,			- °08	- °24	- °.31	- °22		
Second	"	>>	+ .02	+ .19	01	05		
Third	"		05	- •23	36	31		
Fourth	33	>>	+ •04	+ 12	+ •07	03		

It should be here observed that every precaution was taken to equalize the temperatures of the bar-components as much as possible; the bars were never placed in the open air nor exposed to the direct rays of the sun, though they were necessarily more or less exposed to winds, through the tent openings for admitting light; all the interstices between the components and the sides, ends, tops and bottoms of the boxes in which they are contained, were carefully stuffed with cotton; the operations were invariably carried on under tents, of which there was a sufficient supply to permit of the bars being moved forwards under shelter, in the course of the successive stages of the operations; the tents were made of three or four folds of cloth, white on the outside, blue in the middle, and yellow on the inside.

The wells for the bulbs of the thermometers in the compensation bar B, as well as in the standard bar, were kept full of oil, to facilitate the conduction of the temperature of the bars to the thermometers.

(83)

WITH THE COMPENSATION APPARATUS.

CHAPTER IX.

Determination of the probable error of a base-line, by comparing the sections of the line by triangulation.

1.

Preliminary observations.

When a base-line is divided into two or more sections and these sections are connected by triangulation, the ratio of any two sections, or of any combinations of sections, to each other, may be computed from the triangulation, and may then be compared with the corresponding ratio which is given by the linear measurements. The value of these comparisons, as a test on the accuracy of the linear measurements, will however depend on the probable errors of the triangulation, which must therefore be investigated in the first instance.

For this purpose it will be necessary to give a brief outline of the systems which are followed in this Survey in the measurement of the angles, in the calculations of the probable errors of the angles, and in the reduction of the triangulation in such a manner as to obtain the most probable results. Full details of these subjects will be given in a subsequent volume.

2.

The probable errors of the Principal Angles.

The angles of the triangulations which have been executed for the purpose of comparing the sections of the several base-lines *inter se* have invariably been measured with the best theodolites in the Department; these instruments have large azimuthal circles, some three feet and none less than two feet in diameter, which are read by five equidistant microscopes; as the observations at each station are proceeded with, the setting of the zero to the referring mark is systematically altered from time to time, in order to eliminate the graduation errors as far as is practicable; every angle is measured not less than twice in each position of the zero, of which there are never less than eight, and more frequently_ten; the entire number of measures of an angle is never less than twenty; and the number of equidistant graduations on the circle which are read during the observations of each signal, is never less than forty, and is more frequently fifty, *i.e.*, the arcs between the readings are 9° or 7° 12'.

The probable errors of the angles have been determined in three ways; from the evidence of the observations of each angle, from that of the errors of the triangles—or the differences between the sum of the observed angles and 180° + the spheroidal excess - and from the most probable values of the errors of the angles of the polygonal figures; and the results by the last method—which generally gives errors of largest magnitude—have been adopted. Thus the angles of the Indus, Karachi, Jogi Tila, Rahun, and N. W. Himalaya

(84)

MEASUREMENT OF BASE-LINES

chains of triangles—numbering altogether 1407 angles—have been shown to have an average probable error of $\pm 0^{\prime\prime}28$, large groups of angles, which have been measured under more favorable circumstances than the average, having probable errors less than $\pm 0^{\prime\prime}20$. The three angles of every principal triangle are invariably observed.

3.

Investigation of the probable errors of the trigonometrical ratios.

These probable errors are functions of the geometrical conditions of the triangulation and of the errors of the angles, the values of which are very easily determined when the triangulation is carried along one flank only of the base-line, for then the only geometrical condition to be satisfied is that the sum of the angles of each triangle shall be equal to 180° + the spheroidal excess. When the triangulation is carried along both flanks of the line, so as to form a polygonal figure, with one or more central points, the problem is more intricate, for additional geometrical conditions are introduced, viz., that the sum of the angles at the central stations must be exactly equal to 360°, and that no side of the triangulation can have two values, or in other words, that the length of any side, as determined by processes of calculation from any other side of the figure, must be identical.

The 'triangular', 'central', and 'side' equations of condition must be satisfied in such a manner that the probable errors of the corrected angles will be a minimum.

Let x_1, x_2, \ldots, x_t be the most probable values of the errors of t observed angles, connected by n geometrical equations of condition which are as follows

$a_1 x_1 + a_2 x_2 + .$	•	٠	•	•	$\cdot + a_t$	x_t	$= e_a$	J							•
$o_1 x_1 + o_2 x_2 + \cdot$	٠	•	٠	٠	· + º,	x_t	$= e_b$	ł	٠	•	٠	٠	٠	•	(20)
$n_1 x_1 + n_2 x_2 + .$	•	•	•	•	$\cdot + n_t$	x_t	$= e_{\bullet}$								

Let $u_1, u_2 \dots u_t$ be the reciprocals of the weights of the observed angles, then the quantity

must be made a minimum; and, by introducing indeterminate multipliers, λ_a , λ_i , ..., λ_n , whose values are obtained from the following equations

$$\begin{bmatrix} aa.u \\ \lambda_a + \begin{bmatrix} ab.u \\ \lambda_b + \dots + \begin{bmatrix} an.u \\ \lambda_n \end{bmatrix} \lambda_a = e_a \\ \begin{bmatrix} ab.u \\ \lambda_a + \begin{bmatrix} bb.u \\ \lambda_b + \dots + \begin{bmatrix} bn.u \\ \lambda_n \end{bmatrix} \lambda_a = e_b \\ \vdots \\ \vdots \\ an.a \end{bmatrix} \lambda_a + \begin{bmatrix} bn.u \\ \lambda_b + \dots + \begin{bmatrix} nn.u \\ \lambda_n \end{bmatrix} \lambda_a = e_a \end{bmatrix}$$
(22)

(85)

WITH THE COMPENSATION APPARATUS.

the values of x_1, x_2, \ldots, x_t will be expressed by the following equations

corresponding corrections being applied to the observed angles of the triangulation, all the requisite conditions will be satisfied, and the ratios of any of the sections of the base-line, or of any combinations of sections, to each other, may be determined.

We have then to find the probable errors of these functions of the corrected angles. Proceeding to actual errors and putting $\overline{x_1}, \overline{x_2} \dots \overline{x_t}$ for the actual errors of the observed angles, then the actual error of F, any function of the corrected angles, may be expressed by the equation

a.e of
$$F = F\left\{f_1(\bar{x}_1 - x_1) + f_2(\bar{x}_2 - x_2) + \ldots + f_t(\bar{x}_t - x_t)\right\}$$
. (24)

in which f_1, f_2, \ldots, f_t are coefficients depending on the function under investigation.

The probable error of
$$F$$
 may then be obtained from the following equation

$$\frac{\rho^{3}}{F^{2}} \times e.m.s.^{2} \text{ of } F = [f^{2}u] - \{[fua]^{2}A_{a} + 2[fua] [fub]A_{b} + \dots + 2[fua][fun]A_{n}\} \\
- \{[fub]^{2}B_{b} + \dots + 2[fub][fun]B_{n}\} \\
- \dots \\
- [fun]^{2}N_{n}$$
(25)

in which the factors $A_a, A_b, \ldots, B_b, B_c \ldots, N_n$, are the coefficients of e_a, e_b, \ldots, e_n (the right hand terms of the geometrical equations of condition) in the following equations, which are obtained by solving equations (22)

In equation (25), ρ is a factor for converting the weights of the observed angles into the probable errors of those angles, which has to be specially determined; it is a constant for all angles measured with the same instrument, with the same system of observation and under similar circumstances, but a variable for observations with different instruments, or with the same instrument under different circumstances; for the triangulation of any one base-line it

MEASUREMENT OF BASE-LINES

may be taken as a constant, and if we put the *p.e* of an observed angle $= \theta$, in terms of radius, we shall have

When the triangulation is carried along one flank only, there will be no other geometrical equations of condition than the triangular, the coefficients A_a , A_b ..., B_b , B_c ... in equation (25) will vanish, and

4.

The annexed diagram denotes a baseline divided into sections, the ratios of which have been determined by triangulation on \blacktriangle both flanks of the base. When the triangulation has been made consistent by applying the most probable

Digitized by Google

corrections to the observed angles, as indicated in the preceding section, it is immaterial whether the ratios are computed through the triangles on one flank or on the other, as identical results will be obtained in either case. Following the lower flank of the diagram, the angles 3, 7, 13, 19, opposite the sections of the base, and the angles 1, 4, 6, 8, 9, ... opposite the sides of continuation of the triangles, will be required.

Putting $(\bar{x} - x) = x$, (see equation 24) and c for the cotangent of any angle and $p = c_1 x_1 - c_3 x_3 + c_4 x_4 - c_6 x_6 + c_7 x_7 - c_9 x_9$ $q = -c_7 x_7 + c_8 x_8 + c_{11} x_{11} - c_{12} x_{12} + c_{13} x_{13} - c_{15} x_{15}$ $r = -c_{13} x_{13} + c_{14} x_{14} + c_{17} x_{17} - c_{18} x_{18} + c_{19} x_{19} - c_{21} x_{21}$

* The brackets in this and the preceding equations denote summations, thus

$$[f^2.\mathbf{w}] = f_1^2.\mathbf{w}_1 + f_2^2.\mathbf{w}_2 + \ldots + f_\ell^2.\mathbf{w}_\ell$$

(87)

WITH THE COMPENSATION APPARATUS.

then the *a.e* of
$$\frac{BC}{AB} = p \cdot \frac{BC}{AB}$$

a.e of $\frac{CD}{AB} = (p+q) \frac{CD}{AB}$
a.e of $\frac{DE}{AB} = (p+q+r) \frac{DE}{AB}$
a.e of $\frac{AC}{AB} = a.e$ of $\frac{BC}{AB}$
a.e of $\frac{AD^*}{AB} = (2p+q) \frac{AD}{AB}$
a.e of $\frac{AE}{AB} = (3p+2q+r) \frac{AE}{AB}$

substituting for p, q and r their values as above given, the co-efficients of $x_1, x_2, x_3 \dots$ will, in each instance, correspond to the co-efficients f_1, f_2, f_3 . . . in equations (24) and (25).

Thus the probable errors of the ratios under consideration, and in like manner those of any other functions of the angles of the triangulation, may be determined.

In order to compare the probable errors of the several ratios, we must assume that the weights of the angles are equal and that the triangles are equilateral. On these suppositions, the following table gives the co-efficients of θ in the expressions for the probable error of the ratios, for base-lines divided into 2, 3, or 4 sections as the case may be, and it is drawn up so as to be applicable also to cases in which the triangulation does not form polygonal figures, as in the diagram at page 86, but is restricted to a single flank of the base. For when the weights of the angles are equal, equation (25) may be written thus, for any polygonal figure, whether symmetrical or not,

$$p.e \text{ of } F = \theta \left\{ \left[f^2 \right] - \Sigma \right\}^{\frac{1}{2}}$$

and when the triangulation is on one flank only Σ vanishes, and then

p.e of
$$F = \theta \{ [f^2] \}^{\frac{1}{2}}$$

* Supposing a base to be divided into three sections, as ABCD, the a.e of the ratio of the entire length to the central section will be as follows,

s.e of
$$\frac{AD}{BC} = (-p + q) \frac{AD}{BC}$$

MEASUREMENT OF BASE-LINES

			,				
RATIOS	[<i>f</i> ²]	£	Co-efficients of θ for triangulation on				
			one flank only.	both flanks.			
Base of two Sections A B C		s.					
$\frac{BC}{AB}$ and $\frac{AC}{AB}$	2	I	1'41				
Base of three Sections A B C D							
BC AB	2	<u>38</u> 35	1'41	0.96			
CD ĀB	<u>10</u> <u>3</u>	<u>38</u> 21	1.83	1.53			
$\frac{AD^*}{AB}$	26 3	<u>494</u> 105	2.94	1.99			
Base of four Sections A B C D E				,			
$\frac{BC}{AB}$	2,	<u>37</u> 34	1.41	0.92			
$\frac{CD}{\overline{AB}}$	10 3	<u>98</u> 51	1.83	1.19			
DE ĀB	$\frac{14}{3}$	<u>5</u> 2	2.16	1.42			
$\frac{AE}{AB}$. <u>68</u> <u>3</u>	210 17	4.76	3.31			

TABLE of the co-efficients of θ in the expressions for the probable errors of certain ratios, when the weights of the angles are equal and the triangles are equilateral.

• When the length of a base-line is determined partly by measurement and partly by triangulation, the probable error of the final result is much less, cateris parious, if a central section is measured as was done at the Cape Comorin base, than if either of end sections are measured. For with the same assumptions as above, the terms in the expression for

the p. e of
$$\frac{\text{AD}}{\text{BC}}$$
 are $[f^2] = \frac{14}{3}$ and $\Sigma = \frac{38}{15}$

whence the co-efficients of θ are respectively 2'16 and 1'46.

(89)

WITH THE COMPENSATION APPARATUS.

5.

The probable errors of the ratios of the linear measurements.

If we assume that the probable errors of the measurements are proportional to the lengths measured, and if we put l for the ratio of the probable error of any measurement to the length measured, then

the p.e of
$$\frac{BC}{AB} = \frac{BC}{AB} l \sqrt{2}$$
, $l \sqrt{2}$ when the lengths are equal;

the probable error of the ratio of any two sections may be similarly expressed.

For combinations of sections we have

p.e of
$$\frac{AD}{AB} = l \sqrt{\frac{BD^2 + BC^2 + CD^2}{AB^2}}$$
, $= l \sqrt{6}$ when the lengths are equal.
p.e of $\frac{AE}{AB} = l \sqrt{\frac{BE^2 + BC^2 + CD^2 + DE^2}{AB^2}}$, $= l \sqrt{12}$, ,

6.

Determination of the average probable error of the differences between the ratios given by the triangulation and those by the linear measurements, and thence the average probable error of the linear measurements.

If we take any one of the ratios of which the probable errors have been investigated in the two last sections, as BC: AB, and compare the trigonometrical value with that obtained from the base-line measurements, and putting

T =the value of $\frac{BC}{AB}$ by the triangulation

", ", linear measurement,

find the value of

 $\mathbf{D} = \mathbf{T} - \mathbf{M}$

M =

and if, from the evidence of several base-lines, we obtain n independent values of D, which are of equal weight—the probable errors of the triangulation being the same in every instance, and likewise those of the linear measurements,—then we may find the probable error of D from the formula

Now it has been shown that when the probable errors of the angles are equal, and the triangles are equilateral, and have been carried along one flank only of the base-line, the probable

(90)

MEASUREMENT OF BASE-LINES

errors of the triangulation and of the measurement are respectively as follows,

2, the ratio of the probable error of any linear measurement to the length measured, would, in this instance, be obtained from the equation

$$l^2 = \frac{1}{2} p \cdot e^2 \mathbf{D} - \theta^2.$$

But it is evident that, when the probable errors of the angular and likewise of the linear measurements are constant, the modulus of error of the value of D, for the ratio of the first and third section, must be greater than that for the ratio of the first and second section which has just been considered; and generally that for the ratios of distant sections or of combinations of sections, the modulus of error of D must be greater than for the ratios of contiguous or of single sections. Strictly speaking therefore the values of D from which a *p.e* D is determined should be obtained for each of the ratios *per se*. The seven base-lines of this survey at which these comparisons of ratios have been made, do not however afford a sufficient number of comparisons to permit of a satisfactory determination of the *p.e* D for each ratio. Moreover though the probable errors of the angles, and likewise of the linear measurements, may be assumed to be much the same at all the base-lines, the geometrical conditions have not been indentical, the lengths of the sections, though generally nearly equal, occasionally varying in the proportion of 2 to 3, with a corresponding deviation from the equilateral form of triangles. Thus an exact determination of the *p.e* D is not possible, but a very fair approximation may be arrived at by treating the data which are available as if all the triangles had been equilateral.

The whole of the values of D, which have been obtained from the comparisons of the ratios of single sections at the seven base-lines, are given in the following table:---

											R A т	IOS	•				
Base-Lines.				BC AB			$\frac{CD}{\overline{AB}}$			$\frac{\mathbf{DE}}{\mathbf{AB}}$		CD BC		DE BC		$\frac{DE}{CD}$	
Triangulation Dehra Doon	n on	one flan	k.	_	3.22 h		_	4.02	μ				0.31	μ			
Beder Sonakhoda	••	••	••	+	6·31,	,	+	1.18	, ,, ,,	+	1.02 µ	+	3.99 0.07	,, ,, ,,	— 0'13 µ		— 0·18 μ
Chuch Karachi	••	••	••	_	3·36, 2·65,	,	_	3 [.] 65 5 [.] 34))))	_	2·22 ,, 6·64 ,,	-	0.67 2.78	" "	ر, o [.] 88 بر 4 [.] 04		1.79 " 1.16 "
<i>Triangulatio</i> Vizagapatam Bangalore	n on b 	both flan	ks. 	_	3·26, 2·26,	,	+	4' 95	,, ,,			+	7°75 9°53	,, ,,			

(91)

WITH THE COMPENSATION APPARATUS.

Combining the whole of these values as if they were independent and had a common modulus of error,

p.e D =
$$\pm .67 \mu \sqrt{\frac{529.39}{3^{\circ}}} = \pm 2.81 \mu$$
.

The values of the *p.e* M may be taken as the same for the whole of the above ratios; not so the values of the *p.e* T, but of them a fair average value may be obtained by combining the respective values for the several ratios, which have been given in section 4^* , with weights proportional to the number of determinations of D for that ratio in the preceding table; thus

$$p.e T = \frac{\theta}{3^{\circ}} \left\{ 1_{3} \times 1.41 + 8 \times 1.83 + 3 \times 2.16 + 4 \times 0.96 + 2 \times 1.23 \right\} = 1.52 \theta,$$

and since the p.e M may be taken = $l\sqrt{2}$, by substituting in equation (30) we get

The probable error of the angles measured with the great theodolites of this survey is $\pm 0'' \cdot 28$ on an average and is frequently not more than $\pm 0'' \cdot 20$, (see section 2 of this Chapter); with the larger value, we have $\theta = \theta''$. sin $1'' = 4.85 \mu \theta'' = \pm 1.36 \mu$,

$$l = \pm 1.35 \mu$$

with the smaller value, we have $\theta = \pm 0.97 \mu$

and since θ cannot vanish the limits of l will be $\pm 1.99 \mu$

It may be here noticed that equation (31) corroborates the values of θ'' which have just been adopted; for since *l* cannot vanish the limits of θ'' will be $\pm 0'' \cdot 38$; and as in the triangulation of the seven base-lines the number of measured angles is very considerable, being 2×15 $+ 3 \times 21 + 2 \times 30 = 153$, and the modulus of error is much the same for each of the angles, as they were all measured with the best of the great 3 feet and 2 feet theodolites, this limiting value of θ'' is worthy of every confidence.

٠	The p.e T for the	ratios $\frac{CD}{BC}$ and $\frac{D}{C}$	$\stackrel{\mathbf{E}}{\mathbf{D}}$ may be here ta	ken as - the p	T for the rat	$\frac{BC}{AB}$
and	33	ratio $\frac{DE}{BC}$	22		**	

(92)

MEASUREMENT OF BASE-LINES

CHAPTER X.

General conclusions on the probable errors of base-lines measured with the compensation apparatus.

1.

The Dehra Doon base-line.

This base was measured twice over by Colonel Everest, and the comparative results of the two measurements, for each of the several sections, are given at page II_{-44} .

The comparisons of the compensation bars with the standard before the measurements, were made in a house, instead of being made in tents under circumstances precisely similar to those of the measurements, as was done at the subsequent comparisons at this base-line, and afterwards at all the others bases. The necessity for this precaution has already been abundantly shown; and, from what has been stated in section 1 of Chapter VIII, it is evident that the precaution is least necessary for a base-line of which the direction is meridional, but most necessary for one of which the direction is nearly east and west, as this base the azimuth of which, at it's eastern extremity, is 113° 44'.

On comparing the results of the two measurements of each of the six sections, it will be seen that, in every instance, the length by the first exceeds that by the second measurement, the excess ranging from $3.4 \ \mu$ to $8.0 \ \mu$, and averaging $6.3 \ \mu$, μ being as formerly the millionth part of the length measured. The value of the probable error from this base-line might be taken as

p.e of a single measurement =
$$\pm \frac{.67}{\sqrt{2}} 6.3 \ \mu = \pm 3 \ \mu$$

but under existing circumstances this value is probably too large, and it cannot be considered to be as reliable as those which have been deduced in the two last chapters.

2.

Recapitulation of the results of Chapters VIII and IX; conclusions regarding the probable errors of the measurements with the compensation apparatus, excluding the errors of the standards.

In Chapter VIII the probable error of a single measurement of the Cape Comorin base-line, has been determined from the evidence of the differences of the successive measurements, *first*, with such recognition of the thermal inequalities of the components and the compensation errors of the compound bars as is afforded by the observations of the temperatures

(93)

WITH THE COMPENSATION APPARATUS.

and the determination of the compensation error of the representative bar B, and, secondly, on the usual assumption that the mean lengths of the bars were the same during the measurements as during the comparisons; a *third* determination was made from an investigation of the probable errors of each of the several operations of the measurement. In Chapter IX a *fourth* determination has been made from the differences between the ratios of the sections as given by the triangulation and by the linear measurements, for the seven base-lines at which verificatory triangulation has been executed.

From these investigations the probable error of a single measurement of a base-line by the compensation apparatus, *excluding* all constant errors, is as follows:—

from the first, i	l =	say	± 0.6 μ	see page	76
" second, a	l =	,,	1°5 µ	,,	78
" third, i	l = l	,,	0.5 #	"	79
" fourth,	<i>l</i> =	,,	1°5 µ	,,	91

In all but the third investigation the results have been derived from comparisons of values which would be equally affected by any constant errors in the determinations of the units, temperatures and co-efficients of expansion of the standards of length; in the third only could the influence of such errors have been recognized, but there it was purposely disregarded in order that the results might be comparable with those of the other investigations. Such errors will be considered in the next section, but they may be disregarded for the present, as they are common to every apparatus for the measurement of base-lines; and we may conclude, from the above figures, that the average probable error of any single measurement of length by the compensation apparatus—expressed in millionth parts of the length measured—does not exceed

± 1.5

At page 270 of his Comparisons of Standards of Length, Captain Clarke shows that the probable errors of the relations of five of the 10-feet standards of the Ordnance and the Indian Survey to the Standard Yard Y_{55} range from \pm 0.98 m.y to \pm 1.35 m.y, or from 0.3 μ to 0.4 µ (in parts of their own length). Now the relations of these standards were determined with the utmost possible nicety and exactitude, in a comparing room, specially constructed for the purpose, of which the temperature rarely changed by more than 1° F. in the twenty four hours; and the comparisons were made at a temperature so nearly coinciding with the normal temperature of 62°, that the results are quite unaffected by any errors in the adopted values of the expansions of either of the standards. The utmost accuracy humanly possible appears to have been well nigh reached. But in the operations with the compensation apparatus the conditions were by no means so favorable for exactitude; the measurements were carried on under considerable vicissitudes of climate, under more or less exposure to the open air, and with no better shelter from a tropical sun than is afforded by tents; the fact therefore that the probable errors of the results may be taken as only about five times those of Captain Clarke's determinations of the lengths of the standards, is a very satisfactory evidence of the accuracy of the compensation apparatus as an instrument of measurement.

(94)

MEASURBMENT OF BASE-LINES

3.

Influence of the probable errors of unit, temperature and co-efficient of expansion, of the standards of measure, on the lengths of the base-lines.

I. Influence of errors of unit.

First, for the 10-feet standard A. The mean of the two determinations of the relation of this standard to the standard I_S , which are given in Section 4 of Chapter III, has been adopted as final; the probable error of the result may be taken as

$$\pm .67 \frac{3.02}{2} = \pm 1.0 (m.y.)$$

which is much the same as the probable error of Captain Clarke's determination of the relation of I_s to the standard yard Y_{55} , (Comparisons of Standards of Length, page 270.) Thus the relation of **A** to the yard has a probable error $= \pm 1.4 \text{ m.y.}$, and therefore

the p.e of unit of
$$A = \pm 0.42 \mu$$

Secondly, for the 6-inch scales. The average probable error of the relation of any microscope scale to $\frac{1}{20}$ A is = $\pm .58$ m.y.*; thus the probable error of unit in the length measured by a complete set of bars and microscopes is $\pm .58 \sqrt{5.5}$ (= 1.36) m.y; and as this length is 63 feet,

the p.e of unit =
$$\pm .06 \mu$$

II. Influence of errors of temperature.

First, the errors arising from the inaccuracies of the thermometers. All the thermometers which have been used at the several base-lines and during the comparisons of standards are described in Appendix 8, on reference to which it will be seen that the thermometers which were originally sent out to India with the base-line apparatus have never been calibrated, and that for a period of about 25 years after their construction, in or about the year 1830, nothing is known regarding their index errors. They were not graduated on their stems, but were fastened to metal scales, their attachments to which were not rigid but permitted of a play

• The relations of the 6-inch scales to the central 6-inch space [d.l] of the standard foot $|\mathbf{F}|$ are given at page 19 of the Appendices; the *p.e* of $([d.l] - \mathbf{R})$ being of the same magnitude as the average of all the others may be used as a fair indication of the *p.e* of these relations: then since

> $\begin{bmatrix} d.l \end{bmatrix} - \mathbf{R} = -\frac{8}{20} \frac{m.y}{44} \pm \frac{m.y}{56}$ $\begin{bmatrix} d.l \end{bmatrix} - \frac{1}{6} \quad \bigvee_{10} = -0.01 \pm \frac{13}{13} \text{ Captain Clarke's Comparisons of Standards page 249}$ $-\frac{10}{8} \bigvee_{10} = -\frac{69.38 \pm .99}{18} \text{ n} \text{ n} \text{ n} 270$ $\mathbf{I}_{\mathcal{B}} - \mathbf{A} = -\frac{8}{20} \pm 1.0$ Hence $\mathbf{R} - \frac{1}{20} \mathbf{A} = 9.1 \pm .58$

(95)

WITH THE COMPENSATION APPARATUS.

equivalent to about $0^{\circ}2$. There are sufficient reasons for concluding that the thermometers a and β , which were employed on standard **A** at the first eight base-lines, must have had, at the commencement of the Karachi base-line in the year 1854, a mean index and calibration error of about $+ 0^{\circ}51$ F which they were found to have in 1867, on being tested in melting ice and compared with the modern standard thermometers which were obtained in that year. Possibly the zero points of all the thermometers were correct originally, and were subsequently disturbed by the contraction of the bulb to which all newly made thermometers are liable; but the play in the attachments is fatal to any exact conclusions on this subject.

It will be assumed that the combined index and calibration errors of all the working thermometers give rise to an average probable error of temperature = $\pm 0^{\circ}$ 3 at the first six baselines, and = $\pm 0^{\circ}$ 1 at the Karachi and Vizagapatam base-lines, to which a correction for index error has been applied. Now twenty parts in twenty-one of every base are expressed directly in terms of the iron standard **A**, of which the co-efficient of expansion for 1° F is 6.5 μ ; but the remainder is expressed primarily in terms of the brass scales, of which the expansion has been taken as 9.9 μ ; thus an error of 1° of temperature is equivalent to an error of 6.7 μ in length.

Hence the *p.e* arising from the assumed inaccuracies of the thermometers is,

 $= \pm 2.0 \mu$ for the first six base-lines

and $= \pm 0.7 \mu$ for Karachi and Vizagapatam.

Carefully calibrated thermometers, of which the index errors have been determined from time to time, were employed at the Bangalore and the Cape Comorin base-lines, which should therefore have no errors of this nature.

Secondly, errors arising from differences between the actual temperatures of the standards and those indicated by the thermometers. When the temperature of a metal bar is rapidly rising or falling, the temperatures indicated by thermometers whose bulbs are in wells in the bar and are protected from any other thermal influence than that of the bar, have a tendency to lag behind the temperature of the bar, even when the wells are filled with oil to facilitate the conduction of heat to or from the bulbs of the thermometers. At pages (7) and (8) of this volume instances are given in which the lagging amounted to about $0^{\circ}3$ F during changes of temperature which were not nearly so rapid as those that are daily experienced in the measurements of base-lines. As a rule the temperature of standard **A** is rising for about four-fifths of the daily working hours, which are generally from 7 A.M. to 4 P.M.; at first it usually falls for about half an hour, then rises for several hours, to fall again only a little before the close of the day's work, following the diurnal variations of temperature by an interval of about two hours.

There are no means of ascertaining what the average actual amount of thermometric lagging has been at any of the base-lines which have been measured hitherto. An investigation of this subject would have been very laborious and difficult, necessitating the employment of an apparatus for artificially sustaining the temperature of one bar at a constant point, while the bar was being compared with another bar of which the temperature was following the ordinary daily rise and nightly fall.

Supposing the resultant average amount of lagging during the operations of the baselines to be $- \circ^{\circ} 3$ F, for the thermometers attached to standard A—which for the climate of

(96)

MEASUREMENT OF BASE-LINES

India appears to be a very moderate assumption—and assuming that the errors of this nature in determining the temperatures of the scales cancel each other, because the bulbs of the thermometers are not inserted into these small bars, the error in the length of a base from this cause would be $= -0.3 \times \frac{20}{21} \times 6.5 \ \mu = -2 \ \mu \text{ nearly.}$

III. Influence of the errors of the co-efficients of expansion of the standards.

For the reasons stated at pages (12) and (13) it may be assumed that the probable errors of the values of the factors of expansion which have been finally adopted in the reductions of the base-lines are = 1 per cent of the magnitude of the respective factors. It has just been shown that a change of 1° F in the temperatures of the iron and the brass standards is equivalent to an alteration of 6.7μ in any length measured by the compensation apparatus; thus the probable error arising from the adopted values of the factors of expansion would be = $\pm 0.067 \mu$ for 1° F. Putting T for the mean temperature of standard A during the measurement of any base-line, and assuming that the mean temperatures of the brass scales are much the same,

the p.e from errors of co-efficients of expansion = $\pm .067 (T - 62^{\circ}) \mu$

which for the first nine base-lines is on an average = $\pm 0.5 \mu$

but for the Cape Comorin base is = \pm 1.4 μ

4.

Final conclusions. Equal weights given to all the base-lines.

We have seen that, excluding the constant errors of the standards of measure, the probable error of any length measured by the compensation apparatus may be taken as $\pm 1.5 \mu$, μ being the millionth part of the length measured. We have also seen that the constant and inconstant errors of the standards may be generally taken as of the following magnitudes,

> error of unit, $\pm 0.4 \mu$ error of temperature, $-2 \mu \pm 2 \mu$ error of factor of expansion, $\pm 0.5 \mu$ whence the combined error is, $-2 \mu \pm 2.1 \mu$

Thus the total error arising from the compensation apparatus and the standards of length may be taken as

$$= -2 \mu \pm 2.6 \mu$$

for a single measurement of length; and it is evident that as the errors connected with the standards are larger than those arising from the compensation apparatus, very little gain in accuracy is obtained when the measurements with the compensation apparatus are repeated.

It should be here reiterated that the negative error, -2μ , in the above expressions of error, is an arbitrary estimate of the probable influence of the difference between the temperatures

WITH THE COMPENSATION APPARATUS.

of the 10-foot standard and those indicated by the thermometers attached to the standard during the course of the daily working hours, which results from the phenomenon of lagging. Believing that more error may arise from this circumstance than from the combined influence of every other cause of error, more particularly in India—where the diurnal vicissitudes of climate during certain seasons of the year are very slight, and the weather repeats itself, days of bright and almost unbroken sunshine following each other sometimes for weeks together—I have thought it better to introduce an arbitrary estimate of the possible effect of the error than to omit it altogether. But it should be omitted in making comparisons of the probable errors of the base-lines of this survey with those of other surveys in which it may have been disregarded.

And since this error is almost beyond human control, the probable error for which the compensation apparatus, the standards of length and the persons using them are responsible, may be taken as $= \pm 2.6$ millionth parts of the length measured; a quantity which must be considered small when expressed in terms of any terrestrial magnitude, being equivalent to only 108 feet in the length of the polar axis of the earth. But the final results of the operations, the lengths of the arcs, the coordinates of the fixed points &c., are dependent both on the linear and on the angular measurements, and no advantages would be gained if the accuracy of one class of operations were materially greater than that of the other; the linear errors of any geodetic operation are thus not so much a matter of interest as is their relation to the angular errors.

Now in order to find this relation we must compare the probable errors of the ratios by the linear measurements with those by the trigonometrical operations. From what has been already stated above and at page (89) it appears that

the p.e of the ratio of two base-lines of equal length is $= \pm 2.6 \sqrt{2} \mu = \pm 3.7 \mu$.

The probable error of the ratio of any side in an equilateral triangle to the base $is = \theta \sqrt{\frac{2}{3}}$, when that of each of the three angles is θ . In the best operations of this survey $\theta'' = \pm o'' \cdot 2$, and $\theta = \pm 0.97 \mu$; thus in the best equilateral triangles or those which are measured with the most accurate and powerful instruments under the most favorable circumstances,

the *p.e* of the ratio of the second side to the first may be taken as $\pm 0.8 \mu$,

which is about one fifth that of the linear measurements. But the distances between the baselines of this survey range from 275 to 750 miles, and the probable errors of the four chains of triangles directly connecting the base-lines at Dehra Doon, Sironj, Karachi and Attok, the average length of which is 575 miles, have been recently determined very approximately, and show that

the p.e of the ratio of the last side to the first averages \pm 10 μ ,

which is not quite three times that of the linear measurements. Thus the relations of the probable errors of the linear and the angular measurements may be considered to be sufficiently harmonious and consistent.

It only remains to add that after a careful consideration of all the available data for determining the relative weights of the several base-lines, I have arrived at the conclusion that

(98)

MEASUREMENT OF BASE-LINES.

there is no sufficient evidence for assigning different weights to different bases which would be generally accepted as conclusive. In the bases which were last measured the errors of the thermometers were unquestionably much less than was previously the case, though perhaps at the first one of all they may have been small; on the other hand the differences between the trigonometrical and the linear ratios at Vizagapatam and Bangalore are larger than those which occurred previously, (see the table in page 90). At Calcutta the compesation bars were compared with the standard in a house, and not in tents on the base-line; but fortunately the direction of the line was meridional. At Dehra Doon the first set of comparisons was made in a house, but the others were made in tents, and the line was twice measured. The Cape Comorin base was measured four times, but it's mean temperature was 7° higher than that of any other base, and therefore it would be most affected by an error in the co-efficient of expansion of the standard. It is very clear however, from the investigations which have been gone into, that the actual errors of the results must, in all cases, be very minute, and therefore there can be no valid objection to assuming that the respective results are, to all intents and purposes, of equal value. This assumption will therefore be made, and it will much simplify the general reduction of the triangulation which is now being carried on.

5.

Progressive and accidental changes in the lengths of the compensation bars.

The determinations of the relations of the compensation bars to the standard, at the several comparisons at each base-line, are given in the following table, which shows the excess of the actual length of the mean of the bars over the standard, or L-A, and that of each of the bars over the mean, or A-L, B-L, . . . The quantities L-A are primarily expressed by two terms, the first of which is numerical, and gives the excess as computed with the old value of the factor of expansion of the standard, and corresponds with the X" of equation (15), page (69); the second contains a symbol, dE'_a , for the error of that factor and a numerical coefficient = $-(T_a - 62^\circ)$ or the sign-changed excess of the mean actual temperature of the standard over the normal temperature of 62° ; now dE'_a may be taken as = 10 m.y = 03 \mu, on an average, for the mean actual temperatures of the whole of the base-lines,* and this value has been used to obtain the concluded actual relations of the mean of the bars to the standard.

Approximate values of the normal relations of the mean of the bars to the standard are also given, by allowing for the effect of the errors of compensation, and assuming that the temperatures of the bars were the same as those of the standard. For an exact determination of the normal length of the bars it is necessary that the respective temperatures of the brass and the iron components should be known, but no data are available for ascertaining what these temperatures were at any but the last base-line.

If in equation (17) page (69) we put t = 0, and assume $T_b = T_a$, then $X = X'' - T_a (\eta + dE_a')$ approximately;

but $\eta = 10$ m.y very nearly, thus $\eta + dE'_a = 0.6\mu$ in parts of the bars or the standard;

^{*} See the table of thermal expansions of standard A at various temperatures, page 19.

WITH THE COMPENSATION APPABATUS.

(

the approximate normal lengths have therefore been determined, in each instance, by multiplying the co-efficients of dE'_a in the table by 0.6 μ , and applying the quantity thus found to the preliminary numerical relation of the mean of the compensation bars to the standard.

Baseline			Values	of L-A		Relations of each bar to mean of all							
year of	and measurement		Actual	x	Approx normal	A-L	B-L	C-L	D-L	EL	H-L		
1831-32	Caloutta	33°97 33°5	ı — 6.8 d 1.5	Έ' _a =31 [.] 9 μ 33 [.] 9	29 ^{.8} p. 32 ^{.6}	+ 0°9μ 2°3	— 5·4 µ 5·6	+ 0.3 p 0.4	+ 65# 79	+ 5°бр 4°3	- 7°9# 9°3		
1 8 34-35	Dehra Doon	42'0 37' 2 42'8	4.0 + 2.3 -10.2	40 [.] 6 37 [.] 9 3 9 [.] 6	39°2 38°5 36°5	- 1,6 0,0 0,1	8·5 8·6 7:2	1.1 - 0.8 0.3	13.6 13.4 14.3	- 2'9 2'9 3'0	3.Q 0,0 3.Z		
18 37-3 8	Sironj	45'2 41'2	6 [.] 0 + 2 [.] 2	43 [.] 4 41 [.] 9	41 ^{.6} 42 ^{.5}	+ 2·3 3·3	9.5 10.3	0'2 0'1	17°5 17'9	5°1 4°3	5°1 6'5		
1841	Bider	56°1 53'7	-18.7 10.3	50.2 20.2	44 [.] 9 47 [.] 5	- 0.3 - 0.3	6·5 7:5	+ 3°3 2°9	10'1 8·7	1.8 1.0	5°2 3°5		
1847-48	Sonakhoda	59°9 52°0 50°7	8·1 0.2 4.0	57.5 51.8 51.0	55.0 51.0 51.2	- 1.4 0.2 1.0	7'9 9'7 10'1	2·4 1·8 2·3	10.2 10.3 10.3	0,1 0,0 1,1	3.0 1.3 1.2		
1853-54	Chuch	53°5 55°1 56°4	10.1 8.5 11.2	57.0 57.6 59.4	60°4 60°0 62°5	1.4 0.1 + 0.1	11.Q 10.8 10.2	2.8 2.0 1.0	12°5 13°1 12°4	2°4 2°3 2°7	0°0 1°2 0'7		
1854-55	Karachi	62.2 58.5 56.8	- 8.4 3.9 6.3	59 [°] 7 57 [°] 3 54 [°] 9	57°2 56°2 53°0	— 0°б 2°4 4°9	10°1 9°5 9'7	3°3 2°6 5°0	12.8 12.1 12.4	1'9 1'4 0'4	3°5 1°5 2°3		
1862-63	Vizagapatam	63.9 6 <u>3</u> .6 63.6	8·8 13·7 14·7	5 ^{8·5} 59 ^{·5} 59 ^{·5}	55 ^{.8} 55 ^{.4} 55 ^{.1}	4.7 3.6 5.3	10°0 9'8 9'7	3.0 4.4 3.0	10.2 9.0 10.2	+ 0'7 1'4 1'3	+ 0'5 - 1'4 + 0'3		
1868	Bangalore	62°0 62°6 69°2	6'2 9'5 14'5	60°1 59`7 64*8	58·3 56·9 60·5	11°0 9'7 10'9	15.4 16.3 17.0	4°0 4°6 4°8	23°0 21°0 22°8	1°1 — 0'4 + 0'5	- 1.Q + 0.3 - 0.3		
1869	Cape Comorin	79°0 72°2 72°5 75°0	18·8 21·5 21·7 23·4	73:4 65:7 66:0 68:0	67.7 59.3 59.5 61.0	16.7 15.5 16.8 15.9	10.0 10.4 10.4 10.0	5.8 5.1 4.9 5.0	23.1 23.0 23.0 23.1	1.6' 0.3 1.4 1.4	2'3 1'1 1'4 1'6		

The table shows that the lengths of the compensation bars were increasing progressively, from the time these bars were first used in India, in 1831-32, up to the measurement of the Chuch Base-line, in 1853-54; since then the lengths have fluctuated, sometimes increasing, sometimes decreasing. The table also shows that there have been other changes in length,

Digitized by Google

(100)

MEASUREMENT OF BASE-LINES

which may be termed accidental to distinguish them from the progressive alterations. It is believed that up to the year 1867, nothing was purposely done to the bars which could have altered their lengths, excepting that they were carried distances of many hundred miles between the respective base-lines, and always by land; but they were always transported on men's shoulders, two men for each bar, and at every halt they were rested on pairs of trestles, and were never placed on the ground; in fact they could scarcely have been more tenderly handled or better cared for than they have been. For many years it was supposed that the progressive alteration in the relations of the bars to the standard, might be due to a change in the standard, and the bars were therefore all the more jealously guarded. The constancy of the standard was not established beyond doubt until the year 1867, (see sections 4 and 5 of Chapter III); afterwards no further hesitation was felt as to doing anything which might disturb the lengths of the bars ; they were all taken to pieces and well cleaned before the measurement of the Bangalore baseline, and in the following year thermometer wells were bored into bar B. These operations have had the effect of disturbing the lengths of some of the bars, but the mean length of all is much the same as it was a few years previously.

с. ^с)	C F	(l	ر 1	• •	. '		$\mathbf{v} = \mathbf{P}$	<u>.</u> _	- · ,
4	• 1	, , , , , , , , , , , , , , , , , , , ,		`.	::::		-	 、 、	n in a collar. Na
1	1'1 (1-0	 	· · · · · · ·	, , I ,	:•t	-		. :	
0*0 1		1 1 1 1		р 15 р 4 — 1 1 — 1	<u></u>	•	· · ·	/*:1 - -	
СС 11 СС2	0 I 0	e 11 f 1 1 1 4 1 -	c			•	•• •	2011 51 100	1999 - 1911 - 1771 - 1799 - 275 1775 € 1979 - 1
	(1 1,1 2,0 +		217 1 - E 1 - E	2 - 2 I 		1			Grop Lander - All Constant Lander - All Constant
2.0 7.0	1°1 ! (, +-	0111 6 + 1 6 <u>- 1</u>		, , , , , , , , , , , , , , , , , , ,		,			and Land Colling Colling Colling
1 - 1 1 - 1 1 - 1 1 - 1	• • 1 • • •	1. 1 1. 1 1. 1							$\begin{array}{l} \cos \frac{1}{2} = \left(\frac{1}{2} - \frac{1}{2} \right) \cos \left(\frac{1}{2} - \frac{1}{2} \right) = \left(\frac{1}{2} - \frac{1}{2} \right) \\ \cos \frac{1}{2} =$

In the second s second s second se
(101)

WITH THE COMPENSATION APPARATUS.

CHAPTER XI.

On the calculations for the reduction of the base-lines.

1.

General details.

The greater portion of the calculations will be readily understood from the actual procedure in each case, and from the full explanations which have already been entered into regarding the treatment of the Cape Comorin base-line. It has been seen that the determination of the lengths of the compensation bars is the most important part of the process, as twenty parts in twenty-one of the base are measured by these bars. It has been shown in Section 3 of Chapter VII that for the exact determination of the normal length of a compensation bar as compared with a standard bar, the error of compensation and the thermal inequalities of the components of the compensation bar should be known; the exact expression for the length is given by equation 9; whence it follows that for the first nine base-lines, at which no steps were taken to measure the temperatures of the components, the terms in that equation into which t and T_b enter must be neglected, and we must put

 $X = B' - A' + (E'_a - dE'_a) T_a$ approximately.

The values of X have been thus computed for all the first nine base-lines, and though in no case do they indicate the normal bar-length, they always give the actual bar-length at the time of the comparisons, and thus in every case the determination of the length measured by the bars will be correct, if the average temperatures and thermal inequalities, and consequently the average lengths of the bars, were the same during the comparisons as during the measurements.

The reduction of the lengths measured by the microscopes is described in Section 7 of Chapter VIII, and the method of grouping the results is sufficiently obvious, and may be readily followed.

All the linear measurements are finally expressed in feet of the 10-feet standard A; in Colonel Everest's Arc Book of 1847 the microscope lengths were expressed in terms of a standard 6-inch scale, the relative length of which to the 10-feet standard had not then been determined. The relations of length which have been employed in the present reductions are those which are given in Sections 7 to 9 of Chapter III.

The factors of expansion for 1° *Fahrenheit*, which have been used, are the old values which were employed by Colonel Everest, *viz.*, $\cdot 000,006,801$ for the iron standard **A**, and 000,010,417 for the brass scales; subsequently corrections have been applied for the differences between these values and those indicated in Sections 6 and 8 of Chapter II, which have been obtained from the latest and most exact investigations.

(102)

MEASUREMENT OF BASE-LINES

2.

Reduction of the measured length of a base to the length at the mean sea level.

The formulæ which have been employed in these reductions are demonstrated at the end of the details of the reduction of the first—the Calcutta—base-line. The process is divided into two parts, first a reduction from the levels of the measurement to the level of the origin, and secondly from that of the origin to the mean sea level; it will be easy at any future time to apply a correction to the length of any base-line, corresponding to any correction which may be required for the adopted height of the origin above the mean sea.

The heights of the origins have been derived in some instances from spirit leveling operations in others from the vertical angles of the triangulation. From the commencement of the survey until the year 1856 all the heights were invariably determined from observations of reciprocal vertical angles between the principal stations of the triangulation. But this method, though susceptible of a high degree of accuracy in a hill region, is beset with many difficulties in a level country; the rays of light, grazing the surface of the ground, pass through various gradations of refraction, from a low negative to a high positive value, during the course of the day and night; the success of the method depends on the reciprocal angles being equally refracted, which probably would not be the case even if the observations were simultaneous; whereas from the circumstance of there being only one large theodolite with each survey party, there is always an interval of several days between the reciprocating observations, and thus there is all the more reason to mistrust the assumed equality of refraction.

The principal chains of triangles have frequently been carried across plains of a breadth of several hundred miles, for the Peninsula of India is separated from the Himalayan and the Soolimani ranges of mountains by the vast plains of Sind, the Punjab, Rajpootana and Central India, and by the valley of the Ganges which is no-where less than 150 miles in breadth, all which have been repeatedly crossed by the triangulation. And as these plains were very unfavorable for the vertical operations, and the chains of triangles were of great length—occasionally as much as 2000 miles from sea to sea, without external check or verification—lines of spirit levels were commenced, in the year 1856, to controul the results of the trigonometrical determinations.

During the immediately preceding period of about twenty years the rule had been followed of restricting the observations of vertical angles as closely as possible to the time of minimum refraction, which occurs daily between the hours of 1 and 3 P.M. apparent time; the back angle was also measured at nearly the same interval from apparent noon as the forward angle. But during the operations of the period between 1800 and 1836 the observations were taken at any bour of the day and often during the night.

On comparing the results of the spirit levels with trigonometrical heights which had been determined by observations at the time of minimum refraction, the accordance is found to be very satisfactory; the errors of the trigonometrical determinations between base-lines being as follows:

(103)

WITH THE COMPENSATION APPARATUS.

From	Karachi to Attok,	706	miles,	error		3.5	feet
,,	Attok to Dehra Doon,	416	,,	"	+	5'1	>
"	Dehra Doon to Sironj,	429	"	,,	+	1.8	77
,,	Karachi to Sironj,	669	,,	"	+	2.1	"
"	Sironj to Calcutta,	680	"	,,	_	4 .6	,,

On the other hand the errors of the trigonometrical determinations in the early operations of the survey are occasionally very large; for example the value of the height of the Sironj base which is given as 1644.5 feet at page 83 of Colonel Everest's Arc Book of 1847 is 113.1 feet in excess of the value obtained by the leveling operations, with which the results of the modern triangulation agree so well.

The datum of the spirit leveling operations is the mean sea level of Karachi harbour; from thence the main line of levels has been carried up the right bank of the Indus to Mittunkote, Ferozepore, thence to Allahabad, and down to Calcutta, over a distance of upwards of 2000 miles, closing on the datum of the long established tide guage at the Kidderpore Dock, on the left bank of the Hoogly river. The mean level of this tidal river, in the dry season, was determined by the operations to be 2.33 feet above the mean sea level at Karachi; in the rainy season it is considerably higher. The line of levels has not yet been carried to any point on the coast of the Bay of Bengal near Calcutta which is in free communication with the sea.

The heights of the base-lines at Karachi, Attok (or Chuch) Dehra Doon, Sironj, and Calcutta are referred to the mean sea level of Karachi harbour by the leveling operations. The height of the Sonakoda base is dependent on the triangulation from Calcutta; that of the Bider base is the mean of independent trigonometrical determinations from the tidal stations at Bombay on the west coast, Vizagapatam on the east coast, and from the Sironj base. The height of the Vizagapatam base depends on a contiguous tidal station. with which it is connected by a short line of levels; that of the Cape Comorin base is similarly dependent on a tidal station at Tuticorin, where however final results have not yet been obtained; and that of the Bangalore base-line on the levels of the line of railway form Madras, which agree within 4 feet with the corresponding values by the triangulation.

3.

Verification of the linear measurements by triangulation between the sections of the base-lines.

The comparisons of the measured lengths of certain sections of the base with other sections, by triangulation, have always been made by determining the excess (\pm) of the length of each section—as computed from some other section or the entire base—over the measured length. One of the sections—usually that nearest the origin—is adopted as the base of the triangulation, and the lengths of the other sections are computed therefrom.

(104)

MEASUREMENT OF BASE-LINES

Supposing the measured lengths of the sections to be AB, BC, CD..., and that of the entire base to be AD..., while the corresponding lengths by the triangulation are ab, bc, cd..., and ad ..., where ab = AB; then

 $\frac{AD}{ad} \cdot ab - AB \\ \frac{AD}{ad} \cdot bc - BC \\ \frac{bc - BC}{cd - CD}$ are the excesses of the lengths computed from the entire base, for each section, over the measured lengths.

and so on.

The natural numbers corresponding to the differences between the logarithms of the measured and computed values were obtained from the following formula.

Since $\log_{\sigma}(x + dx) = \log_{\sigma} x + \frac{(dx)}{x} - \frac{(dx)^2}{2x^2} + \cdots$ $\therefore dx = \left\{ \log_{10} (x + dx) - \log_{10} x \right\} \frac{x}{\text{Modulus}} \text{ nearly.}$

í

N.

•

-

.

I-2

---.

The middle point of the base-line is in Latitude N. 22° 40′, Longitude E. 88° 25′. Azimuth of N. end at S. end=177° 11′. The line is 6.432 miles in length. It was measured under the directions of Captain G. Everest R.A., with the assistance of Captain Wilcox, Lieutenant Western, Mr. Logan, Mr. Taylor, Mr. Olliver and Mr. DePenning. The names of the remaining assistants who took a share in the operations cannot be traced from the Field books. The measurement was commenced at the S. end and carried on continuously to the N. end. No verificatory triangulation of the line was executed.

INTRODUCTION.

"The base-line in the vicinity of Calcutta was measured with the new Compensation "bars in 1831-32, that being the first occasion of their being practically tried in India, it was "commenced on 5th November 1831 and finished on 28th January 1832.

"The line chosen was on a straight part of the Barrackpore road near Chitpore about " $6\frac{1}{2}$ miles long, where two towers of 75 feet height were erected one at each limit so as to "overtop the high trees and buildings in the suburbs, with a view to its subsequent connection "with the triangulation.

"As the alluvial soil of the delta of the Ganges induced the supposition that these towers "might sink, the precaution was taken of embedding a large stone at the distance of one complete "set of bars from the point within the tower which marked the limit, both which stones were "subsequently vaulted over, so as to admit of future reference.

"In the measurement, a stone was also embedded at the end of the 12th set of bars (1) "with the view of trying the same length by remeasurement after the whole work was finished. "The reference in this instance (2) was made to the mark at the end of the first set and not to "that within the tower, because the stability of the latter was suspected.

"The bars were compared with the standard A, 67 times before the measurement and 80 "times after the measurement.

"The comparisons in both these instances were made in a thatched building erected in "the grounds attached to the Surveyor General's Office, Chaoringhi, and at night, by lamp light, "one of the reverberatory lamps with an Argand's burner being placed at as great a distance as ad-"mitted of its properly illuminating the microscopes; but this plan is liable to the objection "that the comparisons were made under different circumstances from those under which the "measurement was conducted so that any defect or excess in the compensation would tend to "vitiate the numerical value given by the measurement.

"The comparison of the microscopes was made on seven different occasions during the "measurement, including those prior and subsequent. It is to be noticed that at this time the "micrometric apparatus appended to the six-inch scales was not in existence₍₃₎ and the only "mode of obtaining a value of these minute errors was by estimating them in terms of the "images of the wires in the eye pieces of the microscopes"₍₄₎.

(Taken from the General Report on the Calcutta Longitudinal Series by Lieutenant-Colonel G. Everest, R.A.)

(4) The value of the apparent image of the wire was found equal to 0007 of an inch. For particulars see page lxxxvii of introduction to Colonel Everest's account of the Meridional Arc of India, 1847.

⁽¹⁾ Reckoning from the South end.

⁽²⁾ *i.e.* on re-measurement.

⁽³⁾ The seven scales with micrometers attached were constructed subsequently to the measurement of the Calcutta base.

	f observing A	arison	erature of A		M IC1 11	BOMBTE: Division — 3	B B B A D <u>1</u> 0090 Cary's L	INGS 11 ach [78], - 1	TDIVIS	IONS. A		
1881 Novr.	Mean of the times o	No. of comp	Corrected mean temp	Mean A	A	B	С	D	E	н	Mean of the compensated bars	Remarks.
5th	h.m. 9 1 Р. 10 б	.H. 1 2	73 [°] 50 72°67	108.5 118.5	203 . 9 200.3	 211:0 227:0	209°5 203°5	186.8 180.8	193.7	232.4	206'2	Capt. Everest at the micro-
6th	10 57 11 45 0 33 A 1 21	3 4 . M. 5 6	72.40 72.07 71.62 71.22	122 [.] 9 127 [.] 0 131 [.] 8 137 [.] 4	200'7 197'8 198'6 198'8	222°1 213°4 213°0 213°0	200'9 198'3 199'1 206'3	189°G 190°3 185°0 189°5	193.6 188.6 192.2 186.9	230°0 224°7 225°1 224°0	203.1 203.1	meter micro- scope.
7th	6 41 P 7 32 8 57 10 22 11 6 11 46	. H. 7 8 9 10 11 12	70.00 69.77 69.07 68.17 67.65 67.25	119°5 122°3 130°3 139°6 147°6 154°8	157'5 157'3 158'1 153'7 155'2 151'7	171'1 175'1 175'5 169'5 173'2 170'6	164.5 159.7 162.0 157.3 160.5 160.4	147'4 148'1 153'3 144'0 148'0 148'5	151°4 154°0 155°4 150°2 150°6 146°5	189.0 188.5 189.0 184.8 184.8 184.1	163.5 163.8 165.5 159.9 162.0 160.3	
8th 9th	11 27 P 0 10 A 0 56 1 46 2 36	. M. 13 . M. 14 15 16 17	66:40 67:40 68:45 69:55 70:47	152°1 138°2 124°9 113°7 101°1	135 ^{.8} 148.4 152.8 158.9 159.8	163.5 169.9 176.1 175.7 182.6	140'9 155'0 159'1 166'1 165'0	139'3 136'8 146'4 152'6 152'2	130 '2 135'9 142'6 147'7 148 '8	164°2 165°8 172°8 174°6 176°3	145°6 152°0 158°3 162°6 164°1	Capt. Everest and Lieut. Wilcox at the microscopes.
10th	7 27 P. 8 8 9 36 10 20 10 49 11 14 11 47 0 28 A 1 10 1 49	. M. 18 19 20 21 22 23 24 25 . M. 20 27 28	69.60 69.17 68.87 68.55 68.55 67.80 68.20 69.40 70.27 71.10	111'9 116'5 123'1 129'8 132'7 135'5 136'6 121'1 103'8 93'5 86'6	155'0 156'2 157'1 154'5 144'0 149'0 149'0 147'0 151'8 165'0 152'7 157'6	164.6 165.0 163.6 162.3 164.0 165.8 160.6 172.1 172.7 175.2 177.3	154°6 155'4 151'0 148'8 145'0 150'0 149'4 153'0 163'4 163'0 163'5	144'2 143'0 143'2 140'5 126'2 136'2 138'7 146'4 136'3 144'2 146'4	142'2 138'4 139'0 139'5 140'0 141'7 134'2 135'2 143'1 135'0 144'0	175 ^{.8} 173 ^{.5} 176 ^{.0} 176 ^{.2} 165 ^{.0} 171 ^{.2} 167 ^{.8} 165 ^{.3} 168 ^{.1} 170 ^{.4} 171 ^{.6}	156 [.] 1 155 [.] 2 155 [.] 0 153 [.] 6 147 [.] 4 152 [.] 3 149 [.] 6 154 [.] 0 158 [.] 1 156 [.] 7 160 [.] 1	Mr. Taylor at the microme- ter micro- scope. Mr. Olliver at do.
	7 I P. 7 42 8 21 9 49 10 20 10 50	₩. 29 30 31 32 33 34	71°07 70°57 70°05 69°27 68°97 68°57	89.3 96.9 105.2 120.5 125.5 131.0	154°6 153°5 150°8 149°5 145°9 149°5	167°6 165°0 166°0 162°8 162°8 164°8	153.4 148.0 146.2 146.0 149.0 151.0	142.0 136.0 138.0 140.0 134.5 134.0	136'0 141'5 142'5 142'0 139'5 139'6	176'0 176'3 175'7 174'2 168'5 171'0	154.9 153.4 153.2 153.3 150.0 151.6	Lieut.Western at do.

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at the Surveyor General's Office Calcutta, before the measurement.

I_4

Digitized by Google

BAR COMPARISONS.

Before the measurement-(Continued.)

	of observing A	parison	iperature of A		M 1C1	30 M E T E E	READI 1 090 Cary's Inc	NGS IN h [7-8], — 1-1	DIVISIO 8819 m.y of A	DNS.		
18 3 1 Novr.	Mean of the times c	No. of com	Corrected mean tem	Mean A	A	В	С	D	E	Н	Mean of the compensated bars	Remarks.
	h. m.	<u> </u>	0	-								
llth	0 29 A.M.	35	67.97	142.2	152.7	168.0	149'2	137.8	137.0	168.0	1 52.3	Mr. Taylor at
	1 9	30	07.72	142.9	155.8	101.9	154'2	135.0	138.8	170.7	153.7	the micro-
	1 32	37	67.45	141.3	101.0	103.7	140.2	133.4	1380	171.2	152.2	meter micro-
	- J4 2 2 I	30	66.87	1420	133 3	139.0	1340	1200	120.0	1/11	122.2	scope.
	3 4	39 40	66.20	135.5	130.0	144.4	125.0	113.8	117.0	1303	132.1	
	4 11	41	66.25	00.4	77.5	02.5	85.3	64.0	66.4	101.2	81.1	
	4 31	42	66.12	93.1	75.4	00.3	80.4	68.6	73.0	03.0	81.0	
	4 51	43	66.13	96.0	78-2	96.4	80 [.] Ó	64.3	69.8	102'2	81.9	
	б 29 Р.М.	44	70.02	28·8	• 85.8	104'7	Q1°3	71·6	70'1	108.3	00. 1	Mr. Olliver at
	7 5	45	70.97	27'9	9°9	104.0	90.2	77 · 3	75.0	111.0	91.2	ditto.
	7 33	46	70.92	29.0	92.2	108.Q	94°I	78.2	82.2	110.3	94 '3	
	82	47	70.82	31.2	92°5	105.4	88.8	76.7	79'4	110.2	92'2	
	8 33	48	70.60	32.8	92.7	103.0	84.8	76.2	75.0	111.0	90'7	
	94	49	70.32	37.0	87.2	103.2	85.4	70'0	80'2	8.001	80.0	
	9 30	50	60.07	431	84.0	102'3	90'4 90'9	71.2	77'9	105.0	86.6	
	10 10	52	60.00	400	86.0	101 2	80.0	650	71.2	103.0	84.8	
	11 19	53	68·47	63.8	82.0	97 ⁻²	82.0	62.3	71.0	101.2	82.7	
12th	0 54 A.M.	٢4	67.17	76.2	75.8	04.2	82.2	50.2	64.3	101.3	70°6	Lieut. Wilcox
	1 41	55	66.65	82.5	71'4	05.2	84.0	60.0	67.3	97.7	79.4	at ditto.
	2 26	50	66 27	85.3	78.6	93.3	82.1	64.6	70.7	97.0	81.0	
	39.	57	65.92	01.1	80.3	93.3	84.3	65.2	63.3	94'7	80'2	
	354	58	65.55	97'2	72.8	94.1	78.1	61.2	61.2	95.0	77.3	9
	4 39	59	05.12	100.9	74'0	89.7	77.8	50.0	00.4	90.3	74'7	
	7 11 P.M.	60	68.72	140'1	169.0	180.0	165.5	154.0	15 <u>5.5</u>	183.2	167.9	Lieut. Western
•	741	10	00.00	141'9	105.0	183.0	103.2	148.9	1 50.0	199.0	107'4	at ditto.
	020 (8 r r	02 60	68:65	140.0	170'0	102.3	171.0	157.2	152.0	100.0	170'1	
	0 33	03 64	67.82	1203	103.0	170.0	1030	1400	1550	100.4	1050	Į
	y 23 0 53	64 бс	67.50	1540	166.4	1030	10/0	1405	121.5	186.2	164.8	Į
	9 J5 10 24	66	67.20	161.4	164.7	180.0	1 50.7	- 	122.0	182.0	165.2	
	10 53	67	66.92	164.1	164.0	177.5	101.0	145.0	151.0	184.5	163·8	
	Means,	•••	68·80	110'72	138.39	153.29	139.68	124'71	126.98	1 59.49	140'47	

Í___5

Before the measurement-(Continued.)

Let the mean length of the compensated bars minus the Standard A at 62 F. be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_{\sigma} - dE_{\sigma})$, we have

$$x - (t^\circ - 62^\circ) (E_a - dE_a) - \delta = o$$

Treating the preceding bar comparisons as shewn in this equation, we obtain the following series of results:--

x -11.50 (E _a	$-dE_{c}$	a) + 97.7 = 0	x-7.40 (Ea	$-dE_{d}$	s)+54·3 = 0
x — 10.67	"	, +90·3 = 0	x-8.27	"	+63.5 = 0
x 10.40	"	+83.2 = 0	x -9.10	"	+73'5 = 0
e -10.07	"	+75'2 = 0	x -9°07	"	+65.6 = 0
x- 9 .62	"	+70.4 = 0	x -8.57	"	+56.5 = 0
e - 9.33	"	+65·7 = 0	x-8.05	"	+48.0 = 0
a 8.00	"	+44'0 = 0	x-7.27	"	+32.8 = 0
æ — 7.77	"	+41.5 = 0	x —6·97	"	+24·5 = 0
x - 7.07	"	+35.3 = 0	x —6·57	"	+20.6 = 0
x - 6.12	"	+20.3 = 0	x -5'97	"	+10.1 = 0
x — 5 [.] 65	,,	+14'4 = 0	x -5.72	"	+10.8 = 0
x - 5 ^{.25}	"	+ 5.5 = 0	* -5.45	"	+ 10.9 = 0
x- 4.40	"	- 6·5 = 0	x -5.12	"	+ 5'5 = 0
x - 5.40	"	+13.8 = 0	x-4.87	"	- 5 [.] 7 = 0
x- 6.45	"	+33'4 = 0	x -4'70	"	- 3'4 = 0
x- 7.55	,,	+48·9 = 0	x-4·25	**	- 9.3 = 0
x - 8·47	"	+63·0 = 0	x -4·17	,,	-11.2 = 0
x - 7.60	>>	+44.3 = 0	x-4.12	"	-14.1 = 0
x- 7.17	"	+38.7 = 0	x -8.97	**	+61.3 = 0
x - 6.87	,,	+31.9 = 0	x -8.97	,,	+63 [.] 6 = 0
x- 6.72	"	+23.8 = 0	x-8.92	"	+65 [.] 3 = 0
x - 6·55	>>	+14.7 = 0	x-8.82	"	+60·7 = 0
x- 6.25	,,	+16.8 = 0	x -8.60	>>	+57.9 = 0
x - 5.80))	+13.0 = 0	x-8.32	, ,,	+52.0 = 0
x - 6·20	"	+32.9 = 0	x-7.97	23	+46'1 = 0

Digitized by Google

I__6

BAR COMPARISONS.

Before the measurement-(Continued.)

x-7.57 (E	$a - dE_a$	$3^{+}38.6 = 0$	$x - 6.72 (E_a$	— dl	$\mathcal{E}_a) + 27.8 = 0$
x-7.00	"	+29.8 = 0	x-6.60	"	+25.5 = 0
x -6·47	"	+18.0 = 0	x — 6·35	"	+ 24 ·I = 0
x -5.17	"	+ 3.1 = 0	\$ -6.07	,,	+15.3 = 0
x -4 [.] 65	"	- 3·I = 0	<i>w</i> -5 ^{.8} 2	,,	+13 [.] 6 ≠ 0
x -4 [.] 27	"	- 4.3 = 0	<i>¤</i> — 5·50	22	+ 6.1 = 0
x -3.92	"	-10.0 = 0	x -5.20	"	+ 4·I = 0
a — 3.55	"	-200 = 0	x-4·92	,,	- o.3 = o
x - 3.12	,,	-26.5 = 0			

And from the mean of these results,

$$x = -29.75 + 6.80 (E_a - dE_a)$$
:

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 16.405,$$

and $x = 81.80 - 6.80 dE_a = 113.04 - 6.80 dE_a = L - A;$

where L denotes the mean length of the compensated bars obtained from all the comparisons, as represented by the mean micrometer reading -140.47, page L_{-5} .

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	A – L	B – L	C – L	D – L	E – L	H-L
Micrometer divisions.	+ 2.08	-13.13	+0.43	+ 15.76	+ 13 [.] 49	- 19.0 2
Millionths of a yard.	+ 2.87	-18.13	+1.09	+ 21.78	+ 18 [.] 64	- 26.2 8

Also combining the values in this table with the equivalent of L-A above determined there result,

Comparisons between Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at the Surveyor General's Office Calcutta, after the measurement.

•

1000	f observing A	arison	perature of A		MICB 1 D	$O \mathbf{M} \mathbf{E} \mathbf{T} \mathbf{E} \mathbf{R}$	B E A D I <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>	:ngs in :h [7·8], = 1	DIVIS: •3819 m.y of	IONS.		
Jan.	Mean of the times of	No. of comp	Corrected mean tem	Mean A	A	В	С	D	Е	н	Mean of the compensated bars.	Remarks.
	h m		_					_			_	
24th	7 34 P.M.	I	64.80	180.0	140.5	1550	138.0	125.5	125.5	155.0	130.0	Capt. Everest
	8 19	2	64.32	180.8	146.0	155.2	144.2	120.5	138.0	162.0	144.4	at the micro-
	8 56	3	63.75	192.5	140'0	158.0	138.0	124.5	136.0	169.5	144.3	meter micro-
	9 51	4	02 72	212.0	133.0	152.5	150.0	120.5	134.2	101.0	142.9	scope.
	10 19	5	02.27	220'0	134.5	101.2	151.0	124.0	133.2	102.2	144.2	
	10 40	7	61.22	22/3	1350	1490	142 3	119.5	1320	1035	140 3	
	11 -5	8	60.85	235.0	1200	1 20.2	140.0	128.0	123.2	100.0	140.8	
25th	о 36 А.М.	9	60.25	251.0	133.0	154.5	144.5	134.0	124'0	172.0	143.7	Lieut.Western
	ъĞ	10	59.97	252.0	133.0	103.0	137.0	117.0	129.5	157.0	139.4	a t d o.
	I 4I	11	59.70	255.3	130.0	152.0	148.0	120.0	132.2	162.0	140.8	
	2 17	12	59'37	261.8	133.0	164.0	142.0	120.5	130.0	158.0	141.3	
	2 46	13	59.12	204.0	130.2	155.0	137.5	123.0	143.0	100.0	142.2	
	3 47	14	58.75	2013	09.0	91.5	68.0	40'0	750	91.0	751	
	4 10	15	50.55	2033	/1 J 57°0	07.5	75.0	33 3 53°0	53 O	00.0	74 2 74°2	
	4 33		jo 20		57 -	975	66.0	JJ -	- + -	JJJ	(9)-	
	7 20 P.M.	17	07'02	77 0	67.0	73.0	74.0	54.0	51.5	103.5	00.0	Mr. Taylor &
	7 40	10	00'80 66'aa	700 88∙s	68.0	86.0	76'0	55.0	66.4	104.2	714	Mr. Logan at
1	8 4 5	20	65.00	05.0	67.0	70°5	78.5	57.0	61.0	07'0	71.8	the micro-
	0 1	21	65.57	104.3	72.0	73.5	7500	48.5	70.5	102.2	73.7	scopes.
	Q 20	22	65.22	114.0	Ġ9·5	78.5	77.0	51.2	60.2	97.5	72.4	
	9 39	23	64.80	116.5	7 1' 4	83.2	84.4	57:0	60.0	104.4	76.8	
	10 Q	24	64.07	129.5	74.5	68.2	60°0	50.0	51.0	102.2	69.8	
	10 35	25	63.22	133.5	04°0	72.5	62.0	52.2	03.0	100.0	09'2	
	11 1	20	02.95	1370	63.0	055 78.0	80°5	505	54°0 68°¢	101.2	709	
	11 20	28	62°32	152.8	65.2	75.5	75.0	50.0	58.2	100.3	60.7	
26th	0 CO A.M.	20	60°80	167.4	68.6	01.8	71.8	56.3	66.7	100.8	70.0	
1	1 41	30	60.30	172.4	74.8	94.2	66.8	57.2	58·Ć	95.0	, 74`4	Capt. Wilcox
	2 27	31	50.87	181.0	66.0	85.0	66.5	51.2	60.0	92.0	71.1	at the micro-
	37	32	59.42	100.8	67.4	84.0	65.8	51.0	57.5	90.2	69.4	meter micro-
	3 51	3 3	59:00	190.7	67.8	90.0	66.8	52.0	52.2	90.0	71.3	Boobe.
	4 38	34	58.23	203.2	00.0	84.3	00.0	49'0	54.0	87.4	00.9	1
	7 31 P.M.	35	67.35	190.2	190.0	214'0	187.0	178.0	179°5	213.2	193.2	
1	7 59	36	67.00	194.5	180.0	207.5	193.2	174.0	173.0	220'0	192.3	
	8 25	37	66.57	202.3	187.0	200.5	109.0	191.0	179'0	222'0	194.1	
	9 20	38	05.55	2175	104.2	213 5	200'r	1/1.0	1/9.0	212.0	193.2	1
1	9 49	39	64.60	222.8	104.0	206.4	183.0	178.0	181.0	222°0	104.1	
	10 22	40 ⊺	64.25	238.8	180.0	210.0	187.0	178.0	184.5	310.0	194.1	

I<u>-8</u>

BAR COMPARISONS.

After the measurement—(Continued.)

1832.	of observing A	parisons	mperature of A		MIC ID	\mathbf{EOMETE} ivision = $\frac{1}{200}$	B READI	NGS IN h (7·8), — 1·3	DIVISI 3819 <i>m.y.</i> of <i>j</i>	о ив.		
Jan.	Mean of the time	No. of com	Corrected mean te	Mean A	A	В	С	D	Е	н	Mean of the compensated bars.	Remarks.
26th	h m 10 53 P.M.	42	63.85		180.2 —		101.0					Capt. Wilcox
1	11 14	43	63.40	250.0	183.5	208.0	184.0	175.0	184.0	217.5	102.0	at the micro-
	11 35	44	63.00	258.5	186.2	211'0	195.5	174.0	183.0	211'0	103.5	meter mic:
27th	о іс а.м.	45	62.12	279.5	198.5	205.5	185.5	173.0	183.2	215.0	193.5	Lieut.Western
	o 39	46	61.62	276.0	188.0	212.0	18 <u>0</u> .0	177.0	195.0	218 . 0	196.0	at do.
· ·	1 5	47	01.22	277.5	184.0	214.0	101.0	172.0	184.0	313.0	193.0	
1	1 37	40	60.27	290'0	184.0	2170	199.0	170.0	100.0	210'0	194.2	
	2 22	49	ro:80	2000	100.0	2110	201.5	175.0	187.0	222.0	197.0	
1	a 33 2 7	50	50.40	301.0	1900	21/0	191.2	1740	102 5	210.0	195.2	
1	3 30	52	50.02	311.8	170.0	214'0	100.0	1/4 3	182.4	214 3	1901	
	4 5	53	58.77	314.8	187.0	205'0	180.0	174.0	188.0	212.0	102.2	
1	4 33	54	58.57	320.5	191.0	217.0	197.0	172'0	193.0	209.0	196.5	
1	7 23 P.M.	55	68 ^{.8} 7	160.8	183.5	205.5	190.5	178.0	177.5	222.2	192.9	Mr. DePenning
	7 50	56	68.27	176.5	181.4	195.4	180.0	165.0	183.7	222 8	180.1	and Mr. Logan
	0 12 8 c	57	00.02	177.0	185.0	200'2	187.5	172.2	177.0	217.2	100.0	at the micro-
	0 54	50	07°22 67'07	183.2	188.7	204.0	184.3	173.7	185.4	215.3	191.0	scopes.
1	9 14	59	66.80	191.2	1870	203.4	191'5	171.5	189.4	210.5	1930	
	9 54	бт	66.10	2010	101.2	202 3	10/9	1/3 2	184.0	2150	191.4	
1	10 23	62	66.02	212'2	186.2	205.3	100.4	168.4	187.5	216.2	102.4	
1	10 57	63	65.47	216.0	101.3	201.0	100.0	102.0	178.5	218.2	100'7	
1	11 20	64	65.17	219.7	189.0	203.0	185.3	172.0	180.0	214'0	100.8	
28th	о 34 а.м.	65	64.27	241.3	190.8	212.7	196.8	174.3	180.3	214.3	194.0	Capt. Wilcox
	I 12	66	63.80	249'9	187.8	210.8	195.0	176.3	182.5	217.0	195.0	at the micro-
1	I 49	67	63.37	255.5	194.7	212.3	194.0	180'4	187.0	214.2	197.3	meter micro-
1	2 27	68	63.10	259.2	193.8	207.0	194.3	175.9	186.3	310.0	194.7	scope.
	30	09	02.77	204'8	192.8	214.3	190.0	173.0	187.1	218.0	196.0	} -
1	3 42	70	02°47	205.2	190.4	217'2	199.5	179.0	185.1	210.7	199.0	
	4 59	72	62.22	200 3 270 0	194.5	218.1	194 8 1980	178 0 180 . 3	188.8	214.2	190.2	
	7 22 P.M.	73	69.50	165.3	194.2	203.0	105.0	184.2	183.2	221.2	107'0	Mr. Taylor et
1	7 39	74	69.30	168.2	196.5	200.5	198.5	181.0	193.5	225.0	200.2	do.
1	7 57	75	68.97	167.5	198.0	212.0	205.5	179.2	192.0	220.0	301.3	40.
	8 37	76	68.12	184.5	186.0	214.5	197.5	183.0	191.0	218.5	198 [.] 4	
1	8 53	77	67.97	190.3	205.2	213.2	212.0	188.0	199.5	218.0	20 <u>0.1</u>	
1	99	78	07.70	193.0	188.2	221.5	192.2	184.0	190.2	221.2	200'8	
	9 28 9 45	79 80	66 [.] 87	201.3	190°0 205°0	207 . 5 218.5	205°0 201°5	175 .0 178.2	192.0 181.2	224.2 220.0	199°0 200°8	
[Means	•••	63.52	210.02	148.85	167.85	153.30	135.26	143.88	176.67	154.30	

•

I__9

۰.

After the measurement—(Continued.)

As on page I-6 we have

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = 0;$

and from the preceding bar comparisons, we obtain the following series of results:

x - 2.80 (E	$E_a - dE_a$	-40.1 = 0	$x-2.25 (E_a-dE_a)$) - 44.7 = 0
x-2.32	, u u,	-42.4 = 0	x-1.85 "	-50.5 = 0
x-1.75		-48.2 = 0	x-1.40 »	-580 = 0
x-0.72		-69.1 = 0	x-1.00 »	-650 = 0
x-0.27		-76.3 = 0	<i>x</i> -0.12 »	-86.0 = 0
x+0.23		-870 = 0	x+0.33 »	-80.0=0
x + 0.73		-90.9 = 0	x+0.78 »	- 84·5 = 9
<i>x</i> +1.12	. ,,	$-94^{2} = 0$	x+1.43 »	- 95 [.] 8 = 0
x + 1.75	33 ⁻	-107.3 = 0	<i>x</i> +1.98 ,,	- 98·4 = 0
x + 2.03		-112.6 = 0	x+2.20 »	-106.3 = 0
x + 2.30		-114.5 = 0	<i>x</i> +2.60 ,,	-112.9 = 0
x + 2.63	33 ·	-120.5 = 0	x+2.98 ,,	-110.1 = 0
<i>x</i> + 2.88		-121.5 = 0	x+3 [.] 23 ,,	-122.3 = 0
x+3.25		-1262 = 0	x+3.43 »	-1240 = 0
x+3.45		-131.1 = 0	w —6·87 »	+ 23.1 = 0
<i>a</i> : + 3.80		-1357 = 0	æ —6·27 »	+ 12.6 = 0
<i>s</i> :		- 9.0 = 0	x-6.02 "	+ 13.3 = 0
<i>x</i> -4.80		-7.4 = 0	x -5.22 ,,	+ 8.7 = 0
x - 4.32		-10.7 = 0	x -5.07 ,,	+ 2.4 = 0
x - 2.00		-232 = 0	x -4.80 »	- 8.1 = 0
x - 2.57	<i>"</i>	-30.6 = 0	# —4 * 40 ,,	- 10.4 = 0
x - 2.22	,,,	-41.6 = 0	x -4°02 ,,	-19.7 = 0
<i>x</i> - 2.80	,,	-39.4 = 0	x-3.47 »	-25.9 = 0
x-2.07		-59.7 = 0	w -3.17 »	- 28.9 = 0
x-1.55	19	- 64.3 = 0	x-2·27 »	- 46.4 = 0
<i>x</i> -0.02		-66.1 = 0	x—1.80 »	- 54.9 = 0
x = 0.32		-72.7 = 0	x-1.37 »	-58.3 = 0
<i>x</i> − 0°05		-83.1 = 0	<i>#</i> —1'10 ,,	- 64·5 = 0
<i>x</i> +1.20		-91.4 = 0	x ^{-0•} 77 »	- 67·9 = 0
¢+1.20		-980 = 0	x-0.47 »	-66.2 = 0
x + 2.13	27	-109.9 = 0	<i>a</i> -0.35 <i>n</i>	-69.8 = 0
x+2.58	22	-121.4 = 0	x -0°22 ,,	- 70 [.] 6 = 0
x+3.00	25	-125.4 = 0	x-7.50 »	+ 31.7 = 0
#+3.48	22	-136·6 = 0	#-7·30 »	+ 31.7 = 0
x-5.35	,,,	+ 3.2 = 0	x-6.97 »	+ 33.7 = 0
x-5.00	, , , , , , , , , , , , , , , , , , ,	-2.5 = 0	x-6.12 »	+ 13.9 = 0
x-4.57	"	-8.3 = 0	ø—5°97 »	+ 15.8 = 0
x-3.55	,,	-240 = 0	\$\$\sigma 5.70 \$\$	+ 7.8 = 0
x-3.05	,,	-28.4 = 0	#-5 ²⁷ »	- 2.3 = 0
x-2.62	••	-30.7 = 0	<i>x</i> -4 ^{.8} 7 ,,	- 57 = 0

I____10

BAR COMPARISONS.

After the measurement—(Continued.)

The mean of these results gives,

 $x = 55.75 + 1.52 (E_a - dE_a).$

Adopting the original value of the expansion of A given at page (9)

$$E_a = 22.67 = 16.405$$

and
$$x = 80.69 - 1.52 dE_a = 111.51 - 1.52 dE_a = L - A.$$

Proceeding as on page I_7 we obtain :---

In terms of	A-L	B-L	C-L	D-L	E-L	H-L
Micrometer divisions.	+ 5 [.] 45	-13 [.] 55	+ 1.04	+ 19·04	+ 10'42	-22.37
Millionths of a yard.	+ 7 [.] 53	-18 [.] 72	+ 1.44	+ 26·31	+ 14'40	-30.91

Also the following,

Deduction of the total length measured by the compensated bars.

perature the corresponding expansion of A from page (19) is 21.674 m.y. Comparing this value of expansion with the original value = 22.67 m.y., used in the foregoing, it is found, that $dE_a = +$ 0.996 m.y.; and substituting for dE_a this numerical value, there results,

The total length of the 539 sets measured by the compensated bars = $(32341.0894 - 0.0403) \frac{A}{10}$ = $32341.0491 \frac{A}{10}$

I___1

				nsion of m. i.	M 1	CBOSCO	P B - A	•					sion of <i>m.</i> i.	Mı	CBOSCO) P B – A	
V con	Then pared	scope.	nperature.	aht. Expa <i>E</i> = 62 [.] 5	Observe in ter	ed value ms of	A t 62'	D	V	When compared		iperature.	ht. E r pan E = 62 ·5	Observ in ter	ved value rms of	At 62	3 0
	831.	Micro	Observed ter	Reduction to 62° F 6"scale for 1° =	Wire = 69.7 m. i	m. š.	m. i.	Reference number.]		Mlcroscop	Observed ten	Reduction to 62° Fa 6′′ scale for 1° ==	Wire = 69-7 m. i.	<i>m. i.</i>	136. ŝ.	Reference number.
22nd & 23rd Nov.	Before measure- ment.	M O P R S T U	• 67:5 77:6 77:6 77:8 75:6 76:0 66:7	+ 344 975 988 850 875 294	ថ ថ ថ ថ ថ ថ	0000000	+ 344 975 988 850 875 294	1 2 3 3 4 50 7	6th.	Between sets No. 404 and 405.	M O P R S T U	• 68·3 68·9 68·6 68·9 68·6 68·3 68·9	+ 394 431 413 431 413 394 431	+ 1.8 - 1.5 - 0.5 - 1.3 - 0.4 + 1.0 .0	+1255 1046 349 837 279 + 697 0	$ \begin{array}{r} + 1649 \\ - 615 \\ + 64 \\ - 406 \\ + 134 \\ + 1091 \\ + 431 \end{array} $	30 31 32 33 34 35 30
13th Dec.	Between sets No. 149 and 150.	M O P R S T U	78·3 67·3 68·3 78·3 70·6 64·6 72·4	1019 331 394 1019 538 163 650	$ \begin{array}{r} -1.6 \\ 0 \\ -1.3 \\ -1.2 \\ -0.6 \\ +1.6 \\ -0.6 \end{array} $	- 1116 0 - 907 - 837 - 418 + 1116 - 418	$ \begin{array}{r} - & 97 \\ + & 331 \\ - & 513 \\ + & 182 \\ + & 120 \\ + & 1279 \\ + & 232 \end{array} $	8 9 10 11 12 13 14	14th.	Between sets No. 499 and 500.	M N O P R T U	69 [.] 2 68 [.] 6 71 [.] 2 71 [.] 6 71 [.] 4 71 [.] 2 68 [.] 1	450 413 575 600 588 575 381	+ 1.6 2 1.4 0.7 1.0 0.5 .0	+ 1116 - 140 976 488 697 349 0	+ 1566 + 273 - 401 + 112 - 109 + 226 + 381	37 38 39 40 41 42 43
17th Dec.	Between sets No. 192 and 193.	M M P R S T U	75 ·1 7 4·9 75·5 75·3 74·3 74·8 76·3 73·6	819 806 844 831 769 800 894 725	-3.2 .0 2.0 1.3 .9 0.1 0.0	-2232 0 349 1395 907 628 70 418	-1413 + 806 + 495 - 564 + 172 + 172 + 824 + 307	15 16 17 18 19 20 21 21	20th.	After measurement, or set No. 539.	M M* N O O* P R R* S	71.5 71.5 71.6 70.6 71.0 71.0 71.7 71.9 70.4	594 594 6co 538 538 563 606 619 525	$ \begin{array}{r} + \cdot 8 \\ + \cdot 4 \\ - \cdot 3 \\ - 1 \cdot 3 \\ + 0 \cdot 2 \\ - \cdot 3 \\ - 1 \cdot 1 \\ + 0 \cdot 2 \\ - 0 \cdot 1 \\ \end{array} $	+ 558 + 279 - 907 + 140 - 767 + 140 - 70	+1152 + 873 + 391 - 369 + 678 + 354 - 161 + 759 + 455	44 45 46 47 48 49 50 51 52
24th Dec.	Between sets No. 287 and 288.	M O P R S T U	74.8 75.0 74.7 75.8 76.3 74.5 75.4	800 813 794 863 894 781 838	+ 1.5 1.7 1.6 2.3 1.0 0.4 0.7	+ 1046 1186 1116 1604 697 279 488	+ 1846 1999 1910 2467 1591 1060 1326	23 24 25 26 27 28 29		A	σ	71.9	ÕIÕ	-0.2	- 349	+ 270	53

.Comparisons between the Compensated Microscopes and the 6-inch brass scale A, and provisional determination of microscope errors, during the measurement, expressed in millionths of an inch (m.i.).

* These microscopes were compared a second time, because they were adjusted after the first comparison.

Digitized by Google

I___12

Microscope Comparisons-(Continued.)

The required combinations of individual microscope errors taken from the preceding page, are expressed as follows;

	Reference numbers.														me	an temp :		
e _l	=	I	+	2	+	3	+	4	+	5	+	<u>6+7</u> 2	= +	- 4717	at (62	+ 12.6)	before the n	neasurement
e ₂	=	8	+	9	+	10	+	11	+	12	+	$\frac{13+14}{2}$	= +	779	at (62	·+ 9·9)	between sets	149 & 150
e ₃	=	15	+	17	+	18	+	19	+	20	+	$\frac{21+22}{2}$	=	882	at (62	· + 13.0)	"	192 & 193
e ₄	=	16	+	17	+	18	+	19	+	20	+	$\frac{21+22}{2}$	=+	1337	at (62 [.]	· + 13·0)	"	"
e ₅	=	23	+	24	+	25	Ŧ	26	+	27	+	$\frac{28+29}{2}$	= +	11000	at (62.	+ 13.3)	3 3	287 & 288
e ₆	=	30	+	31	+	32	+	33	Ŧ	34	+	<u>35+36</u> 2	= +	1 587	at (62	•+ 6•7	"	404 & 405
e ₇	=	37	+	38	+	39	+	40	+	41	+	<u>42+43</u> 2	= +	1745	at (62 [.]	·+ 8·3)	>>	499 & 500
e ₈	=	44	+	46	+	47	+	49	+	50	+	<u>52 + 53</u> 2	= +	1730	at (62	• + 9.3)	after the me	asurement
eg	=	45	+	46	+	48	+	49	+	51	+	$\frac{5^2+53}{2}$	= +	3418	at (62.	·+ 9·3)	>>	

And from the foregoing, we obtain the following equations for the microscope errors per set (or m.e); where dE expresses the error in the adopted value of the expansion for the 6 inch scales.

(m.e.) ₁ =	$\frac{e_1+e_2}{2}$	=	+	m.s. 2748	-	б×	11.3	3 dE	applicable t	o sets Nos.	1 to 149.
$(m.e.)_2 =$	<u>e₂+e₈</u> 2	=	-	52	-	6 ×	11.2	; dE	"	"	150 to 192.
(m.et) ₃ =	$\frac{e_4+e_5}{2}$	=	+	6172		б×	13.3	dE	"	"	193 to 287.
(m.e.) ₄ =	$\frac{e_5+e_6}{2}$	=	+	6297	_	б×	10.0	dE	"	"	288 to 404.
(m.e.) ₅ =	e ₆ +e ₇	=	+	1666	-	бx	7*5	; dE	"	"	405 to 499.
(m.e.) ₆ =	e ₇ +e ₈	=	+	1738	-	6 x	8.8	3 dE	"	"	500 to 539.
(m.e.) =	e e	=	+	2418		6 x	0.3	dE	applicable to	the 11 sets	re-measured.

I_₁₃

Microscope Comparisons—(Continued.)

Hence the total microscope errors are as follows,

In sets Nos.	1 to 149 =	149 $(m.e.)_1 = +$	m.i 409452 —	10102 dE	$\begin{array}{l} feet of \mathbf{A} \\ = + 0.0341 - \end{array}$	· 10102 dE
	150 to 192 =	43 $(m.e.)_2 = -$	2236 —	2967 dE	=- 0'0002 -	2967 dE
	193 to 287 =	95 $(m.e.)_3 = +$	586340 –	7524 dE	=+ 0.0480 -	7524 dE
	288 to 404 =	117 (m.e.) ₄ = +	736749 —	7020 dE	=+ 0°0614	7020 dE
	405 to 499 =	95 $(m.e.)_5 = +$	158270 —	4275 dE	=+ 0.0132 -	• 4275 dE
	500 to 539 =	$40 (m.e.)_6 = +$	69520 –	2112 dE	=+ 0 [.] 0058 -	• 2112 dE
Aı	nd the total mic	roscope error in t	the base-line	,	+ 0.1635 -	34000 dE

Final deduction of the total length measured by the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally; *i.e.* in terms of the 6-inch standard scale A. But from page (31), $2A = 1.0000192 \frac{A}{10}$ value in 1835. Also, the co-efficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that a more probable value is .000,000,855. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that a set of microscopes, apart from all corrections, represents 3 feet in length, we have

The total length of the 539 sets measured by the compensated microscopes $\begin{cases} feet & of \ A \\ = \{539 \times 3 + 0.1632\} - 34000 \ dE \\ = (1617.1943 - 0.0096) \frac{A}{10} \\ = 1617.1847 \frac{A}{10} \end{cases}$

Disposition of the bars and microscopes during the measurement.

The field books contain no information as to the order of succession in which the bars were laid, or as respects the places assigned to the microscopes during the measurement. It is however perfectly clear that every set comprised 6 bars and 7 microscopes; only one-half of the rear-end and advanced microscopes, as usual, being operative. It will be remembered that this was the first base-line measured in India with Colby's compensation apparatus, and some of the information with which subsequent measurements are complete, is here absent, no doubt from the want of experience which was acquired in after operations of the same kind.

Digitized by Google

I_____14

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book of the Measurement, and calculated Heights of sets above the origin.

Adopted heights above mean sea level.

South End (origin) = 13° feet. North End (terminus) = $16^{\circ}3$ feet.

1831	No. of the set	Mean time of ending	No. of bars	Height of Set above origin	1831	No. of the set	Mean time of ending	No. of bars used	Height of Set above origin
		<i>Ъ.</i> т.		feet			b. m.		feet
Novr. 23rd	I		6	+ 1.3	Novr. 30th	42	2 41 P.M.	6	+3.3
	2	4 45 P.M.	6	1.4		43	3 33	6	3.9
24th	3	9 30 л.м.	6	1.1		44	4 29	6	4'2
	4	0 11	6	•5	Dec. 1st	45	7 4 A.M.	6	4.2
	5	2 40 P.M.	6	•4		46	7 46	6	4'1
07/1	6	3 45	6	•5		47	8 44	6	4.3
Zəth	7	8 30 A.M.	6	.4		48	9 29	6	4'3
•	8	10 0	ò	•0		4 9	10 34	0	44
	9	10 50	0	·8		50	2 22 P.m.	0	` 4 °0
	10	2 55 P.M.	0	·8		51	3 53	0	4'5
96+h	11	3 50	6	9		52	4 37	6	4'5
2001	12	9 25 A.M.	6	10	Ind	33	5 13 8 0 M	6	4'7
	13	2 CO P.M .	ĸ	1.1	200	54	8 c8	Š	45
	14	2 jo	6	1.3		33 6	0 30	6	45
	10	5 40	Ğ	1.4		57	10 17	Ğ	44
28th	10	J J 7 55 A.M.	š	14		58	T 24 P.M.	ŏ	45
	18	8 45	Ğ	1.6		50	2 5	Ğ	3.0
	10	Q 35	Ğ	1.2		60	2 48	6	J Y 4.2
	20	10 42	6	- J 1'5		бі	3 43	6	4.3
	31	3 5 P.M.	6	1.Q		62	4 32	6	4.3
	22	4 5	б	2.5		63	5 17	б	4.3
	23	5 15	6	2.3	3rd	64	7 36 ▲.₩.	б	4.4
29th	24	7 25 A.M.	6	1.2		65	87	б	4.6
	25	8 9	б	1.2		66	8 43	6	5.2
	26	8 46	6	2.0		67	9 30	6	5.2
	27	9 24	6	2.3		68	10 0	6	5.1
	28	10 20	6	2.3		09	I 30 P.M.	6	5.3
	29	11 12	6	2.3		70	24	0	5.1
	30	2 IQ D.W.	0	2.2		71	2 50	0	5.3
	31	39	0	3.0	•	72	3 34	0	5.2
	,32	4 I	0	2.0	KAL	73	5 10	0	0.0
	33	4 34	0	2.0	500	74	7 30 A.M.	6	0.0
· 30+h	- 34	59	6	2.9		75	8 15	- 6	0.0
30tm	35	7 ЗА.М.	~	3.0	•	77	8 50	- 6	01
	30	7 53	6	30		78	9 30	š	6.7
	28	0 40	6	33		70	10 10	ŏ	6.8
	30	9 1/ 0 51	ŏ	2.6	· .	80	1 <u>3</u> 0 1.2.	Ğ	6.0
		9 34 1 10 P.W	6	2.8		81	2 26	Ğ	7.2
•	41	2 · I	ĕ	2.4		82	2 [4	6	7.5
	,	- , -		5 1	x		J -T	-	15

Nors .- The rear end of set No. 1 stood over the dot at the South End.

I_____

1891	No. of the set	Mean time of ending	No. of bars used	Height of Set above origin	1831	No. of the set	Mean time of ending	No. of bars used	Height of Set above origin
Dec KAb	0.	λ. m.		feet	D. 104		À. m.		feet
Dec. oth	83	4 15 P.M.,	0	+ 7'3	Dec. 10th	133	2 50 р. м.	6	+ 3'9
6th	04 8r	5 II 7 59 Å M	6	7.2		134	3 34	0	4'0
· · · · ·	86	8 42	ő	7.2		126	+ / 4 /7	6	3.0
	87	0 37	Ğ	7.0	12th	137	тт/ 7 3 і л. м.	ŏ	37
	88	10 22	6	6.8		138	8 0	Ğ	3.0
	89	I 40 P.M.	6	6·8		139	8 25	6	3.4
	َوَو	2 19	6	6.2		140	8 49	б	3.3
	91	38	6	6.6		141	9 24	б	3.2
	9 2 .	3 50	0	6.6		142	9 56	6	3.3
	93	4 38	0	0.4		143	I 23 P.M.	6	2.0
7th	94	7 15 A.M.	0	0.2		144	1 55	0	2.0
	95	8 0	6	0.3		145	2 20	0	2.7
	90	0 40	Ğ	04 6'2		140	2 28	6	2.7
	08	y 37	Ğ	6.0		148	4 20	6	20
	00	v 20 P.M.	6	Q.1		140	5 5	Ğ	2 J 2.4
	100	2 7	6	6.0	14th	150	8 з л.н.	Ğ	2.2
	101	2 58	б	6.0		151	8 34	6	2.3
	102	3 30	б	5.2		152	9 2	6	2.3
	103	4 17	6	5.8		153	9 30	б	2.3
	104	53	6	5'5		154	10 10	6	2.2
8th	105	7 22 A.M.	0	5*3		155	I 25 P.M.	6	2.2
	100	8 3	0	5.3		150	I 57	0	2.2
	107	8 43	6	51		157	2 30	0	2.4
	100	9 20	Ğ	50		150	3 3	6	2.4
	110	9 57 7 20 P.M.	Ğ	5.3		100	j j≱ 4 ∩	ŏ	2.0
	111 .	0 15	6	2-		101	4 30	6	2.7
•	112	2 0	6	5'I		162	4 54	6	* / 2.0
	113	3 42	б	50	15th	163	9 37 ▲. ₩.	б	2.8
	114	A 22	6	5.0		164	10 17	б	2:8
	115	4 55	6	4.8		165	I 33 Р. М.	6	2.0
9th	110	<u>8́0А.М.</u>	0	4'7		100	2 6	6	3.0
	117	8 40	0	4.7		107	2 32	6	3.1
	118	10 12	6	4'8		100	35	0	3.3
	119	I 42 Р.M.	ň	4'5		109	3 40	0	3.3
	120	2 30	Ğ	4 2		1/0	4 15	6	3.1
	121	3 1/	Ğ	40	16+h	1/1 172	+ 52 7 16 A W	6	3.3
	123	3 37	6	4 - 4 I	1001	173	7 10 4.8.	Ğ	3.4
	124	4.55	б	4 - 4'2		174	8 14	6	3.0
10th	125	7 28 A.M.	б	τ- 4'3		175	8 45	6	30
	12Ŏ	8 12	6	4'4		176	9 IO	б	3.0
	127	8 50	6	4'2		177	9 53	6	3 Y 4'0
	128	9 30	6	4'2		178	I 24 P.M.	6	4.2
	129	10 2	0	4'2		179	I 52	6	4 .Q
	130	I 18 P.M.	o K	4'2		180	2 15	6	4.7
	131	1 50	ĸ	4'2		181	² 47	0	4.8
	132	2 24		4' I		195	38	O	4'9

Extracts from the Field Book-(Continued.)

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book-(Continued.)

1831.	No. of the Set.	Mean time of ending.	No. of bars used.	Height of Set above origin.	1831.	No. of the Set.	Mean time of ending.	No. of bars used.	Height of Set above origin.
Dec 16th	180	λ. m.	6	feet	Dec. 21st	2.2.2	й. м. Т. Т.С.Р.М.	6	foot
1000, 1000	184	3 30 F.M. 2 52	6	T 40		234	I 33	Ğ	3.1
	185	4 20	6	5.1		235	1 50	6	2.0
17th	18Ğ	7 15 А.Ж.	6	4.0		230	2 19	6	3.2
	187	7 42	6	5.1		237	2 47	6	2.9
	188	8 10	6	5°3		238	3 10	0	3.5
	189	8 41	0	5.4		239	3 20	6	3.1
	190	9 5	6	5.3		240	3 51	· č	31
	191	940 1011	6	55		242	4 30	ŏ	2.8
19th	103	7 31 A.M.	Ğ	2.3	22nd	243	7 15 A.M.	6	2.8
	194	8 I	6	5.2		344	7 33	б	2.7
	195	8 31 -	6	<u>5</u> .6		245	84	6	2.2
	196	90	6	5.7		240	8 29	6	2.2
	197	9 25	6	5.6		247	8 40	0	2.9
	198	9 48 J O B M	0	5.8		240	9 18	6	3'3
	199	I 0 F.M.	6	5'8		250	9 30	6	33
	· 20I	2 5	· 6	59		251	J 10 P.M.	Ğ	3.3
	202	2 20	Ğ	6.3		252	I 43	6	3.3
	203	2 51	6	6.3		253	2 21	б	3.3
	204	3 12	6	6.4		254	2 42	6	3.2
	205	3 36	6	6.2		255	34	6	3.5
	200	3 50	· 0	6.5		250	3 25	0	3.2
	207	4 20	6	0.0		258	3 33 4 28	6	3.2
20t.h	200	7 28 A.M.	6	60		250	4 55	6	3.7
	210	8 0	Ğ	60 60	28rd	200	7 21 A.M.	Ğ	3.1
	211	8 26	6	6.7		201	7 48	6	3.3
	212	8 52	б	6.2		262	89	б	3.3
	213	9 26	6	6.3		203	8 30	6	3.2
	214	9 55	6	Q.3		204 06r	8 51	6	3.1
	215	10 24 T 0 PM	0	, 5'9		205	9 15	0	3.1
	217	I 20	6	5.4		267	9 33 Q 52	с С	3 2
	218	I 58	Ğ	ט יק 4'7		268	J I P.M.	6	3.3
	219	2 25	6	4.5		269	I 24	6	3.3
	220	2 5Č	б	4.5		270	1 50	6	3.3
	331	3 24	6	4'3		271	29	б	· 3·I
	222	3 53	6	4'I		272	2 27	6	3.4
	223	4 25	0	4'1	· ·	-/3 274	2 54 2 14	6	3'4
21#	225	4 55 7 25 AM	о К	3'0		275	J +4 2 22	0	3.4
~10V	320	7 55	6	30		276	3 50	6	3 J 2*4
	227	8 10	ŏ	3.3		277	4 15	ĸ	3.3
	228	8 40	· Č	3.4		278	4 33	Ğ	3.4
	229	97	б	. 3.3	- 4 - 5	279	4 52 1	Ğ	3.5
	230	9 28	6	3.2	24th	200	7 IO A.M.	6	3.0
1	- 231	9 48	6	3.0		201	7 45	6	3.0
1	232	10 11	6	3.3		202	0 10	б	3.2

,

•

.

7

Extracts from the Field Book-(Continued.)

1831.	No. of the Set.	Mean time of ending.	No. of bars used.	Height of Set above origin.	1881- 52 .	No. of the Set.	Mean time of ending.	No. of bars used.	Height of Set above origin.
Dec 24th	282	ћ. п. 8 23 д.М.	6	foet + \$`5	Dec. 31st	222	λ	6	feet + 1.6
	284	8 52	6	3.5		334	3 20	ő	4.7
1	285	9 ĭ8	6	3.0		335	3 44	6	4.7
	286	9 37	6	3'9	Tom Our	336	49	6	4.8
97th	287	10 0	0	3.2	Jan. 2nd	337	7 25 A.M.	0	4.9
	280	7 ЗУА,М. 8 та	<u>б</u>	33		330	7 59 8 20	6	50
	200	8 40	.Č	3.3		340	8 58	Ğ	5.0
1	291	99	6	3.3		341	9 ² 5	6	5.0
	292	9 34	6	3.4		342	9 45	. 6	5.1
	293	10 22	0	3.4	1	343	10 3	0	5.4
	294 205	2 3 P.M. 2 10	٥ ٨	3.3		344	о 50 р.м. Геор	0 A	54
1	-93 200	4 5	ŏ	3 J 2 G		340	I 51	б	ン ン く・ク
	297	4 50	6	4'0		347	2 15	6	5.8
28th	298	7 30 A.M.	6	3.9		348	2 38	6	5.8
	299	8 0	6	3.9		349	3 6	. 6	5.8
	300	8 20	6	4.0		350	3 32	. O	0.0
ι.	202	0 34	0	4*2	1	351	3 47	6	6.3
	303	0 50	6	4'2	i	252	4 40	Ğ	6.3
	304	10 20	6	40		3.54	5 1	6	6.3
30th	305	7 5 <u>▲.</u> ₩.	6	3.0	3rd	355	7 5 A.M.	6	6.3
	300	7 28	6	3.9		356	7 29	6	6.4
	307	8 0	6	4'1		357	7 59	0	0.3
	300	0 34	6	4'1		350	022 . 8 08	6	6.2
l	309	0 47	-0	40		309	0 I	6	6.3
•	311	10 14	Ğ	3.0		361	9 33	6	6.3
	312	т бр.м.	6	3.4		362	9 53	. 6	6.3
· · ·	313	1 52	6	3.2		363	• 54 р.м.	6	6.2
	314	2 20	6	3*3		304	18	·· 0	0.0
	315	2 45	0	3.4		266	1 30	6	6.8
	317	3 42	6	3 4		367	2 17	б	6.8
	318	4 4	<u>'````Ğ</u>	4 .0		368	2 48	6 I 6	Óg
1 · · .	319	4 33	б	4'I	× ;	369	3 12	i G	7'1
	320	4 54	-6	4'4	1	370	3 30		7 . 1
DISC	321	7 10 4	6	4*3	C44	371	3 59 0	6	7 4
	322	8 4	6	4.4		372	4 50	Ğ	/ * 7*1
	324	8 27	Ğ	4 4 4'3	4th	374	7 25 A.M.	ું દ	7.5
	.325	8 55	6	4'.	(C*	375	8 25	,с б	7.5
	326	9 12	6	4.7	1	376	8 54 (6	7.4
] - 11	.327	9 35	6	4'7	1	377	9 23	0 A	7'3
1 · · ·	320	у І 7 Р.М.	ک د	4'7		370		6	/ 4 7*5
	330	. 1 27	6	4°0 ⊿°6	4 - 1 4	380	I 16 p.M.	6	7.6
	331	1 55	ō	4.0		381	⊥ ′46 ີ	6	7'7
•••	.332	2 27 1	б	4.0	E	382	2 10	6	7.7

I—18

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book-(Continued.)

1832.	No. of the Set.	Mean time of ending.	No. of hars used	Height of Set above origin.	1832.	No. of the Set.	Mean time of ending.	No of bars used.	Height of Set above origin.
Jan. 4th	383 384	й. т. 2⁄34 Р.М. 2/56	6 6	feet + 7'9 8'0	Jan. 10th	433	h, m. 4 3 P.M.	6	feet + 8:2
	385 286	3 25	6	8.0 8.0		435	4 42	6	8 [.] 0
-	387	4 13	6	- 8'0	11th	430 437	7 40 	6	8.0 8.0
K+h	- 388	4 35	6	7.8		.438	8 2	б	7.8
	309	7 58	6	7.7		439	8 20 8 ct	0	7.8
· · ·	391	8 24	Ğ	7.9	•. ·	440 441	0 10	6	7.6
	392	8 40	6	8.0	,	442	9 36	6	7.6
	393	9 15	6	8.5		.443	9 52	6	7.5
· · .	394 205	2 4 P.M.	0 6	8'4 8'6	× .	444	10 11 ,	6	7.5
	395	■ 39 3 37	Ğ	8.7		445 146	I 7 P.M.	0 6	7:4
	397	4 21	6	8.0	•	447	I 41	6	7'3
	398	4 50	6	8.7		448	2 0	6	7.3
6th	399	7 41 A.M.	6	8.6		449	2 41	6	7'2
	400 401	7 59	0 	8.8		.450	2 59	6	7'1
	402	0 1	``č	8.7		451	3 15	0	7°1
	403	9 31	6	8.8		453	5 5 ²	6	72
	404	10 2	6	8.7	· ·	454	4 24	6	7.2
9th	405	7 54 A.M.	6	8.6	2.1	.455	4 40	6	7.2
× ,	400	0 30 8 48	6	8.7	1017	450	5 0	6	7'1
1 <u> </u> -	408	"O 10'	6	8.0	I2th	457	7 30 A.M.	0	7°1
·.	409	9 39	6	8.8		450	/ 4 / 8 I	6	71
	410	9 58	6	8.8		460 •	8 20	6	6.0
17 <u>1</u>	411	I 14 P.M.	.6	8·6		461	8 49	б	6.8
	412	1 38	0	8.5	· ·	462	9 31	6	6.7
a na fannin a fan an a	414	2 28	6	85	• • • •	403	9.50	· 6	66
	415	2 47	6	8.4		404		6	0.2
	416	3 6	6	8.5		466	- 13 F.M.	6	64
	417	3 30	. 6	8.5		467	I 49	ō	6.4
	410	3 50	0	8.5		468	2 6	6	. 6.5
	419	4 0	б.	8.2	i e esta i su	409	2 46	61	6.7
10th	421	8 4 A.M.	Ğ	03 8·2		4/9	3 5	6	. 0.0
	422	8 26	б	8.1		472	540 4 T	ŏ	70
	423	8 48	Ó	8'o		473	4 27	6	7'1
	424	9 5	0	7'9		474	4 44	6	7.0
	425 426	9 29 0 46	6	8.1		475	50	6	6.9
	427	10 8	Ğ	0'0 8'0	13 1 Ъ	470	5 17	0	7'1
	428	I 42 P.M.	6	8.1	1044	478	7 20 A.M.	6	7.1
	429	2 21	6	8.1		479	/ 41 8 I	Ğ	6.0
	430	2 41	6	8.2		480	8 22	6	6.8
	431	3 I 3 00	0	8.2		481	9 18	6	6.0
	434	3 22	U	8.3		402	9 47	б	6.6

۱

I-19

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book—(Continued.)

1832.	No. of the Set.	Mean time of ending.	No. of bars used.	Height of Set above origin.	1832.	No. of the Set.	Mean time of ending.	No. of b ars used.	Height of Set above origin.
Jan. 13th 14th 16th	483 484 485 486 487 488 490 491 493 494 493 494 493 494 495 496 497 498 499 500 501 503 504 503 504 505 507 508 509 510	A. m. 10 10 A.M. 1 40 P.M. 2 16 2 39 2 57 3 15 3 41 4 5 4 28 5 10 7 30 A.M. 8 30 8 55 9 21 9 47 10 10 3 50 P.M. 4 10 4 32 4 50 5 5 7 10 A.M. 7 36 8 14 8 36 8 55 9 21 9 47 10 10 A.M. 8 30 8 55 7 50 8 14 8 30 8 55 8 55 8 55 7 50 8 14 8 30 8 55 8 55 8 55 7 50 8 55 8 55 8 55 7 50 8 55 8	00000000000000000000000000000000000000	foot + 6.4 6.3 6.3 6.0 5.9 6.0 5.9 6.0 5.9 6.0 5.9 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	Jan. 16th 17th 18th	512 513 514 515 516 517 518 519 520 521 522 522 522 522 522 522 522	λ . m. 9 34 A.M. 9 58 0 41 P.M. 0 58 1 17 1 47 2 7 2 28 2 46 3 6 3 24 3 42 4 0 4 26 4 43 5 10 7 32 A.M. 7 58 8 32 8 41 9 3 9 30 9 56 10 16 1 13 P.M. 4 20 5 9 8 38 A.M	\$	foot + 5 ⁻² 5 ⁻³ 5 ⁻¹ 5 ⁻¹ 5 ⁻² 5 ⁻¹ 5 ⁻² 5 ⁻¹ 5 ⁻³ 5 ⁻⁵ 4 ⁻⁵ 5 ⁻³ 5 ⁻³ 5 ⁻⁵ 4 ⁻⁵ 3 ⁻⁵ 3 ⁻³ 3 ⁻⁵ 3 ⁻⁵
	511	9 12	6	5.3					

The advanced end of set No. 539 fell in defect (*i.e.* south,) of the dot at North End 1.7144 feet, as measured on Cary's brass scale with a beam compass.

Digitized by Google

Height of set No. 539 above North End = 1.2 feet.

Reduction to Mean Sea Level.

The formula employed for this computation is obtained as follows:— Let ϕ denote the radius of curvature for the azimuth of the base-line at the mean latitude of the extremities, H and H_1 the adopted heights above sea level respectively of the origin and terminus, $(H_1 - H) = h$, $h_m =$ the value of h obtained from the measurement, and δh a correction to h_m which may be afforded either by the triangulation or by spirit levelling; also let $R = \phi + H$.

If h_1, h_2, \ldots, h_p denote the heights above the origin of the successive sets of bars, or lengths actually measured, where any set may consist of a smaller integral number than 6 of bars and microscopes, and if *l* stands for a complete set of 6 bars and 6 microscopes, or 63 feet, then the correction to the measured length to find the corresponding length at the level of the *origin*, or

 $C_2 = -\frac{l}{R}(h_1 + h_2 + \dots + h_p) = -\frac{l}{R}[h]_1^p$ provided the *p* sets are each equal to *l* in length. If however the sth, *r*th and *t*th sets are incomplete and consist respectively of only *s*, *r* and *t* bars and microscopes, then the correction becomes

$$C_{2} = -\frac{l}{R} \left\{ \left[h\right]_{1}^{p} - \left[(6 - s)h_{s} + (6 - r)h_{r} + (6 - t)h_{t}\right] \right\}; \text{ or abbreviating} \\ = -\frac{l}{R} \left\{ \left[h\right]_{1}^{p} + a \right\}$$

a being thus a correction in consequence of incomplete sets.

Again if δh is not zero, and we disperse this quantity amongst the heights $h_1 h_2 \dots h_p$ on the assumption that

$$h_1$$
 shall become $h_1 + \frac{\alpha_1}{p}$
 $h_2 \dots \dots h_2 + \frac{2 \delta h}{p}$

then the correction will be

$$C_2 = -\frac{l}{R} \left\{ \left[h \right]_1^p + a + \frac{p+1}{2} \delta h \right\} \qquad (2)$$

where it is sufficiently accurate to adopt h_s for $\left(h_s + \frac{s \,\delta h}{p}\right)$, h_r for $\left(h_r + \frac{r \,\delta h}{p}\right)$, &c. in finding a.

It remains to remark, that it is convenient for arithmetical purposes, when deducing the total lengths measured with the bars, those measured with the microscopes, and in general, to reckon the line as made up of *n* complete sets of bars and microscopes, *n* being the nearest integer not greater than $\frac{\lambda}{63}$. If we write *n* for *p* in the term $\frac{p+1}{2} \delta h$, the error committed is $\frac{l \times \delta h}{2R}$ (p-n), which in the extreme case of the Dehra Doon base-line amounts to less than 'cool feet. Availing ourselves of this convenience, the correction to origin finally becomes

Similarly, if λ be the length of the line at the level of the origin, then the reduction from origin to sea level or

and from (3) and (4)

I____

Digitized by Google

Reduction to Mean Sea Level-(Continued.)

which for shortness may be written

It must be added that in applying (5) to the reduction of a base-line in parts, *i.e.* reducing each section to sea level by itself, the following modification is necessary. Suppose the base-line divided into sections I, II, III and IV : if we retain the symbols of (5) for the elements of the *entire* line and distinguish the similar quantities for *each section* by means of corresponding subscripts, there result by writing $_1dh$ for $_1n\frac{\delta h}{n}$; $_3dh$ for $_2n\frac{\delta h}{n}$ &c.

For section I
$${}_{1}C = {}_{1}C_{1} + {}_{1}C_{3} = -{}_{1}\lambda \frac{H}{R} - \frac{6_{3}}{R} \left\{ [h]_{1}^{1^{p}} + {}_{1}a + \frac{({}_{1}n + {}_{1})}{2} {}_{1}dh \right\} \dots = -{}_{1}\lambda \frac{H}{R} - \frac{6_{3}}{R} {}_{1}F'$$

$$, \qquad \text{II} \qquad {}_{9}C = {}_{9}C_{1} + {}_{9}C_{3} = -{}_{9}\lambda \frac{H}{R} - \frac{6_{3}}{R} \left\{ [h]_{1}^{9^{p}} + {}_{1} + {}_{9}a + {}_{9}n {}_{1}dh + \frac{({}_{9}n + {}_{1})}{2} {}_{9}dh \right\} \dots = -{}_{9}\lambda \frac{H}{R} - \frac{6_{3}}{R} {}_{9}F'$$

$$, \qquad \text{III} \qquad {}_{8}C = {}_{8}C_{1} + {}_{8}C_{3} = -{}_{8}\lambda \frac{H}{R} - \frac{6_{3}}{R} \left\{ [h]_{9}^{9^{p}} + {}_{1} + {}_{3}a + {}_{3}n {}_{(1}dh + {}_{9}dh) + \frac{({}_{9}n + {}_{1})}{2} {}_{8}dh \right\} \dots = -{}_{8}\lambda \frac{H}{R} - \frac{6_{3}}{R} {}_{8}F'$$

$$, \qquad \text{III} \qquad {}_{8}C = {}_{8}C_{1} + {}_{8}C_{3} = -{}_{8}\lambda \frac{H}{R} - \frac{6_{3}}{R} \left\{ [h]_{9}^{9^{p}} + {}_{1} + {}_{3}a + {}_{3}n {}_{(1}dh + {}_{9}dh) + \frac{({}_{9}n + {}_{1})}{2} {}_{8}dh \right\} \dots = -{}_{8}\lambda \frac{H}{R} - \frac{6_{3}}{R} {}_{8}F'$$

$$, \qquad \text{IV} \qquad {}_{4}C = {}_{4}C_{1} + {}_{4}C_{3} = -{}_{4}\lambda \frac{H}{R} - \frac{6_{3}}{R} \left\{ [h]_{9}^{9^{p}} + {}_{1} + {}_{4}a + {}_{4}n {}_{(1}dh + {}_{9}dh + {}_{8}dh) + \frac{({}_{4}n + {}_{1})}{2} {}_{4}dh \right\} = -{}_{4}\lambda \frac{H}{R} - \frac{6_{3}}{R} {}_{4}F'$$

the foregoing expressions have been employed in the reduction of all the base-lines given in this volume.

For the base-line under reduction $\lambda = 33960$; Log $R = 7\cdot31838$; $[h]_1^p = 2710$; $\alpha = 0$; $\delta h = 1\cdot7$, all in feet; and n = 539. Hence we obtain by (5) in feet,

 $C_1 = -0.0212:$ $C_2 = -0.00000:$ and $\therefore C = -0.00008$

Measured with the	e compensated	l bars,	page I	=	323	41.0491
23	"	microscopes,	page I_14	=	16	17.1847
	beam compa	83,	page I_20	=	+	1.7144
Reduction to sea	level as above			=	_	0.0308
Length S. end to	N. end at me	an sea level		=	339	59'9174
,,		> >	Log.	=	4.23	3096663

Digitized by Google

I____22

Distance from rear-end of set No. 2 to advanced-end of set No. 12 by 1st and 2nd measurements contrasted.

	By 1st measuremen	st.
	-	feet of A
Measured with	the compensated bars $= 11$	\times 60'001915 = 660'0211
,,	, microscopes = 11	\times 3.001010 = 33.0128
L	ength of the 11 sets	= 693.0389

By 2nd measurement.

Measured	with the compensated bars $= 11$	×	60.001080 = 000.0518
,,	", microscopes = 11	×	3'001187 = 33'0131
"	beam compass		= -0.0023
	Length of the 11 sets		= 693.0327

DESCRIPTION OF STATIONS.

SOUTH END OF CALCUTTA BASE, Latitude N. 22° 37', Longitude E. 88° 25', is situated at the junction of the Barackpore and Chitpore roads and directly opposite to a garden house owned by Rajah Baboo. It is in the district of the 24 Pergannahs, pergannah Calcutta.

The station is marked by a square hollow tower 73.6 feet in height and some 13 feet square at top; the isolated pillar for the theodolite being bulit on beams, which are let into the wall about 4 feet below the upper surface of the tower. The usual circle and dot are engraved on a block of stone fixed in the ground floor of the building.

NORTH END OF CALCUTTA BASE, Latitude N. 22° 43', Longitude E. 88° 25', is situated east of Sukchár village, at the junction of the road from Sukchár to Baraset with the Barackpore road, and opposite to the 11th mile stone from the Government House in Calcutta. It is in the district of the 24 Pergannahs, pergannah Calcutta.

The tower is 74.5 feet high. In other respects, the station is similar to the S. End of the base.

J. B. N. HENNESSEY.

23

Digitized by Google

DEHRA DOON BASE-LINE.

•

The middle point of the base-line is in Latitude N. 30° 18′, Longitude E. 77° 58′. Azimuth of W. end at E. end = $113^{\circ} 44'$. Length 7.42 miles.

The line was measured over twice. The 1st measurement was made under the directions of Major G. Everest, R.A., and Lieutenant A. S. Waugh, R.E., supervised the 2nd measurement. The assistants employed in the operations, as well as the duties assigned to each person, are shown in the following lists.

During 1st measurement.	During 2nd measurement.
Major G. Everest, R.A.—At the Boning Instru- ment.	Mr. G. Logan.—At the Boning Instrument.
In charge of Microscopes. Lieut. A. S. Waugh, R.E.—At rear end of Bar A. Lieut. T. Renny, R.E. Mr. J. Olliver. Mr. G. Logan. Mr. J. Peyton. Mr. C. Murphy. Capt. R. Wilcox.—At advanced end of Bar II. Mr. H. Keelan.—Laying the trestles. Mr. N. Kallows —)	In charge of Microscopes. Lieut. A. S. Waugh, R.E.—At rear end of Bar A. Mr. H. Keelan. Mr. J. Peyton. Mr. N. Kallonas. Mr. J. Olliver. Mr. C. Murphy. Lieut. T. Renny, R.E.—At advanced end of Bar II. Mr. J. Mulheran.—Laying the trestles. Mr. N. Kallonas. Baboo Badhanath Sikdhar Recorders.
Mr. N. Kallonas Recorders.	Baboo Radhanath Sikdhar. } Recorders.

INTRODUCTION.

This base-line was measured in the Dehra Doon along the southern bank of the Asan Nuddee. Its eastern extremity is situated about 1.1 miles nearly due west of Bhimtál, which is by the road from Dehra to the Mohan pass.

The line was measured over twice. On the 1st occasion in the direction from West to East, when the tongues of the bars pointed North. The 2nd measurement was made in the contrary direction, the bar-tongues however still pointing North. The measurement was always continuous, *i.e.*, every succeeding set originated at the point marking the terminus of its predecessor.

In the 1st measurement, an iron pin with a flat register head, was fixed at each of five convenient points in the alignment. The dot on the register head of pin No. 1 was made at the termination of set No. 66, and similarly, dots on pins Nos. 2, 3, 4, and 5 and at E. End were made successively at the termini of sets Nos. 157, 219, 389, 520, and 622. In the 2nd measurement, other dots marking the terminations of sets were made on the same register heads and at the W. End, and the distance between the two dots at each point of reference was carefully measured. In this manner the entire length W. End to E. End was divided into six parts and each part measured over twice.

Fifty comparisons, between the compensated bars and the standard A, were made before the 1st measurement in a thatched building set up for the purpose in the grounds of the Surveyor General's Office Dehra. Sixty-one similar comparisons were made after the 1st measurement, and 66 after the 2nd measurement, at Camp Barwala, "under circumstances precisely the same with those under which the bars were used in practice, that is under the same tents and at the same hours of the day."*

The microscopes were compared with their scales on 13 occasions during the 1st measurement and on 5 occasions during the 2nd measurement.

In respect to time, the first set of bar comparisons was made on 12th November 1834, the last on 2nd April 1835.

The stations of the verificatory triangulation were 7 in number, forming a single series of triangles. Of these stations, 4 were in the alignment, *viz.*, W. End, A or Heliotropewala (identical with pin No. 2), B or Barwala (identical with pin No. 4), and E. End. The three auxiliary stations α , β and γ were selected on spurs of the Sewalik range of hills. The angles were measured with a 3-foot Theodolite (by either Troughton or Barrow.) read by 5 microscopes. At stations A, γ and E. End, 2 measures were taken on each of 12 zeros. At the remaining 4 stations, 3 measures were made on each of 8 zeros.

^{*} Page XXIV Everest's Meridional Are of India, 1847.

DEHRA DOON BASE-LINE.

,

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at the Surveyor General's Office, Dehra Doon, before the first measurement.

1834	of observing A	parison	persture of A	MICBOMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{20188^{\circ}2}$ Cary's Inch [7.8], = 1.3786 m.y of A								
Nov.	Mean of the times	No. of com	Corrected mean ter	Mean A	A	B	С	D	E	н	Mean of the compensated bars.	Remarks
·	h m		0	+	+	+	+	+	+	+	+	
12th	.11 57 4.1	с. 1	66.42	226.3	253.5	230.2	244'0	279.5	243.5	238.0	248.2	Major Everest
	0 39 P.	M. 2	67.90	242.8	244.5	225.5	246.0	271.5	234.5	237.0	243.2	at the micro-
	1 13	3	69.05	265.5	248.0	231.0	248.0	278.5	243.0	244.5	248.8	meter micro-
	I 45	4	70.12	283.0	246.2	227.0	247.5	277.5	244.2	248.0	248.5	scope.
	2 22	5	71.30	298.0	248.5	230.2	253.0	284.0	248.5	243.2	251.3	
	2 <u>5</u> 5	6	72.05	311.1	252.0	230.3	250.5	287.0	347'0	243.0	252.6	
ł		7	72.07	324.9	252.5	232.2	200.2	283.0	244.2	245.5	253.1	
13th	8 20 A.	м. 8	56.88	42.6	220.5	202'0	225.5	253.5	210.0	213.7	331.0	
	8 50	Q	57.01	54.4	220.2	200.0	225.5	252.5	212'0	215.2	221'0	
	0 48	10	50.02	Q1.8	107.0	172'4	104.0	228.7	187.8	102.0	105'4	
Ľ	0 II P.	м. 11	66.27	163.3	105.8	176.3	201.0	220'0	108.0	108.2	100.0	
	2 20	12	70.57	244'I	204.0	189.5	215.4	241.3	211.2	205.3	211.2	
	2 57	13	71.30	256.0	211.0	190.3	211.0	242.0	206.0	205.5	311.1	
	3 18	14	71.75	205.5	211.0	190.5	214'0	240.3	205.7	204'4	211.0	
	3 38	15	72.17	273.7	211.2	193.1	210.0	243.0	205.5	203.8	311.3	
		10	72.60	279.5	212.0	190.2	210.7	245 1	206.7	201.8	311.I	
		17	72.85	283.3	212.5	189.9	211.9	244.8	209.8	200.5	311.Q	
14tł	1 7 18 A	.м. 18	\$ 57.12	52.8	237'I	212.2	242.0	272.7	224'0	225'0	235.0	
	7 42	10	56.80	49'7	241'4	216.2	240.3	266.4	221.0	223.0	234.8	
	8 g	20	5 56.76	49.6	235.5	214'1	239.0	2650	2250	222.0	233.4	
	8 39	21	57.23	58.5	236.5	211.7	234.5	265.5	21 ⁸ .3	323.I	231.4	
	9 6	22	58.02	72.8	233.7	212.0	231.8	262.5	219.3	220.5	230.0	
	9 31	23	58.90	87.6	230.8	207.6	227°I.	259.5	219.3	222.0	227.8	
	11 58	2.	1 66.26	203.8	235.8	210.5	230'O	267.8	222.6	229.5	232.7	
	O 23 H	2.M. 2	5 67.83	223.9	229.8	206.5	235.3	268.0	228.4	228.9	232.9	
	° 47	20	5 68.85	239.7	232.4	212.2	231.2	267.9	228·I	226.9	233.5	
	111	2	7 69.83	2,53.1	231.8	510.0	225.5	265.2	225.0	22 7'I	230.8	
	I 35	2	8 70.80	207.5	228.3	209.5	228.3	201.3	225.0	224'2	229.4	
	1 58	2	9 71.07	283.5	231.0	210'0	231.3	202.8	223.7	228.4	231.5	
	2 19	3	0 72.32	295.8	233.4	210'8	233.1	204.5	225.5	220.7	232.3	
	2 41	3	1 73.02	304.1	230.0	209.0	231.0	200.7	224.0	227.5	231.5	
	3 3	3	2 73.05	312.9	229.0	211.4	232.4	204.1	223.9	227.4	231.5	
1	3 20	3	3 74.13	322.0	230.0	213.2	234 0	200.2	220.1	220'9	232.9	
15t	h 735	а.м. з	4 57.67	75.0	249.8	220.5	2 5 2 0	279'0	229.1	236.2	244.2	
	84	3	5 57.32	73.2	248.4	221.2	249'9	278.0	232.8	235.0	244.3	l
1	8 34	3	o 57.55	70.3	247.1	220'0	250.5	277.5	234.0	237.0	244.2	
	8 59	3	7 58.05	84.4	243°2	223.7	242.5	273.9	230.0	233.2	241'2	
	9 19	3	8 58.07	93.8	239.3	210.8	240.7	277.8	233.0	230.4	240.9	
	9 40	3	9 59.42	104.3	244.8	2190	240.9	275.0	232.0	230.0	241.0	-
	10 0	4	.0 00.30	117.3	240.7	210.0	237.2	274'0	230.3	237.1	239.0	

II__4

Digitized by Google

BAR COMPARISONS.

Before the first measurement—(Continued.)

	Mean of the times of observing A	No. of comparison	Corrected mean temperature of A	MICROMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{20138\cdot 2}$ Cary's Inch [7.8], = 1.3786 m.y. of A								,
1834 Nov.				Mean A	A	В	С	D	E	н	Mean of the compensated bars	Remarks
15th	<i>h</i> m 0 34 P.M. 0 54 1 13 1 35 1 57 2 22 2 44 3 5 3 25 3 46	41 42 43 44 45 46 47 48 49 50	66.70 67.55 68.40 69.32 70.23 71.11 71.90 72.50 72.85 73.17	+ 223.6 239.1 255.2 267.6 279.6 294.8 306.5 312.8 319.3 328.5	+ 246·1 249·0 245·5 247·4 244·0 244·0 244·8 248·0 249·7 249·7 249·1	+ 229.0 229.9 228.5 230.5 226.0 226.1 233.8 227.0 229.5 234.8	+ 244'I 245'0 249'6 247'0 248'0 248'0 244'0 245'8 246'3 243'I 250'3	+ 277.5 279.0 283.9 284.5 282.0 279.0 283.3 284.2 283.4 283.4 283.4	+ 241'3 241'8 241'8 244'1 244'5 245'1 242'5 243'5 244'5 244'5 247'0	+ 242.0 244.0 243.1 241.4 242.3 241.1 232.5 247.8 242.0 247.0	+ 246.7 248.1 249.2 247.8 247.8 246.7 247.7 249.4 248.7 252.6	Major Everest at the micro- meter micro- scope.
	Means,	•••	66:55	208.09	235.10	214.31	235.60	267.75	227.95	228.53	234.87	

Let the mean length of the compensated bars minus the Standard A at 62° F. be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$x - (t^\circ - 62^\circ) (E_a - dE_a) - \delta = 0$$

Treating the preceding bar comparisons as shown in this equation, we obtain the following series of results :-

x —	4.42 (Ea .	$-dE_a$)-	21.9	=	ο	x -1	10'17	$(E_a - dE_a)$	+	62.5	=	0
<i>x</i> –	5.90	,,	-	°'4	=	0	x]	10.00	,	+	68 · 4	=	0
x-	7:05	,,	+	16.2	=	0	x	10.82	"	+	71.7	=	0
<i>x</i> —	8.12	"	+	34'5	=	0	x +	4.88	"	- 1	1 82·8	=	0
x —	9.30	"	+	46.2	=	0	x +	5.30	"	-	185.1	=	0
x — 1	10.02	"	+	58.5	=	0	x +	5:24	· >>	- 1	183 .8	=	0
x]	10.62	"	+	71.8	=	0	x +	4.77	"	- 1	172.9	=	0
x +	5.13	, ,	-	178.4	=	0	æ +	3.98	"	- 1	57.2	Ħ	0
<i>x</i> +	4.39	"	-)	166.6	=	0	x +	3.10	>>	- 1	40'2	=	0
x+	2·35 °	,,	- 1	133.0	=	0	<i>x</i> –	4.20	,,	-	28.9	=	0
<i>x</i> —	4.32	"	-	36.2	=	0	<i>x</i> —	5.83	"		9.0	=	0
x —	8.27	"	+	32.9	=	0	<i>x</i> —	6.82	,,	+	6.2	=	0
x -	9.30	"	+	44'9	=	0	x –	7.83	,,	+	22.3	=	0
<i>x</i> –	9'75	"	+	54'5	=	0	x-	8.80	"	+	387	æ	0

II__5

Digitized by Google

DEHRA DOON BASE-LINE.

Before the first measurement-(Continued.)

$x - 9.67 (E_{a})$	dE_a) + 52.3 = 0	x+ 1.70()	$E_a - dE_a$	-122.3 = 0
x-10.32	 .,	' + 63.5 = 0	x- 4.70	,,	-23.1 = 0
x-11.05	"	+ 72.6 = 0	x - 5.55	>>	- 9.0 = 0
x-11.65	"	+ 81.4 = 0	x— 6·40	"	+ 6.2 = 0
x-12.12	,,	+ 89.1 = 0	x - 7.32	,,	+ 18.4 = 0
<i>x</i> + 4.33	,,	-169.5 = 0	x - 8.23	n	+ 31.8 = 0
x+ 4.68	,,	-171.1 = 0	x- 9.11	"	+ 48.1 = 0
x + 4.45	,,	-168.2 = 0	x - 9.90	"	+ 58.8 = 0
x+ 3.95	,,	-156.8 = 0	x -10.20	"	+ 63.4 = 0
x+ 3.33	"	-147.0 = 0	x —10.85	"	+ 70.6 = 0
x + 2.58))	-137.5 = 0	<i>x</i> -11.17	"	+ 75.9 = 0

And from the mean of these results,

$$x = 2678 + 455 (E_a - dE_a)$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 16.444,$$

and $x = 101.60 - 4.55 dE_a = 140.07 - 4.55 dE_a = L - A$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading $234^{\cdot}87$, page II____.

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	$\mathbf{A} - \mathbf{L}$	B L	C – L	D – L	$\mathbf{E} - \mathbf{L}$	H – L
Micrometer divisions.	+ 0'23	- 20·56	+0'73	+ 32.88	-6·92	-6·34
Millionths of a yard.	+ 0'32	- 28·34	+1'01	+ 45.33		-8·74

Also combining the values in this table with the equivalent of L-A above determined there result,

II___6

BAR COMPARISONS.

	observing A		trison	erature of A		MICROMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{20168.7}$ Cary's Inch [7.8], = 1.3765 m.y. of A							
1835 Feb.	Mean of the times of		No. of compa	Corrected mean tempe	Mean	A	В	Ċ	D	E	н	Mean of the compensated bars	Bemarks
11 th	h m 7 36	A.M.	I	41°72	-77*5	+ 343°5	+ 31 2°3	+ 33 4°0	+ 367°1	+ 322.0	+ 325°5	+ 334 [.] 1	Major Everest
	8 27		2	42.32	65.1	341.5	311.0	330°0 328°5	305.5	324.0	330.4	333.7	at the micro-
	0 <u>4</u>		э 4	43 52	419	222.5	307.0	322.8	360-8	324.0	331.0	3319	scond
	9 32		Š	43 -7	+15.0	320'0	304.0	318.5	358.0	320.0	330.3	3497	adoba:
	10 * 7		ŏ	50.55	61.1	324-1	3030	313.2	354.5	321.0	334'0	325.0	
	10 41		7	53.65	108.3	3180	3010	3110	351.0	320.4	331.8	322.2	
ļ	I 34	Р.М.	8	68.85	336 ·8	308.5	288.9	300'3	350 .0	31800	329.0	315.8	
	2 I		9	69'87	351.3	311.0	291.0	309.2	354.0	314.2	329.0	318.2	
	2 31		10	70'90	303.7	315-5	200'4	311.1	3500	310.0	3259	320.5	
	3 12		11	71.47	309.5	300 3	2000	312.5	3490	310.5	311.5	313.0	
	ງງ≁ 4.22		12	71.22	264.1	312.2	200.8	325.3	2520	300.4	2100	310 2	•
	4 50		14	70'37	343.0	318.0	298.0	317.2	347.8	304.0	300.0	314'2	
12th	7 10	А.М.	15	48.17	- 7'2	313.5	287.3	310.0	333'0	205.0	2060	300.1	
	7 52		ığ	48.50	+ 2.0	313.0	289.0	307.0	355.5	297.0	300.0	310.3	
	8 28		17	49'42	19.1	311.0	287.9	304.0	340.0	297.1	305.5	307.7	
	92		18	51.00	43.5	301.0	280.8	298.3	333.5	293.5	303.0	301.2	
	9 32		19	53.05	76.3	299.5	270.5	296.0	334.0	295.0	301,1	300'4	
	10 0		20	55.12	110,8	301.2	270.0	293'0	333.9	290.8	303.0	300.2	
	10 30	ъv	21	57:40	144.5	294 4	2740	290.2	324.1	292.0	301.0	290.0	
	I 14 1	F . M .	22	60107	294 1	2900	2707	204 0	3390	290 3	293 5	2000	
	2 24		2) 24	70'52	333.3	288:5	273.5	280.8	324.5	285.0	200'4	202'1	
	3 5		25	71:20	2452	201.0	.272 6	202.5	328 5	282.4	280.3	202.7	
	3 35		2Ğ	71.47	349.5	291.5	276.0	304.0	329.0	288.1	201.0	206.6	
	4 G		27	71.62	350.0	294.0	277.0	304.5	333.5	286 .7	286.2	297.0	
	4 37		28	71.40	345.0	300.0	278.5	29 9'5	332.0	284.5	287.0	296.9	
	58		29	70.82	330.3	301.9	279.2	<u>_</u> 3 03'9	337'3	280.4	290.7	300.0	
13th	7 30 1	А.М.	30 1 T	48.80	93	312.7	289.4	313.5	342.9	298.5	305°6	310.4	
	8 20		31	49 30	10.0	314 %	286.0	305.0	226.4	2000	3030	310.0	1
	0 13		22	50 30	59 5 66 c	304.8	282.0	207.1	334.0	200.0	303.0	202.6	ł
	9 - J 9 47		34 34	54.37	08.8	200'0	2750	280.0	326.0	204.0	200.4	206.7	
	10 21		95	56.57	130.8	295.0	276.0	297.6	321.0	280.0	298.5	296.2	
	10 JI		<u>3</u> Č	58.67	100.2	290'7	272.6	284.0	324.0	286.0	297.7	292.5	
	I 37 I	P.M	37	69.97	329.9	291.0	275.0	296.7	320.1	200.0	279'0	292.2	
	2 15		38	71°95	359.3	286.2	273.0	291.9	327.1	287.0	293.0	293.1	
	2 59		39	73.77	392.3	293.0	201.5	301.0	333.0	295.1	294'0	299°7	

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at Barwala Camp, Dehra Doon, between the two measurements.

Digitized by Google

II____7

DEHRA DOON BASE-LINE.

Between the two measurements-(Continued.)

1882	f observing A	rison	Corrected mean temperature of A	MICEOMETER BEADINGS IN DIVISIONS 1 Division = $\frac{1}{20166.7}$ Cary's Inch [7.8], = 1.3765 m.y. of A								
Feb.	Mean of the times o	No. of comp		Mean A	A	В	С	D	E	н	Mean of the compensated bars.	Bewades
	h m				+	+	+	+	+	+	+	
18 th	3 37 P.M.	40	74.85	+413.8	303.5	288.0	313.0	337.8	303.1	208.8	207 ' ∡	Major Everest
	4 7	41	75.15	414.6	306.2	287 . 0	313.0	340.5	207'0	206.7	307.1	at the micro-
	4 35	42	75.02	412.5	300.8	287.0	312.0	334.0	298.0	297.4	304.0	meter micro-
	5 3	43	74.55	405.5	303.0	287.0	316.8	341.2	296.4	292.3	306.2	scope.
16th	7 33 A.M.	44	42.77	- 1 39.8	267.8	240.5	258.1	280.2	24.5.0	250.5	258.5	۰
	8 4	45	43 37	129.3	267.9	237.8	257.8	287.4	240.0	254.0	258.5	
	8 35	46	44.35	111.5	263.1	234.9	251.0	284 0	248.1	254'I	255.0	
	98	47	45.87	85.6	260.7	229.3	2 52.0	283.0	251.0	255.4	255.2	
	9 39	48	47.57	55.7	259.0	234.4	254.5	2869	252.0	260.1	257.8	i .
	10 0	49	49'22	28.0	255.0	234'0	251.0	282.5	249.5	255.0	254.5	
	10 30	50	50.62	13.2	251.1	230 .0	246.7	282.5	250.0	255.0	252.0	
	10 50	51	51.00	+ 2.8	251.0	231.3	248.4	283.1	249.0	255.9	253.1	
	I 16 р. м .	52	59.32	115.0	301.1	235.0	259.3	291.3	254.0	260.5	260.5	
	I 36	53	60.22	133.0	200.0	237.7	201.2	200.0	251.3	261.0	260'4	
	I 59	54	01.22	152.0	250.0	238.9	252.0	289.5	250.0	200.0	258.2	
	2 25	55	02.07	109.0	255.0	235.4	257.8	280.0	251.0	250.2	257.0	
	33	50	04.02	202.3	251.9	235.0	248.9	280.0	245°5	251.3	253.1	
	3 28	57	05.20	214.7	251.2	233.3	250.9	284.9	247.9	248.5	252.8	
	3 51	58	00.10	220'7	247.2	220.2	241.5	200.2	247.0	245.5	248.3	
	4 13	59	00.40	224'3	2509	231.3	247.5	280.9	244'9	245.0	2 50 1	
	4 38 5 4	00 б1	66°00	215.9	240 5	225.5	246.5	282·6	242•1 240 *9	242 [.] 0 241.8	249 5 248 4	
	Means		59'79	165.71	292.13	271.33	290.15	324'11	285.25	289.89	292.14	

As on page II_5 we have

$$x - (t^\circ - 62^\circ) (E_a - dE_a) - \delta = o;$$

and from the preceding bar comparisons, we obtain the following series of results :---

x+20.28 (E	$a - dE_a$	-411.6 = 0	b	x-	6·85 (Ea	$-dE_a$)	+	21°0 = 0
<i>x</i> + 19.68	,,	-398.8 = 0	o l	x —	7.87	,,	+	33 [.] 0 = 0
<i>x</i> +18.48	,,	-373.8 = 0	כ	x	8.90	,,	+	43.3 = 0
x+16.73))	-344.0 = 0	כ	x —	9'47	"	+	55'9 = O
x+14.20	> >	-311.0 = 0	C	x —	9.62	"	+	54 ^{.6} = 0
x+11.42	,,	-263.9 = 0	ס	x —	9.32	,,	+	45.8 = 0
x + 8.32	"	-213.9 = 0	0	x —	8.37	,,	+	28.8 = 0

Digitized by Google

11<u>-8</u>
BAR COMPARISONS.

Between the two measurements-(Continued.)

$x + 13.83 (E_a - dE$	a) -313.3 = 0	$x - 11.77 (E_a - a)$	$(E_a) + 92.6 = 0$
x + 13.50 ,,	-307.4 = 0	x-12.85	-+106.4 = 0
x + 12.58 ,,	-288.6 = 0	x - 13.15 ,	+107.5 = 0
x + 11.00 ,,	-258.2 = 0	x - 13.02	+107.6 = 0
x + 8.95 ,,	-224·I = 0	x - 12.55 ,	+ 00.3 = 0
x + 6.83 ,,	-189.9 = 0	x + 19.23 ,	-308.3 = 0
x + 4.60 ,,	-1515 = 0	x + 18.63	-387.8 = 0
$x-5^{.87}$,,	-2.7=0	x + 17.65	-367.1 = 0
x— 7.40 "	+ 22.7 = 0	x + 16.13 ,	-340.8 = 0
x - 8.52 ,,	+ 40.2 = 0	x + 14.43	-313.5 = 0
x— 9°20 ,,	+ 52.5 = 0	x + 12.78	-283.1 = 0
x— 9°47 ,,	+ 52.9 = 0	x + 11.35 ,	-266.1 = 0
x— 9 [.] 62 ,,	+ 53.6 = 0	x + 10.10 ,,	-250.3 = 0
x— 9.40 ,,	+ 48.1 = 0	x + 2.68	-1452 = 0
x - 8.82 ,	+ 362 = 0	x + 1.43	-127.4 = 0
x + 13.20 ,,	-301.1 = 0	x + 0.23 ,	-106.7 = 0
x + 12.70 ,,	-2920 = 0	x - 0.97	-87.4 = 0
x + 11.50 ,,	-266.6 = 0	x - 2.65 ,,	-50.8 = 0
x + 9.75 ,	-2370 = 0	x - 3.50 ,,	-38.1 = 0
x+7 [.] 63 ,,	-197.9 = 0	x - 4.10 ,	-27.6 = 0
x+5 [.] 43 "	-165.4 = 0	x - 4.40 ,,	-258 = 0
x+ 3.33 "	-131.8 = 0	x - 4.37 ,	-26.3 = 0
x— 7.97 "	+ 37.7 = 0	x - 4.00 ,,	-32.5 = 0
x -9.95 "	+ 66.2 = 0		

And from the mean of these results,

$$x = 126.43 - 2.21 (E_a - dE_a).$$

Adopting the original value of the expansion of A given at page (9)

$$E_a = 22.67 = 16.469,$$

and $x = 90.03 + 2.21 \ dE_a = 123.93 + 2.21 \ dE_a = L - A.$

Proceeding as on page II_{-6} we obtain;

In terms of	A-L	B-L	, C-L	D-L	E-L	H-L
Micrometer divisions.	-0.01	- 20.81	-1.99	+ 31.97	-6.89	-2.25
Millionths of a yard.	0 .01	- 28.64	-2.24	+44.01	-9'48	-3.10

Also the following;

Digitized by Google

, II

Final deduction of the total length measured with the compensated bars in the 1st measurement.

From page II_6 the excess of the 6 compensated bars above 6 times **A** before the 1st meast: $=840^{\circ}4 - 27^{\circ}3 dE_a$,, II_9, ,, between the two ,, $=743^{\circ}6 + 13^{\circ}3 dE_a$ Therefore the mean excess of ,, applicable to the 1st ,, $=792^{\circ}0 - 7^{\circ}0 dE_a$ And the mean length of a set of 6 compensated bars in feet of the standard = $60^{\circ}002376 \frac{A}{10} - 7^{\circ}0 dE_a$

Hence the total lengths measured with the compensated bars

II_____10

			feet of 👗	
in sets Nos.	1 to 66	=	3960.1568 -	462 dE _a
دد	67 to 157	=	5460.2162 -	637 dE
22	158 to 219	=.	3720.1473 -	$434 \ dE_a$
"	220 to 389	=	10200.4039 -	1190 dE _a
"	390 to 520	==	7860-3113 —	917 dE _a
"	521 to 622	Ξ	6120.2424 —	714 dE _a
"	1 to 622	=	37321.4779 —	4354 dE _a

Now the mean temperature of A during the above bar comparisons was $62^{\circ} + \frac{7^{\circ} \circ}{6} = 63^{\circ} \cdot 2$, for which temperature the corresponding expansion of A from page (19) is 21.655 m.y. Comparing this value of expansion with the original value = 22.67 m.y., used in the foregoing, it is found, that $dE_a = +1.015 \text{ m.y.}$; and substituting for dE_a this numerical value, there result ;—

Total lengths measured with the compensated bars

															Jees		oj 🖌		A
ets	Nos.	I	to	66	or	W.	End,	,	to	Pin	No.	1		=(3960.150	58 —	0.0014)	=	3960.1554
,,		67	to	157	or	Pin	No.	1,	to	Pin	No.	2 ((Stn. A)	=(5460.210	52 -	a~001 9)	=	5460.2143
"		158	to	219	or	Pin	No.	2 (Stn. A),	, to	Pin	No.	3		=(3720.147	73 –	0.0013)	=	3720.1460
,,	:	220	to	389	or	Pin	No.	3,	to	Pin	No.	4 ((Stn. B)	=(10200.403	<u> 89 –</u>	0.0036)	=	10200.4003
,,		390	to	520	or	Pin	No.	4 (Stn. B),	to	Pin	No.	5		=(7860.311	13 -	0.00038)	=	7860.3085
"		521	to	622	or	Pin	No.	5,	to	E. I	Ind			=(6120.242	24 —	0.0033)	=	6120.2402
,,		1	t 0	622	or	w.	End,	, ,	to	E. I	Ind			=	37321-47	79 —	0.0132	=	37321.4647
	:ts))))))))	28 Nos.	ts Nos. 1 ,, 67 ,, 158 ,, 220 ,, 390 ,, 521 ,, 1	ts Nos. I to ,, 67 to ,, 158 to ,, 220 to ,, 390 to ,, 521 to ,, 1 to	ta Nos. 1 to 66 ,, 67 to 157 ,, 158 to 219 ,, 220 to 389 ,, 390 to 520 ,, 521 to 622 ,, 1 to 622	ts Nos. 1 to 66 or ,, 67 to 157 or ,, 158 to 219 or ,, 220 to 389 or ,, 390 to 520 or ,, 521 to 622 or ,, 1 to 622 or	ts Nos. 1 to 66 or W. ,, 67 to 157 or Pin ,, 158 to 219 or Pin ,, 220 to 389 or Pin ,, 390 to 520 or Pin ,, 521 to 622 or Pin ,, 1 to 622 or W.	ts Nos. 1 to 66 or W. End, ,, 67 to 157 or Pin No. ,, 158 to 219 or Pin No. ,, 220 to 389 or Pin No. ,, 390 to 520 or Pin No. ,, 521 to 622 or Pin No. ,, 1 to 622 or W. End,	ts Nos. 1 to 66 or W. End, ,, 67 to 157 or Pin No. 1, ,, 158 to 219 or Pin No. 2 (Stn. A), ,, 220 to 389 or Pin No. 3, ,, 390 to 520 or Pin No. 4 (Stn. B), ,, 521 to 622 or W. End,	ets Nos. 1 to 66 or W. End, to ,, 67 to 157 or Pin No. 1, to ,, 158 to 219 or Pin No. 2 (Stn. A), to ,, 220 to 389 or Pin No. 3, to ,, 390 to 520 or Pin No. 4 (Stn. B), to ,, 521 to 622 or Pin No. 5, to	ets Nos. 1 to 66 or W. End, to Pin ,, 67 to 157 or Pin No. 1, to Pin ,, 158 to 219 or Pin No. 2 (Stn. A), to Pin ,, 220 to 389 or Pin No. 3, to Pin ,, 390 to 520 or Pin No. 4 (Stn. B), to Pin ,, 521 to 622 or Pin No. 5, to E. F ,, 1 to 622 or W. End, to E. F	ets Nos. 1 to 66 or W. End, to Pin No. ,, 67 to 157 or Pin No. 1, to Pin No. ,, 158 to 219 or Pin No. 2 (Stn. A), to Pin No. ,, 158 to 239 or Pin No. 2 (Stn. A), to Pin No. ,, 220 to 389 or Pin No. 3, to Pin No. ,, 390 to 520 or Pin No. 4 (Stn. B), to Pin No. ,, 521 to 622 or Pin No. 5, to E. End ,, 1 to 622 or W. End, to E. End	ets Nos. 1 to 66 or W. End, to Pin No. 1 ,, 67 to 157 or Pin No. 1, to Pin No. 2 ,, 158 to 219 or Pin No. 2 (Stn. A), to Pin No. 3 ,, 220 to 389 or Pin No. 3, to Pin No. 4 ,, 390 to 520 or Pin No. 4 (Stn. B), to Pin No. 5 ,, 521 to 622 or Pin No. 5, to E. End ,, 1 to 622 or W. End, to E. End	ets Nos. I to 66 or W. End, to Pin No. 1 ,, 67 to 157 or Pin No. 1, to Pin No. 2 (Stn. A) ,, 158 to 219 or Pin No. 2 (Stn. A), to Pin No. 3 ,, 158 to 239 or Pin No. 2 (Stn. A), to Pin No. 3 ,, 220 to 389 or Pin No. 3, to Pin No. 4 (Stn. B) ,, 390 to 520 or Pin No. 4 (Stn. B), to Pin No. 5 ,, 521 to 622 or Pin No. 5, to E. End ,, I to 622 or W. End, to E. End	ets Nos. 1 to 66 or W. End, to Pin No. 1 = (,, 67 to 157 or Pin No. 1, to Pin No. 2 (Stn. A) = (,, 158 to 219 or Pin No. 2 (Stn. A), to Pin No. 3 = (,, 158 to 220 or Pin No. 3, to Pin No. 4 (Stn. B) = (,, 390 to 520 or Pin No. 4 (Stn. B), to Pin No. 5 = (,, 521 to 622 or Pin No. 5, to E. End = (,, 1 to 622 or W. End, to E. End = (ts Nos. 1 to 66 or W. End, to Pin No. 1 = $(3060^{-1})^{560}$, 67 to 157 or Pin No. 1, to Pin No. 2 (Stn. A) = $(5460^{-216})^{-1}$, 158 to 219 or Pin No. 2 (Stn. A), to Pin No. 3 = $(3720^{-1}47)^{-1}$, 220 to 389 or Pin No. 3, to Pin No. 4 (Stn. B) = $(10200^{-4}03)^{-1}$, 390 to 520 or Pin No. 4 (Stn. B), to Pin No. 5 = $(7860^{-311})^{-1}$, 521 to 622 or Pin No. 5, to E. End = $(6120^{-2}447)^{-1}$, 1 to 622 or W. End, to E. End = $37321^{-4}77^{-1}$	f_{12} to Nos. I to 66 or W. End,to Pin No. 1= (3960°1568 - f_{12} to 157 or Pin No. 1,to Pin No. 2 (Stn. A) = (5460°2162 - f_{12} 158 to 219 or Pin No. 2 (Stn. A), to Pin No. 3= (3720°1473 - f_{12} 220 to 389 or Pin No. 3,to Pin No. 4 (Stn. B) = (10200°4039 - f_{12} 390 to 520 or Pin No. 4 (Stn. B), to Pin No. 5= (7860°3113 - f_{12} 521 to 622 or Pin No. 5,to E. End f_{12} 1 to 622 or W. End,to E. End f_{12} 2731°4779 -	ts Nos. 1 to 66 or W. End, to Pin No. 1 = $(3960 \cdot 1568 - 0.0014)$, 67 to 157 or Pin No. 1, to Pin No. 2 (Stn. A) = $(5460 \cdot 2162 - 0.0014)$, 158 to 219 or Pin No. 2 (Stn. A), to Pin No. 3 = $(3720 \cdot 1473 - 0.0013)$, 220 to 389 or Pin No. 3, to Pin No. 4 (Stn. B) = $(10200 \cdot 4039 - 0.0036)$, 390 to 520 or Pin No. 4 (Stn. B), to Pin No. 5 = $(7860 \cdot 3113 - 0.0028)$, 521 to 622 or Pin No. 5, to E. End = $(6120 \cdot 2424 - 0.0022)$, 1 to 622 or W. End, to E. End = $37321 \cdot 4779 - 0.0132$	ets Nos.I to 66 or W. End,to Pin No. 1= ($3060^{-1}568 - 00014) =$,,67 to 157 or Pin No. 1,to Pin No. 2 (Stn. A) = ($5460^{-2}162 - 00014) =$,,158 to 219 or Pin No. 2 (Stn. A), to Pin No. 3= ($3720^{-1}473 - 00013) =$,,220 to 389 or Pin No. 3,to Pin No. 4 (Stn. B) = ($10200^{-4}039 - 00036) =$,,390 to 520 or Pin No. 4 (Stn. B), to Pin No. 5= ($7860^{-3}113 - 00028) =$,,521 to 622 or Pin No. 5,to E. End= ($6120^{-2}424 - 00022) =$,,I to 622 or W. End,to E. End= $37321^{-4}779 - 00132 =$

Digitized by Google

BAR COMPARISONS.

1007	f observing A	compariaon	perature of A		Mic tD	$\mathbf{B} \mathbf{O} \mathbf{M} \mathbf{E} \mathbf{T} \mathbf{E}$	E B B A D 1 218-9 Cary's 1	INGS I1 Inch [7.8], —	₹ DIVIS 1-8731 m.y. (10 N S. M A		
1835 March and April	Mean of the times of	No. of comps	Corrected mean tem	Mean A	A	В	С	D	E	Н	Mean of the compensated bars.	Remarks
31st	h m 6 47 A.M. 7 15 7 3 4 8 30 9 49 10 20 10 41 1 30 P.M. 1 56 2 21 2 44 3 32 3 58 4 20 4 41 1 30 P.M. 1 56 3 32 3 58 4 44 4 41 2 21 4 44 5 30 5 30 4 44 4 41 2 21 3 62 4 44 5 30 7 15 3 4 4 42 5 30 7 15 3 4 4 42 5 30 7 15 8 48 8 29 9 55 10 32 2 99 55 20 12 27 30 29 55 20 12 27 30 29 3 30 3 38 3 3	I 2 3 4 50 78 90 11 2 3 4 50 78 90 11 2 3 4 50 78 90 11 2 3 4 50 78 90 31 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	50.7 50.35 51.07 52.30 53.87 55.57 55.	+ 288.4 294.2 306.4 326.5 351.0 375.7 403.5 451.8 502.3 575.7 803.9 82.4.2 83.5.6 84.5.8 84.5.7 9 82.4.2 9 82.6.5 8 84.7.2 9 82.4.2 9 82.6.5 8 82.5.7 8 82.5.9 8 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 8 85.0 85.0	+ 58° 9 9 9 573 5 55° 9 9 9 575 5 55° 9 9 577 7 7 4 1 8 55° 55° 55° 55° 55° 55° 55° 55° 55° 5	+ 547 °0 547 79 543 9 544 2 °3 5 544 2 °3 5 544 2 °3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	+ 564.7 568.4 555.5 555.	+ 596 9 2 597 1 596 9 5997 1 592 0 5 588 8 5937 1 592 0 5 588 8 5937 1 592 0 5 588 8 5 593 4 588 9 5 588 8 5 588 8 5 588 5	+ 568.5 557.3 555.7 5 557.3 555.7 5 557.7 5 55	+ 559 557 9 9 557 9 9 9 557 559 557 559 557 559 557 559 557 559 557 557	+ 508 5 55 55 55 55 55 55 55 55 55 55 55 55	

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at Barwala Camp, Dehra Doon, after the 2nd measurement.

Digitized by Google

п____

	obserring A	erature of A		MICE 1 Di	OMBTER	BBADI <u>1</u> <u>118-9</u> Cary's Ir	NG-8 IM 1ch [7.8], — 1	DIVISI 3731 m.y. of	о и я А		
1835 April.	Mean of the times of No. of compa	Corrected mean temp	Mean A	A	В	C	D	E	н	Mean of the compensated bars	Remarks .
lst	h m 3 59 P.M. 41 4 17 42 4 35 43 4 58 44 5 23 45	86.25 86.27 86.25 86.05 85.60	+ 859.5 859.0 856.4 849.9 837.0	+ 576°0 577°8 578°8 577°9 580°7	+ 566.8 565.9 565.7 568.1 559.1	+ 583.5 583.1 576.9 583.2 581.2	+ 619.9 623.9 621.0 617.5 612.7	+ 576·8 573·3 574·9 574·2 564·5	+ 569 [.] 2 573 [.] 3 572 [.] 6 5 ⁶ 3 [.] 7 5 ⁶ 4 [.] 5	+ 582.0 582.9 581.7 580.8 577.1	
2nd	7 6 $A.M.$ 46 7 28 47 7 49 48 8 9 49 8 33 50 8 57 51 9 16 52 9 36 53 9 55 54 10 14 55 2 0 P.M. 56 2 18 57 2 35 58 2 54 59 3 13 60 3 48 61 4 3 62 4 17 63 4 31 64 4 47 65 5 11 60	53'95 54'55 55'42 56'50 58'25 60'20 61'92 63'52 65'15 66'92 87'50 87'92 88'15 88'55 88'55 88'55 88'20 88'20 87'80	374'3 380'8 392'9 412'3 442'2 471'8 496'9 526'0 553'5 580'0 864'5 879'7 887'1 893'4 893'4 898'6 900'6 902'7 900'0 896'6 892'3 883'2	596'4 595'0 590'8 588'9 588'9 588'9 584'2 574'3 574'4 577'1 588'9 588'9 588'9 588'9 574'3 578'9 588'9 588'9 574'3 574'3 574'3 574'3 574'3 574'3 574'3 574'3 574'3 574'3 574'3 574'3 574'3 574'3 575'4 575'4 575'5 588'9	572'3 576'1 570'5 568'9 567'2 564'8 560'3 560'8 550'0 571'0 572'0 574'0 575'2 574'0 575'9 574'7 578'0 575'9 574'7 578'0 576'4'1 569'9	591.3 580.9 585.0 578.9 573.0 577.3 567.3 567.3 567.3 567.3 567.3 595.0	623.0 623.9 622.5 621.0 617.4 612.9 615.1 616.0 618.1 615.5 629.0 633.1 634.9 631.5 631.0 631.0 627.0 629.6 619.4 627.8 625.8	582.0 582.8 576.9 578.6 579.8 579.7 582.1 579.3 579.7 584.3 591.0 586.4 588.8 580.6 585.9 586.8 583.4 586.9 577.3 579.0	581.9 586.9 586.7 581.9 584.4 583.8 582.8 582.8 582.8 582.0 584.0 587.1 585.0 587.0 583.0 583.0 583.0 583.0 583.0 583.0 579.0 579.0 579.0 579.0 579.0 579.0 579.0 579.0 570.4 570.3	591.2 592.4 588.1 586.2 586.0 583.0 583.5 580.1 580.7 579.0 589.8 592.7 594.0 593.4 593.4 593.4 593.9	
	Means,	. 72'48	647.26	575.64	560 .6 3	575.36	612.73	570.81	573.03	578.03	

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at Barwala Camp, Dehra Doon, after the 2nd measurement.

Digitized by Google

II____12

;

BAR COMPARISONS.

After the 2nd measurement-(Continued.)

As on page II_5 we have

,

$$x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = o;$$

and from the preceding bar comparisons, we obtain the following series of results :---

<i>x</i> +11.93 (<i>E</i> _a	$-dE_a$	-281.1 =	0	x-20.17 ($(E_a - dE_a)$	+ 21 2.3	= 0
x+11.62	<i></i> "	-273.9 =	• 0	x -21.30	"	+ 229.5	= 0
<i>x</i> +10.93	,,	-258.8 =	0	x -22.20	,,	+ 241.5	= 0
x + 9.70	"	-235.0 =	0	<i>a</i> -22.85	"	+ 253.4	= 0
<i>x</i> + 8.13	"	-208.7 =	0	x-23.42	"	+ 260.6	= 0
<i>x</i> + 6.43	"	-184.1 =	0	x-23.82	"	+ 268.7	= 0
<i>x</i> + 4.55	"	-153.0 =	0	x-24.10	"	+ 276.8	= 0
<i>x</i> + 1.38	"	-99.8 =	0	x-24.25	,,	+ 277.5	= 0
x — 1.85	"	- 51.2 =	0	x-24.37	"	+ 276 • 1	= 0
x- 4.13	"	- 14.1 =	0	x-24.25	"	+ 274.7	= 0
x — 6·42	"	+ 20.9 =	0	x-24.05	"	+ 269.1	= 0
x — 19.60	"	+ 201.9 =	0	x -23.60	"	+ 259.9	= 0
x —20.87	"	+220.7 =	0	#+ 8·05	"	-216.9	= 0
x-21.27	"	+242.1 =	0	<i>x</i> + 7.45	"	-211.6	= 0
x-22.52	"	+251.9 =	0	x+ 6.28	"	- 195.2	= 0
x-23.20	"	+ 259.2 =	0	x+ 5.20	"	-173.9	= 0
x-23.67))	+262.2 =	0	x + 3.75	"	-143.8	= 0
x-23.92	"	+266.4 =	0	x+ 1.80	"	-111.3	= 0
x-23.92	"	+261.9 =	0	<i>x</i> + 0.08	"	- 86.6	= 0
<i>x</i> -23.80	"	+263.6 =	0	<i>x</i> — 1.52	"	- 54'1	= 0
x-23.42))	+263.6 =	0	x - 3.15	"	- 27.2	= 0
x-22.67	"	+ 250.5 =	0	x - 4.92	"	+ 1.9	= 0
x +10.40	"	-254.8 =	0	x-24.35	"	+ 274.7	= 0
x+ 9.98	"	-244.4 =	0	x-25.02	"	+ 287.0	= 0
x+ 9.18	"	-230.3 =	0	x- 25 · 50	'n	+ 292.5	= 0
x+ 7.80	"	-209.8 =	0	x-25.92	"	+ 300.0	= 0
x + 6.38	"	-180.3 =	0	x -26.15		+ 304.4	= 0
<i>x</i> + 4 [.] 93	"	-1560 =	0	x-26.45	"	+ 307.6	= 0
<i>x</i> + 3.48	"	-133.8 =	0	x-26.55	,,	+310.8	= 0
x + 1.38	"	- 98.0 =	0	x- 26.50	"	+ 306.1	= 0
x— 1.07	"	-61.8 =	0	x-26.37	"	+ 30.5.7	= 0
x— 2.85	"	- 32.8 =	0	x-26.20	33	+ 303.5	= 0
x - 4 [.] 82	"	- 3.1 =	0	<i>x</i> – 25.80	"	+ 294.9	= 0

•

Z Digitized by Google

II_₁₃

After the 2nd measurement—(Continued.)

And from the mean of these results,

$$x = -69^{\circ}23 + 10^{\circ}48 (E_a - dE_a).$$

Adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 16.510,$$

and $x = 103.79 - 10.48 dE_a = 142.51 - 10.48 dE_a = L - A$. Proceeding as on page II_6 we obtain :--

In terms of	A - L	$\mathbf{B} - \mathbf{L}$	C – L	D – L	E – L	H - L
Micrometer divisions.	- 2 [.] 39	—17:40	-2.67	+ 34·70	7·22	— 5·∞
Millionths of a yard.	- 3 [.] 28	—23 ^{.8} 9	-3.67	+ 47 [.] 65	9·91	— 6·87

Also the following,

$$A - A = 101.40 - 10.48 dE_a = 139.23 - 10.48 dE_a$$

$$B - A = 86.39 - ,, = 118.62 - ,,$$

$$C - A = 101.12 - ,, = 138.84 - ,,$$

$$D - A = 138.49 - ,, = 190.16 - ,,$$

$$E - A = 96.57 - ,, = 132.60 - ,,$$

$$H - A = 98.79 - ,, = 135.64 - ,,$$

and
$$6x = 855^{ny} - 629 dE_{a^*}$$

Digitized by Google

BAR COMPARISONS.

Final deduction of the total length measured with the compensated bars in the 2nd measurement

From page II_9 the excess of the 6 compensated bars above 6 times A between the two measurements $= 743.6 + 13.3 dE_a$,, II_14, ,, after the 2nd ,, $= 855.1 - 62.9 dE_a$ Therefore the mean excess of ,, applicable to the 2nd ,, $= 799.4 - 24.8 dE_a$ And the mean length of a set of 6 compensated bars in feet of the standard $= 60.0023982 \frac{A}{10} - 24.8 dE_a$

Hence the total lengths measured with the compensated bars

		feet of A
in sets Nos.	I to 102	$= 6120.2446 - 2530 dE_a$
"	103 to 233	$= 7860.3142 - 3249 dE_a$
32	234 to 403	$= 10200.4077 - 4216 dE_a$
· ,,	404 to 465	$= 3720.1487 - 1538 dE_{a}$
••	466 to 556	$= 5460.2182 - 2257 dE_{a}$
33	557 to 622	$= 3960.1583 - 1637 dE_a$
>>	1 to 622	$= 37321.4917 - 15427 \ dE_a$

Now the mean temperature of A during the above bar comparisons was $62^{\circ} + \frac{24^{\circ}8}{6} = 66^{\circ}.1$, for which temperature the corresponding expansion of A from page (19) is 21.673 m.y. Comparing this value of expansion with the original value = 22.67 m.y., used in the foregoing; it is found, that $dE_a = +0.997 \text{ m.y.}$; and substituting for dE_a this numerical value, there result,

Total lengths measured with the compensated bars

	. .			feet	of	A
in sets N	Nos. 1 to 102	or E. End,	to Pin No. 5	Π	6120.2446 - 0.0076	= 6120.2370
22	103 to 233	or Pin No. 5,	to Pin No. 4 (Stn. B)	=	7860.3142 - 0.0097	= 7860.3045
"	234 to 403	or Pin No. 4 (Stn. B)	, to Pin No. 3	=	10200.4077 - 0.0126	= 10200-3951
"	404 to 465	or Pin No. 3,	to Pin No. 2 (Stn. A)	=	3720.1487 - 0.0046	5 = 3720.1441
,,	466 to 556	or Pin No. 2 (Stn. A)	, to Pin No. 1	=	5460.2182 - 0.0068	5460.2114
23	557 to 622	or Pin No. 1,	to W. End	=	3960.1583 — 0.0049) = 3960·1534
"	1 to 622	or E. End,	to W. End		37321.4917 — 0.0462	a = 37321.4455

II_15

II____16

1

Comparisons between the Compensated Microscopes and their 6-inch brass scales during the 1st measurement, and provisional determination of Microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m.i.)

When compared			cope.	pared with.	l tempe ra- re.	to 62° Fah. n of 6' scale 7 = 62.5 m.i.	Microsco Observed	pe Scale.	Bcale — <i>A</i> , 2° Fah.	Micros: - Scale A, at 62° Fah.		
		1834	Micros	Scale com	Corrected	Reduction Expansio for 1° = J	<i>term</i> Divisions 10000 = 1".	s of m.i.	Micros: at 63	10. i.	Reference number.	
December	lst	Before the 1st mea- surement.	UOPMNTS	URP MN TS	65 [°] 15 59 [·] 31 64 [·] 46 61 [·] 25 59 [·] 02 63 [·] 85 61 [·] 94	$ \begin{array}{r} + & 197 \\ - & 168 \\ + & 154 \\ - & 47 \\ & 187 \\ + & 115 \\ - & 4 \end{array} $	$ \begin{array}{r} $	0 + 375 - 420 + 225 200 870 530	$ \begin{array}{r} + 283 \\ 93 \\ 35^{\circ} \\ - 21 \\ + 363 \\ - 97 \\ 75 \end{array} $	+ 480 300 84 157 376 888 451	¥ 2 3 4 5 6 7	
23	4th	Between sets No. 22 and 23.	U O P M N T S	U R P M N T S	68'05 69'91 68'95 69'85 68'12 69'35 67'64	+ 378 494 435 491 382 459 352	•00 - 0.70 6.50 3.20 + 1.00 •00 + 3.05	0 - 70 650 320 + 100 0 + 305	+ 283 93 350 - 21 + 363 - 97 - 75	+ 661 517 135 150 845 362 582	8 9 10 11 12 13 14	
· "	8th	Between sets No. 49 and 50.	U O P M N T S R	U R P M N T S R	69.05 65.81 65.66 68.05 68.12 66.65 63.64 66.81	+ 441 238 229 378 382 290 102 301	$ \begin{array}{r} $	$ \begin{array}{c} 0 \\ - 783 \\ 30 \\ 215 \\ + 220 \\ 643 \\ 0 \end{array} $	+ 283 93 -350 + 363 - 97 75 + 93	$ + 724 \\ 331 \\ - 204 \\ + 327 \\ 530 \\ 413 \\ 670 \\ 394 $	15 16 17 18 19 20 21 21	
"	llth	Between sets No. 71 and 72.	U O P M N T R	U R P M N T R	65.12 64.21 68.01 65.96 70.22 69.12 69.05 69.01	+ 197 157 376 248 535 445 440 476	$ \begin{array}{r} $	0 + 220 - 333 937 400 226 675 33	$ \begin{array}{r} + 283 \\ 93 \\ 93 \\ 350 \\ - 21 \\ + 363 \\ - 97 \\ + 93 \\ \end{array} $	+ 480 470 136 - 339 + 114 582 - 332 + 536	23 24 25 20 27 28 29 30	
"	17th	Between sets No. 129 and 130.	U O P M N T R	U R P M N T R	68.15 67.81 68.06 67.45 67.42 66.85 65.11	+ 384 363 379 341 339 303 195	$\begin{vmatrix} + 1.17 \\ - 1.00 \\ 9.87 \\ 00 \\ 00 \\ - 7.99 \\ + 2.00 \end{vmatrix}$	$ \begin{array}{c} + 117 \\ - 100 \\ 987 \\ 0 \\ - 799 \\ + 200 \end{array} $	$ \begin{array}{c} + 283 \\ 93 \\ 350 \\ - 21 \\ + 363 \\ - 97 \\ + 93 \end{array} $	$ \begin{vmatrix} + 784 \\ 356 \\ - 258 \\ + 320 \\ 702 \\ - 503 \\ + 488 \end{vmatrix} $	31 32 33 34 35 . 36 37	

* These microscopes were compared a second time, because they were adjusted after the first comparison.

Digitized by Google

When compared				with.	pera-	• Fah. • scale •5 <i>m.</i> i.	Micro Microsco	scope - pe Scale.	- 4 ,	Micros : — at 62° I	Scale A, Fah.
	Wha	en compared	licroscope	compared	oted tem ture.	ion to 62 sion of $6'$ = $E = 62$	Observed term	value in is of	t : Scale - 62° Fah.		ence ber.
		1834-35		Scale	Corre	Reduct Expar for 1°	Divisions 10000=1"	m.i.	Microe	178.5.	Refer num
December	21st	Between sets No. 166 and 167.	U O P M N T R	U R P M N T R	5 ⁶ ·15 66·81 66·76 60·25 61·42 65 ^{·8} 5 63·61	$ \begin{array}{r} - 366 \\ + 301 \\ 298 \\ - 109 \\ 37 \\ + 240 \\ 101 \\ \end{array} $	$ \begin{array}{r} + 5.50 \\ - 4.00 \\ 7.50 \\ + 3.93 \\ 2.33 \\ - 6.50 \\ + 1.83 \end{array} $	+ 550 - 400 750 + 393 - 650 + 183	+ 283 93 350 - 21 + 363 - 97 + 93	$ \begin{vmatrix} + 467 \\ - 6 \\ - 102 \\ + 263 \\ 559 \\ - 507 \\ + 377 \end{vmatrix} $	38 39 40 41 42 43 44
"	27th	Between sets No. 209 and 210.	U O P M N T R	U R P P M N T R	65.35 68.31 68.06 67.76 66.25 65.72 61.05 65.11	+ 209 395 379 266 232 - 60 + 195	$ \begin{array}{r} + 2.67 \\ - 1.70 \\ 7.23 \\ 7.62 \\ + 3.00 \\73 \\ 4.80 \\ + 1.60 \\ \end{array} $	$ \begin{array}{r} + 267 \\ - 170 \\ 723 \\ 762 \\ + 300 \\ - 73 \\ 480 \\ + 160 \\ \end{array} $	+ 283 93 350 - 21 + 363 - 97 + 93	$ + 759 \\ 3^{18} \\ 6 \\ - 5^{2} \\ + 545 \\ 5^{22} \\ - 637 \\ + 448 $	45 46 47 48 49 50 51 5 ²
January	3rd	Between sets No. 283 and 284.	UOP MN T R	U R P M N T R	63 ^{.8} 5 65 ^{.01} 65 [.] 96 66 ^{.2} 5 68 [.] 42 68 ^{.15} 69 ^{.61}	+ 116 188 248 266 401 384 476	$ \begin{array}{r} + 2.77 \\ & .00 \\ - 7.67 \\ + 28 \\ - 2.13 \\ & .00 \\ \end{array} $	$\begin{array}{r} + 277 \\ \circ \\ - 567 \\ + 28 \\ - 213 \\ 773 \\ \circ \end{array}$	$ \begin{array}{r} + 28_{3} \\ 93 \\ 350 \\ - 21 \\ + 36_{3} \\ - 97 \\ + 93 \end{array} $	+ 676 281 - 169 + 273 551 - 486 + 569	53 54 55 56 57 58 59
25	5th	Between sets No. 297 and 298.	UOP MN T R	U R P M N T R	58.95 63.31 60.46 63.45 63.92 65.65 60.31	$ \begin{array}{r} - & 191 \\ + & 82 \\ - & 96 \\ + & 91 \\ & 120 \\ & 228 \\ - & 106 \\ \end{array} $	$ \begin{array}{r} -3.90 \\ + .70 \\ -2.50 \\ +2.90 \\ 2.27 \\ -3.80 \\ + 6.00 \end{array} $	$ \begin{array}{r} - 390 \\ + 70 \\ - 250 \\ + 290 \\ - 380 \\ + 600 \\ \end{array} $	+ 283 93 350 - 21 + 363 - 97 93	- 298 + 245 + 245 + 360 - 710 - 249 + 587	60 61 62 63 64 65 66
n	llth	Between sets No. 388 and 389.	UOPMNTR	U R P M N T R	63°25 63°31 59°46 59°75 62°42 64°55 61°31	$ \begin{array}{r} + & 78 \\ & 82 \\ - & 159 \\ & 141 \\ + & 26 \\ & 159 \\ - & 43 \end{array} $	$ \begin{array}{r} + 4.32 \\ .60 \\ - 1.50 \\ + 6.00 \\ 2.70 \\ - 4.00 \\ + 5.00 \\ \end{array} $	+ 432 60 - 150 + 600 270 - 400 + 500	+ 283 93 350 - 21 + 363 - 97 + 93	+ 793 235 41 438 659 - 338 + 550	67 68 69 7° 71 72 73
January	12th	Between sets No. 395 and 396.	S	8	63.94	+ 121	+ 4'10	+ 410	- 75	+ 456	74
)	18th	Between sets No. 471 and 472.	U O P M N T S	U R P M N T S	65 [.] 55 68 [.] 71 65 [.] 93 65 [.] 05 66 [.] 62 63 [.] 35 67 [.] 04	+ 222 420 246 191 289 84 315	$ \begin{vmatrix} + 3.03 \\ - 1.40 \\ 8.83 \\ + 6.50 \\ - 1.20 \\ + 2.40 \end{vmatrix} $	+ 303 - 140 - 883 + 650 - 120 + 240	+ 283 93 350 - 21 + 363 - 97 75	+ 808 373 - 287 + 820 652 - 133 + 480	75 76 77 78 79 80 81

During the 1st measurement—(Continued.)

* These microscopes were compared a second time, because they were adjusted after the first comparison.

١,

II_₁₇

Wh	en compensa		l with.	ipera.	2° Fah. 6''scale 2'5 m. i.	Microsoc	oscope - ope Scale.	۲. - ۲	Micros : - Scale A, at 62° Fah.	
		licroscol	omparad	cted ten ture.	tion to 6 sion of $E = 6$	Observed term	value in s of	s: Scale 62° Fa		ence ber.
	1835		Scale c	Corre	Reduc Expan for 1° =	Divisions 10000 = 1"	<i>m.</i> i.	Micro	m. i.	Refern
_24th January 31st "	Between sets No. 517 and 518. Between sets No. 622 ₁ and 622 ₉ .	UOOPMNTS DOPTNMS	URRPMNTS URPTNMS	60°85 62°61 67°61 61°12 61°25 66°32 58°55 58°64 62°35 50°61 50°86 63°35 62°62 62°65 60°94	$ \begin{array}{r} - & 72 \\ + & 38 \\ & 351 \\ - & 55 \\ + & 270 \\ - & 210 \\ + & 22 \\ - & 124 \\ + & 84 \\ & 1 \\ + & 84 \\ + & 1 \\ - & 66 \\ \end{array} $	$ \begin{array}{c} + 7.30 \\ - 1.50 \\ 2.37 \\ + 6.80 \\ 0.40 \\ 2.50 \\ 8.33 \\ + 2.83 \\ 1.32 \\ - 4.76 \\ 2.57 \\ .00 \\ + 8.33 \\ 5.90 \\ \end{array} $	$+ 730 \\ + 730 \\ - 150 \\ 237 \\ + 680 \\ 40 \\ 250 \\ 833 \\ + 283 \\ 132 \\ - 476 \\ 257 \\ 0 \\ + 833 \\ 590 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 830 \\ + 800 \\$	$ \begin{array}{c} + 283 \\ 93 \\ 93 \\ 350 \\ - 21 \\ + 363 \\ - 97 \\ 75 \\ + 283 \\ 93 \\ - 97 \\ + 363 \\ - 97 \\ + 363 \\ - 21 \\ 75 \\ \end{array} $	+ 941 581 294 58 612 673 - 63 + 548 + 588 + 588 - 260 270 + 364 853 449	82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
5th February	39	R	R	62.31	+ 20	5.30	520	+ 93	633	97

During the 1st measurement—(Continued).

The required combinations of individual microscope errors taken from pages II— $_{16}$ to II— $_{18}$, are expressed as follows;

Reference numbers.	mean temp :	
$e_1 = 2 + 3 + 4 + 5 + 6 +$	$\frac{1+7}{2} = + 2271$ at $(6^{\circ}_{2} - 0^{\circ}_{0}_{0})$	before the measurement
$e_{g} = 9 + 10 + 11 + 12 + 13 +$	$\frac{8+14}{2} = + 2631 \text{ at } (62 + 7.01)$	between sets 22 & 23
$e_8 = 16 + 17 + 18 + 19 + 20 +$	$\frac{8+21}{2} = + 2063 \text{ at } (62 + 4.69) \frac{9}{6}$	" 49 & 50
$e_4 = 16 + 17 + 18 + 19 + 20 +$	$\frac{15+22}{2} = + 1956 \text{at } (62+5.04) \text{at}$	» do.
$e_5 = 24 + 26 + 27 + 28 + 29 +$	$\frac{23+30}{2} = +$ 1003 at (62 + 5.76)	" 71 & 72
$e_6 = 25 + 26 + 27 + 28 + 29 +$	$\frac{23+30}{2} = +$ 669 at (62 + 6.35)	» do.
$e_7 = 32 + 33 + 34 + 35 + 36 +$	$\frac{31+37}{2} = + 1163$ at $(62 + 5.37)$	" 129 & 130
$e_8 = 39 + 40 + 41 + 42 + 43 +$	$\frac{38+44}{2} = + 629 \text{at (62 + 1.50)}$	" 166 & 167
$e_{9} = 46 + 47 + 49 + 50 + 51 +$	$\frac{45+52}{2} = + 1358$ at (62 + 3.77)	" 209 & 210
$e_{10} = 46 + 48 + 49 + 50 + 51 +$	$\frac{45+52}{2} = + 1300$ at $(62 + 3.72)$	" do.

MICROSCOPE COMPARISONS.

II_____19

Digitized by Google

During the 1st measurement-(Continued.)

	Reference numbers.	mean temp :
e ₁₁ = 54 ⋅	+ 55 + 56 + 57 + 58 +	$+\frac{53+59}{2} = +1073$ at $(62^{\circ} + 4.75)$ between sets 283 & 284
e ₁₃ = 61 -	+ 62 + 63 + 64 + 65 +	+ $\frac{60+66}{2}$ = + 1215 at (62 + 0.74) , 297 & 298
$e_{13} = 68 +$	+ 69 + 70 + 71 + 72 +	+ $\frac{67+73}{2}$ = + 1707 at (62 - 0.04) , 388 & 389
$e_{14} = 68 + $	+ 69 + 70 + 71 + 73 +	$+\frac{67+72}{2} = +2151$ at $(62 - 0.31)$ g , do.
e ₁₅ = 68 -	+ 69 + 70 + 71 + 72 +	$+\frac{67+74}{2} = +1660$ at $(62 + 0.18)$ $\begin{cases} do. and \\ 305 & 306 \end{cases}$
e ₁₆ = 76 ⊣	+ 77 + 78 + 79 + 80 +	+ $\frac{75+81}{2}$ = + 2069 at (62 + 3.99) $\frac{100}{2}$, 471 & 472
e ₁₇ = 83 +	- 85 + 86 + 87 + 88 +	+ $\frac{8_2+8_9}{2}$ = + 2606 at (62 - 0.40) $\frac{3}{8}$, 517 & 518
$e_{18} = 84 +$	- 85 + 86 + 87 + 88 +	+ $\frac{8_2+8_9}{2}$ = + 2319 at (62 + 0.43) $\stackrel{2}{\vdash}$, do.
e ₁₉ = 91 +	- 92 + 93 + 94 + 95 +	+ $\frac{90+96}{2}$ = + 1307 at (62 - 0.41) , 6221 & 6228
e ₉₀ = 91 +	- 92 + 93 + 94 + 97 +	$+\frac{90+96}{2} = +1087$ at (62 - 0.47) , do.

And from the foregoing, we obtain the following equations for the microscope errors per set (or m.e); where dE expresses the error in the adopted value of the expansion for the 6-inch scales.

$(m.e.)_1 = \frac{e_1 + e_2}{2}$	= +	m.i. 2451	— 6 ×	3 · 46 dE	applicable to	sets Nos.	1 to 22
$(m.e.)_{3} = \frac{e_{3}+e_{3}}{2}$	= +	2347	— 6 ×	5 ^{.8} 5 dE	"	n	23 to 49
(m.e.) $_{8} = \frac{e_{4} + e_{5}}{2}$	= +	1480	— 6 ×	5°40 dE	> >	"	50 to 71
$(m.e.)_{4} = \frac{e_{6}+e_{7}}{2}$	= +	916	— б ×	5 ·86 dE	3 3	"	72 to 129
$(m.e.)_{5} = \frac{e_{7}+e_{8}}{2}$	= +	896	— 6 ×	3 · 44 dE	3 2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	130 to 166
$(m.e.)_{6} = \frac{e_{8}+e_{9}}{2}$	= +	994	— 6 ×	2.64 dE	>1	"	167 to 209
(m.e.) $_{7} = \frac{e_{10} + e_{11}}{2}$	= +	1186	— 6 ×	4.34 dE	>>	"	210 to 283
$(m.e.)_{8} = \frac{e_{11} + e_{19}}{2}$	= +	1144	— 6 ×	2.75 dE	?)	>>	284 to 297
$(m.e.)_{9} = \frac{e_{-9} + e_{18}}{2}$	= +	1461	— 6 ×	0'35 <i>dE</i>	22	"	298 to 388
$(m.e.)_{10} = e_{14}$	= +	2151	+ 6 ×	0'31 dE	33	"	389 to 395
$(m.e.)_{11} = \frac{e_{15} + e_{16}}{2}$	= +	1865 -	— бх	2.09 dE	**	"	396 to 471
$(m.e.)_{19} = \frac{e_{16} + e_{17}}{2}$	= +	2338 -	— бх	1.80 <i>dE</i>	9 5	"	472 to 517
$(m.e.)_{13} = \frac{\epsilon_{18} + \epsilon_{19}}{2}$	= +	1813 -	- бх	0.01 <i>dE</i>	"	>>	518 to 621
$(m.e.)_{14} = e_{90}$	= +	1087 -	+ 6 x	0 ' 47 dE	"	"	б22

ŀ

During the 1st measurement-(Continued.)

Hence the total microscope errors are as follows,

In sets Nos. 1 to
$$66\begin{cases} 22(m,e)_1 = 53922 - 457 dE = 00047 - 551 dE = 00021 - 551 dE = 00021 - 551 dE = 000119 - 1956 dE = 000119 - 1956 dE = 000119 - 1956 dE = 25088 - 578 dE = 00044 - 2039 dE = 25088 - 578 dE = 00071 - 2779 dE = 00071 - 254 dE =$$

II_____20

MICROSCOPE COMPARISONS.

During the 1st Measurement—(Continued.)

Final deduction of the total lengths measured with the compensated microscopes.

Total length measured with the compensated microscopes

						_	feet of A	_		feet	of	Α
or W.	In sets End, t	Nos. 1 to 66 o Pin No. 1	}	• • •	• • •	. = {	66 x 3 + · 0	119 } - 1950	$\delta dE = ($	198.0157—	••••••5)=	198.0152
or Pin	" No. 1, t	Nos. 67 to 157 30 Pin No. 2 (Stn. A)	}	•••		. ={	91 × 3 + .0	071 } -2779	g dE = (273.0123–	··ooo8)=	273.0115
or Pir	" 1 No. 2 (i	Nos. 158 to 219 Stn. A), to Pin No. 3	}	• . •		. = {	62 × 3+ °0	053 } - 112	1 <i>dE</i> =(186.0089-	-*0003)=	180.0080
or Pir	" n No. 3, 1	Nos. 220 to 389 to Pin No. 4 (Stn. B)	,}	.		. = {	170×3+'0	189 } -204	8 dE=(510'0287-	-:0006)=	510,0281
or Pi	,, n No. 4 (Nos. 390 to 520 (Stn. B), to Pin No. 5	5}	•••	•••	. = {	131×3+ °	2224 } - 1 <u>4</u> 3	9 dE=(393'0299-	-:0004)=	393.0295
or Pi	n No. '5,	Nos. 521 to 622 to E. End	}	• • •	•••	. = {	102 × 3 + 0	5154 } -	3 dE=(306.0313-	-:0000)=	306 [.] 0213
or W	". 7. End,	Nos. 1 to 622 to E. End	}	• • •					 =(1866.1168-	-`0026)=	1866-1142

5

Digitized by Google

II_____

Comparisons between the Compensated Microscopes and their 6-inch brass scales during the 2nd measurement, and provisional determination of microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m. i.).

				with.	pera-	e Fah. Beale	Microsco	oscope 	- -	Micros : at 62° .	Scale A, Fah.
	Whe	en compared	icroscope	ompared	ted temp ture.	on to 62 sion of $6'$	Observed term	value in us of	s: Scale 62° Fal		nce er
	1835			Scale o	Correc	Reducti Expans for 1° =	Divisions 10000=1"	m. i.	Micro	178. i.	Refere numb
February "	17th 19th 17th	Before the 2nd mea- surement	U O P M N T S R	U R P M N T S R	68°65 50.71 61.86 65.05 68.02 66.65 63.94 69.01	$ \begin{array}{r} + & 416 \\ - & 706 \\ & 9 \\ + & 191 \\ & 376 \\ & 290 \\ & 121 \\ & 438 \\ \end{array} $	$ \begin{array}{r} + 1.30 \\ - 4.13 \\ - 1.67 \\ + 5.08 \\ - 1.04 \\ - 4.30 \\ + 6.80 \\ 2.23 \end{array} $	$ \begin{array}{r} + & 130 \\ + & 137 \\ - & 167 \\ + & 508 \\ - & 104 \\ + & 680 \\ & 223 \end{array} $	$ \begin{array}{r} + 283 \\ 93 \\ 350 \\ - 21 \\ + 363 \\ - 97 \\ 75 \\ + 93 \end{array} $	$ \begin{array}{r} + & 829 \\ - & 200 \\ + & 174 \\ & 678 \\ & 635 \\ - & 237 \\ + & 726 \\ & 754 \\ \end{array} $	I 2 3 4 5 6 7 8
"	27th	Between sets No. 115 and 116	U 0 0* P M M* N T S R	U R R P M M N T S R	73'25 71'31 76'81 72'96 73'25 74'75 73'37 71'98 73'19 73'91	+ 703 582 926 685 703 797 710 624 699 745	$ \begin{array}{r} - 2.23 \\ 5.30 \\ 14.70 \\ 14.00 \\ 2.03 \\ 6.53 \\ 4.95 \\ 7.33 \\ + 2.03 \\ - 7.10 \end{array} $	- 223 530 1470 203 653 495 733 + 203 - 710	$ \begin{array}{r} + 283 \\ 93 \\ 93 \\ 350 \\ - 21 \\ 21 \\ + 363 \\ - 97 \\ 75 \\ + 93 \end{array} $	$ \begin{array}{r} + & 763 \\ & 145 \\ - & 451 \\ & 365 \\ + & 479 \\ & 123 \\ & 578 \\ - & 206 \\ + & 827 \\ & 128 \\ \end{array} $	9 10 11 12 13 14 15 16 17 18
March	7th	Between sets No. 233 and 234	R O P M N T S	R R P M N T S	64.61 54.31 57.26 59.25 71.52 63.65 62.24	$ \begin{array}{r} + & 163 \\ - & 481 \\ & 296 \\ & 172 \\ + & 595 \\ & 103 \\ & 15 \end{array} $	$\begin{array}{r} & & & & & \\ & - & 7 \cdot 27 \\ & & & 43 \\ + & & 50 \\ - & 5 \cdot 40 \\ & & 3 \cdot 37 \\ + & 5 \cdot 80 \end{array}$	$ \begin{array}{r} & & & \\ - & & 727 \\ & & 43 \\ + & & 50 \\ - & & 540 \\ & & & 337 \\ + & 580 \end{array} $	$ \begin{array}{r} + & 93 \\ & 93 \\ & 350 \\ - & 21 \\ + & 363 \\ - & 97 \\ & 75 \\ \end{array} $	$\begin{array}{r} + 256 \\ - 1115 \\ + 11 \\ - 143 \\ + 418 \\ - 331 \\ + 520 \end{array}$	19 20 21 22 23 24 25
"	23rd 24th	Between sets No. 465 and 466 Between sets No. 490 and 491	R O P M N T S S	R R P M N T S S	53.89 58.61 64.56 57.05 67.12 60.62 59.24 83.24	$ \begin{array}{r} - 507 \\ 212 \\ + 160 \\ - 309 \\ + 320 \\ - 86 \\ 173 \\ + 1327 \\ \end{array} $	$ \begin{array}{r} + & 4.40 \\ - & 4.77 \\ & 5.97 \\ + & 2.00 \\ - & 3.47 \\ & 2.07 \\ + & 8.03 \\ & .00 \end{array} $	$ \begin{array}{r} + & 440 \\ - & 477 \\ & 597 \\ + & 260 \\ - & 347 \\ & 207 \\ + & 803 \\ & 0 \end{array} $	$ \begin{array}{r} + & 93 \\ & 93 \\ - & 21 \\ + & 363 \\ - & 97 \\ & 75 \\ & 75 \end{array} $	$ \begin{array}{r} + & 26 \\ - & 596 \\ 87 \\ 70 \\ + & 336 \\ - & 390 \\ + & 555 \\ 1252 \end{array} $	26 27 28 29 30 31 32 33
"	28th	After the 2nd mea- surement	R O P M N T S	R R P M N T S	59 ·14 65·49 68·56 65·85 55 ^{·8} 7 66·95 58 [·] 44	$ \begin{array}{r} - & 179 \\ + & 218 \\ & 410 \\ & 241 \\ - & 383 \\ + & 309 \\ - & 223 \end{array} $	$ \begin{array}{r} + & 2 \cdot 37 \\ - & 11 \cdot 78 \\ & 7 \cdot 75 \\ & 1 \cdot 10 \\ + & 3 \cdot 66 \\ - & 6 \cdot 23 \\ + & 12 \cdot 13 \\ \end{array} $	$ \begin{array}{r} + & 237 \\ - & 1178 \\ & 775 \\ & 110 \\ + & 366 \\ - & 623 \\ + & 1213 \end{array} $	$\begin{array}{r} + & 93 \\ & 93 \\ 350 \\ - & 21 \\ + & 363 \\ - & 97 \\ & 75 \end{array}$	$ \begin{array}{r} + & 151 \\ - & 867 \\ & 15 \\ + & 110 \\ & 346 \\ - & 411 \\ + & 915 \\ \end{array} $	34 35 36 37 38 39 40

• These microscopes were compared a second time, because they were adjusted after the first comparison.

....

II____22

.

MICROSCOPE COMPARISONS.

During the 2nd measurement—(Continued.)

The required combinations of individual microscope errors taken from the preceding page, are expressed as follows;

					Rej	teres	1C8 1		bers				T+ 7			m.i		•		•					
e ₁		=	2	+	3	+	5	+	б	+	8	+	2	H	+	1904	at	(62	+	1.76)		before the me	asure	me	nt.
e ₂		=	2	+	3	+	4	+	5	+	6	+	$\frac{1+7}{2}$	H	+	1828	at	(62	+	1.10)	Ð	2)			
G	; :	-	10	+	12	+	13	+	15	+	ıq	+	<u>9+17</u> 2	8	+	1426	at	(62	+	10 [.] 68)	h mad	between sets	1158	ind	110
e4	, :	=	11	+	12	+	14	+	15	+	ıq	+	$\frac{17+18}{2}$	=	+	157	at	(62	+	11.00)	risons	"		"	
e ₅	:	=	20	+	21	+	22	+	23	+	24	+	$\frac{19+25}{2}$	H	-	772	at	(62	_	0 [.] 43)	sompa	**	233	"	234
e،	; ;	=	27	+	28	+	29	+	30	+	31	+	$\frac{26+32}{2}$	=	-	516	at	(62	_	1.52)	Lon Lon	13	465	"	466
eŋ	, :	=	27	+	28	+	29	+	30	+	31	+	$\frac{26+33}{2}$	H	_	168	at	(62	+	0 [.] 75)	ĥ	. 37	490	*	491
e ₈	, i	=	35	+	36	+	37	+	38	+	39	+	$\frac{34+40}{2}$	=	-	304	at	(62	+	1.20)		after the mea	suren	ien	t.

And from the foregoing, we obtain the following equations for the microscope errors per set (or m.e); where dE expresses the error in the adopted value of the expansion of the 6-inch scales.

$(m.e)_1$	Ŧ	e ₁	=	+	1904	_	6 × 1.76	dE	applicable to set No.	I	
(m.e) ₂	=	$\frac{e_2+e_3}{2}$	=	+	1627	-	6 × 5 [.] 89	dE	>>	2	to 115
(m.e) ₈	=	$\frac{e_4+e_5}{2}$	-		308	-	6 × 5 [.] 74	d E	27	116	to 233
(m.e) ₄	=	$\frac{e_5+e_6}{2}$	=	_	644	+	6×0 [.] 84	dE	23	234	to 465
(m.e) ₆	=	e ₆	=	-	516	+	6 × 1.52	dE	33	466	to 490
(m.e) ₆	=	$\frac{e_7+e_8}{2}$	=	-	236	-	б×1.12	d E	"	49 T	to 622

Hence the total microscope errors are as follows :---

In sets Nos. 1 to $102 = \begin{cases} 1(m.e)_1 = \\ 101(m.e)_2 = \end{cases}$	$\begin{array}{rrrr} m.i.\\ 1904 & - & 11 \ dE = \\ 164327 & - & 3569 \ dE = \end{array}$	feet of A 0.0002 11 dE 0.0137 3569 dE
	sum =	0.0139 – 3580 dE
In sets Nos. 103 to 233= $\begin{cases} 13(m.e)_{2} = \\ 118(m.e)_{3} = \end{cases}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0018 - 459 dE - 0.0030 - 4064 dE
	sum	- 0.0012 - 4523 dE
In sets Nos. 234 to $403 = 170(m.e)_4 =$	-109480 + 857 dE =	-0.0091 + 857 dE

(Total microscope errors continued on next page.)

п_____3

During the 2nd measurement—(Continued.)

Total Microscope errors (continued from preceding page)

= 62 (m.e)	$_{4} = - 39928 +$	312 dE = -0.0033 +	312 dE
$= \begin{cases} 25 & (m.e) \\ 66 & (m.e) \end{cases}$	$b_6 = -12900 + 0_6 = -15576 - 0_6$	$188 \ dE = -0.0011 + 463 \ dE = -0.0013 - 0.0013 - 0.0013 - 0.0013 - 0.0013 - 0.0000000000000000000000000000000000$	188 d E 463 dE
		sum = -0.0024 -	275 dE
≠ 66 (m.e	$b_{6} = -15576 -$	463 dE = -0.0013 -	463 dE
	$= 62 (m.e)$ $= \begin{cases} 25 (m.e) \\ 66 (m.e) \end{cases}$ $= 66 (m.e)$	$= 62 (m.e)_{4} = - 39928 +$ $= \begin{cases} 25 (m.e)_{5} = - 12900 + \\ 66 (m.e)_{6} = - 15576 - \\ \end{bmatrix}$ $= 66 (m.e)_{6} = - 15576 - \\ \end{bmatrix}$	$= 62 (m.e)_{4} = - 39928 + 312 dE = -0.0033 + = \begin{cases} 25 (m.e)_{6} = - 12900 + 188 dE = -0.0011 + 66 (m.e)_{6} = - 15576 - 463 dE = -0.0013 - sum = -0.0024 - = 66 (m.e)_{6} = - 15576 - 463 dE = -0.0013 - = -0.0$

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally; *i.e.* in terms of the 6-inch brass scale A. But from page (31), we have $2A = 1.0000192 \frac{A}{10}$, value in 1835. Also, the coefficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that .000,009,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (*m.e*), we have,

Total lengths measured with the compensated microscopes

In sets Not or E. End, to Pin	s. 1 to 102 No. 5	}.	•••	•••	= {	<i>feet</i> 102 × 3-	of A + 0139 }	- 3580 (d <i>E</i> =(<i>feel</i> 306 [.] 0198	0010)=	A 306.0188
"Nos or Pin No. 5, to I	8. 103 to 233 Pin No. 4 (Stn. B)	}.	• •	• . •	= {	¥31 X 3·	-'0012 }	-4523	dE=(<u>393°0063</u>	0013)=	393'0050
"No or Pin. No. 4, (St	8. 234 to 403 n. B), to Pin No.3	} .	••	•••	= {	¥70×3	0001]	+ 857	dE=(510.0002	(+· 0 002)=	510.0000
" Nos or Pin No. 3, to I	s. 404 to 465 Pin No. 2 (Stn. A)	}.	٠.	•••	= {	6z×3	0033	} + 312	dE=(186.0003	3+.0001)=	186.0004
"No or Pin No. 2, (St	s. 466 to 556 n. A), to Pin No.1	}.	• •	• • •	=	91×3	—'0 024	}- 275	dE=(273'0028	3	273'0027
, Not or Pin Ne. 1, to	s. 557 to 622 W. End	} .	•••	••••	={	66 × 3	0013	}- 463	dE = (198.0025	;0001)=	198 .0024
or E. End, to W.	s. 1 to 622 End	}.	••	•••	• • •	••••	• • • • •		. =(1866.0324	,−·0022)=	1866.0302

II______

DETAILS OF THE 1ST MEASUREMENT.

Disposition of the bars and microscopes.

Typical illustrations shewing the permutations and combinations of the bars and microscopes during the 1st measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set; and the numbers assigned to the illustrations, will be found employed in the tables of "Extracts from the Field Book &c."

Bar Illustration.	Microscope Illustration.							
No. 1 No. 2 No. 3 No. 4 No. 5 No. 6	No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9							
$ \begin{array}{c cccc} A \\ B \\ B \\ C \\ C \\ D \\ E \\ H \\ \end{array} \begin{array}{c ccccc} A \\ B \\ C \\ C \\ C \\ B \\ E \\ \end{array} \begin{array}{c ccccccccccc} A \\ H \\ C \\ C \\ C \\ C \\ C \\ H \\ \end{array} \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Statement.	Statement.							
No. 1 occurs in sets Nos. 1 to 301, in set No. 303 and in sets Nos. 304 to 617. No. 2 ,, set No. 302_1 . No. 3 ,, sets Nos. 302_2 and 622_3 . No. 4 ,, Nos. $618_1, 619_1, 620_1, 621_1 \& 622_1$. No. 5 ,, Nos. $618_2, 619_2, 620_3, 621_2$. No. 6 ,, set No. 622_2 .	No. 1 occurs in sets Nos. 1 to 49, and in sets Nos. 396 to 617. No. 2 , sets Nos. 50 to 301, in set No. 303, and in sets Nos. 304 to 388. No. 3 , set No. 3021. No. 4 , No. 3022. No. 5 , sets Nos. 389 to 395. No. 6 , Nos. 6181, 6191, 6201, 6211 and 6221. No. 7 , Nos. 6182, 6192, 6202, 6212. No. 8 , set No. 6222. No. 9 , No. 6223.							

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin.

Adopted heights above mean sea level.

West End (origin) = $1770^{\circ}1$ feet. East End (terminus) = 195777 feet.

When com- pared	the Set.	ure of Air.	Mean time of	ars used.	eet above gin.	Nun shev arra men	neral ving nge- it of	When com- to pared 22	ure of Air.	Mean time of	ars used.	t set above șin.	Nun shev arra mer	neral wing unge- nt of
1834	No. of	Temperat	ending.	No. of b	Height of orig	Bars.	Micros :	ຮ 1834 _{ຊິ}	Temperat	ending.	No. of b	Height of orig	Bars.	Micros :
1st Dec. 2nd "	, 1 2 3 4 5 0	71.5 72.3 69.0 53.0 60.3 72.0	h. m. 2 3 P.M. 3 15 4 20 9 31 A.M. 10 40 1 54 P.M.	6 00000	feet. + 2 [·] 3 2.3 - [·] 2 ·3 ·2	I I I I I I	1 1 1 1 1 1 1	2nd Dec. 7 8 9 3rd " 10 11 12	° 73*8 73*0 69*5 46*0 51*5 58*8	ћ. т. 2 5б Р.н. 3 49 4 44 8 3 д.н. 9 б 10 12	000000	feet. - '0 + '1 '0 '9 1.0 2.0	I I I I I I I I	T T T T T T

Norg.-The rear-end of set No. 1 stood exactly over the dot at West-End.

II____25

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	tre of Air.	Mean	time of	ars used.	f Bet above gin.	Nun shev arra men	neral ving nge- it of	When com- pared	the Set.	tre of Air.	Mean time of	ars used. Set above gin.	Nun shev arra mer	neral wing nge- nt of
1834	No. of	Temperat	er	iaing.	No. of 1	Height o	Bara.	Micros :	1834	No. of	Temperat	ending.	No. of h Height of ori	Bars.	Micros :
3rd Dec.	13 14	62 [°] 0 69 [.] 9	<i>h.</i> 11 2	т. 0 А.М. 0 Р.М.	66	feet. + 1°6 *8	I I	I	6th Dec.	40 41	76 [.] 8 77 [.] 2	h. m. 2 18 P.M. 3 12	$\begin{array}{r} 6 - \frac{feet}{8} \\ 6 & 1^{\cdot}2 \end{array}$	I I	I
4th "	15 16 17 18 19 20 21 22	70°0 68°0 58°7 53°3 48°0 54°8 58°8 63°0	334588910	3 55 39 20 0 A.M. 51 47 35	00000000	- °9 2 4 1'4 1'7 1'2 70			8th "	42 43 44 45 46 47 48 49	66.9 62.6 53.3 43.3 50.0 55.8 59.8 64.3	3 50 4 30 5 9 8 14 A.M. 9 0 10 1 10 33 11 13	6 1'3 6 1'7 6 + 0'1 6 0'5 6 1'5 6 1'9 6 1'8 6 2'0	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 5
5th "	23 24 25 20 27 28 29 30	72.8 72.0 67.7 56.1 46.0 54.6 60.3 64.3	2 3 4 5 8 9 10	и р.м. 9 б 3 А.М. и 17 58	0000000000	- 1°0 1°5 2°55 2°55 1°3	I I I I I I I I		9th "	50 51 52 53 54 55 50 57	73.8 61.3 51.8 40.9 46.6 52.8 57.3 62.2	3 51 P.M. 4 31 5 11 8 4 A.M. 8 48 9 36 10 13 10 51	0 2.5 6 3.1 6 3.4 6 3.1 6 2.8 6 3.6 6 3.3 6 3.3 6 3.3	I I J I I I I	* * * * * *
6th "	31 32 33 34 35 36 37 38 39	73'9 73'0 60'5 50'5 42'6 49'3 54'9 59'4 74'5	2 3 4 5 8 8 9 10 1	58 P.M. 38 29 17 2 A.M. 47 38 19 29 P.M.	6 6 6 6 6 6 6 6 6	- 1 ² 1 ³ 1 ² 5 ⁴ 1 ² 5 ² 1 ² 1 ²			10th .,,	58 59 60 61 62 63 64 65 66	75 ^{.5} 76 ^{.0} 54 ^{.6} 49 ^{.8} 5 ^{8.8} 65 ^{.5} 74 ^{.0} 73 ^{.0}	2 0 P.M. 3 7 3 58 5 15 9 0 A.M. 10 10 11 15 2 10 P.M. 3 54	6 3'I 6 3'0 6 3'4 6 4'6 6 5'9 6 7'5 6 8'9 6 10'7 6 11'0	I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
The He	e do ight	t on of S	Pin I Set N	No. 1 w Io. 66 al	as fix bove	ed exac Pin No	rtly in 0. 1 =	the 1 : 2.1 f	normal at 1 Seet.	the	advano	ced end of se	et No. 66.		
11th Dec.	67 68 69 70 71 72 73 74 75	39'0 47'5 54'0 57'5 64'4 74'0 72'5 56'6 43'0	7 8 9 10 11 2 3 4 8	40 A.H. 44 34 24 7 43 P.N. 52 52 0 A.M.	00000000000000000000000000000000000000	+ 11.6 11.8 10.0 10.7 10.5 10.3 8.7 6.8	I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13th Dec. 15th "	83 84 85 86 87 88 89 90	50.8 54.0 56.5 60.5 64.0 70.0 66.2 56.6 42.8	7 59 A.M. 8 49 9 32 10 24 11 8 3 5 P.M. 3 58 4 44 7 46 A.M.	6 + 69 6 82 6 75 6 72 6 65 6 66 6 76 6 76 6 81	I I I I I I I I I I I	3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	76 77 78 79 80 81 82	51.8 53.5 55.9 58.6 58.4 56.4 55.0	8 9 10 11 3 4	55 40 33 21 17 P.M. 30 32	0000000	7'8 8'0 8'2 7'3 6'7 7'5 8'2	I I I I I I	2 2 2 2 2 2 2 2		92 93 94 95 96 97 98	45°3 46°4 48°6 51°4 53°5 57°8 65°8	8 16 8 47 9 16 9 53 10 34 11 13 1 40 F.M.	6 8.8 6 9.0 6 8.9 6 9.4 6 8.9 6 8.9 6 8.9 6 8.9 6 8.9 6 8.9 6 8.9 6 8.9	I I I I I I I I I	2 2 2 2 2 2 2 2 2

Digitized by Google

.

DETAILS OF THE 1st MEASUREMENT.

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	tre of Air.	Mean time of	ars used.	f Set above zin.	Num shev arra men	ving nge- it of	When com- pared	the Set.	ure of Air.	Mean time of	ars used. ' Set above <u>j</u> in.	Num shev arran men	ieral ving nge- t of
1834	No. of	Temperatu	ending.	No. of b	Height of Ori	Bars.	Micros:	1834	No. of	Temperat	ending.	No. of t Height of orig	Bars.	Micros:
15th Dec. 16th "	99 107 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 120 121 122 123 124 125 126 127	6 6 6 7 2 8 9 9 9 0 0 8 5 5 9 0 7 3 3 7 1 6 0 3 7 0 0 8 8 0 8 7 3 3 8 0 5 7 2 8 7 3 7 1 6 0 3 7 0 0 8 8 0 8 3 7 2 8 7 3 7 7 7 7	h. m. 2 16 P.M. 2 54 3 25 3 56 4 29 5 14 7 45 A.M. $8_{5}^{2}23$ 9 7 9 38 10 11 10 47 11 21 11 49 2 6 P.M. 2 45 3 31 4 0 4 35 5 4 7 40 A.M. 8 19 9 11 9 51 10 31 11 2 1 47 0 23 P.M. 1 7 1 47	0000000000000000000000000000000000000	<i>feet.</i> + 8.1 9.3 9.3 10.0 13.2 13.3 14.7 15.1 15.1 15.4 17.6 19.6 19.9 19.6 17.5 19.7 19.7 20.8 21.8 21.7 20.8 21.8 21.7 20.8 21.7 20.8 21.7 20.8 21.7 20.8 21.7 20.8 21.7 20.8 21.8			17th Deo. 18th "	129 130 131 132 133 134 135 137 138 139 143 143 143 144 145 155 1557	°5539555566681332555669045506665555666665556666655566690455066555666655556666655556666555555666565555	h. m. 2 37 P.N. 7 42 A.M. 8 11 8 46 9 18 9 53 10 23 11 7 11 41 2 13 P.M. 2 49 3 21 3 52 4 39 5 12 7 49 A.M. 8 27 9 35 10 2 10 44 11 13 1 29 P.M. 2 1 3 5 3 5 4 6 4 36 5 7	feet. 6 + 25'1 6 24'9 6 24'2 6 24'5 6 25'2 6 25'2 6 25'2 6 25'3 6 25'3 6 25'3 6 25'3 6 25'3 6 25'3 6 25'5 6 25'5 6 22'7 7 8 6 22'7 6 22'7 6 22'7 6 22'7 6 22'7 6 22'7 6 22'7 7 8 6 22'7 7 8 6 22'7 7 8 6 22'7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7		· · · · · · · · · · · · · · · · · · ·
The do Heigh 20th Dec	ot on t of : 158 159	Pin 7 set N 51.5 52.9	No. 2, <i>i.e.</i> S o. 157 above 8 5 <u>A-M</u> . 8 34	tatio e Sta 6 6 6	n A wa tion A + 28 [.] 4 28 [.] 2 27 [.] 4	s fixed = $2\frac{1}{2}$	$\begin{array}{c c} 1 & exac \\ 5 & feet. \\ 2 & 2 \\ 2 & 2 \\ 2 & 2 \end{array}$	tly in the	nori 171 172 173	57'4 57'4 50'0 70'1	10 37 A.M. 11 9 1 32 P.M.	ed end of se 6 + 27.3 6 26.4 6 25.3	et No.	2 2 2 2
22nd "	161 162 163 164 165 166 167 168 169 170	57 1 58 5 60 1 62 9 62 0 59 9 42 4 47 0 51 8 54 0	9 43 9 43 10 59 2 17 P.M. 2 45 3 32 8 16 A.M. 8 52 9 33 10 3	00000000000000000000000000000000000000	27.1 27.0 28.0 28.1 27.9 27.9 27.7 28.2 28.2 28.2 27.8			23rd "	173 174 175 176 177 178 179 180 181 182 183	70.8 70.0 63.3 61.2 60.0 58.9 53.9 35.3 39.9 45.5	2 I 2 37 3 5 3 40 4 13 4 42 5 13 7 23 A.H. 8 5 8 51	6 24.1 6 22.6 6 22.1 6 23.0 6 23.0 6 22.5 6 22.3 6 22.3 6 22.5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

II_₂₇

1

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ture of Air.	Mean time of	ars used.	. Set above gin.	Nun shev arra mer	neral wing inge- it of	When com- pared	the Set.	ture of Air.	Mean time of	tars used. Set above gin.	Nun shev arra mer	peral ving nge- nt of
1834	No. of	Temperat	ending.	No. of b	Height of ori	Bars.	Micros :	1834-35	No. of	Temperat	ending.	No. of b Height of ori	Bars.	Micros :
23rd Dec. 24th "	184 185 186 187 188 190 191 192 193 194 195 196 197 198 199 200 201	50-38 55-88 55-88 55-88 55-88 55-58 55-58 55-58 55-58 55-555 55-555 55-555 55-5555 55-555555	h . m. 9 29 A.M. 10 6 10 36 1 42 P.M. 2 17 2 55 3 25 4 9 4 40 7 22 A.M. 8 3 8 47 9 18 9 52 10 18 10 57 11 21 1 33 P.M.	00000000000000000000000000000000000000	feet. 22.5 22.0 21.7 22.0 21.7 20.0 19.8 20.7 20.6 21.1 21.8 22.2 22.2 22.3 22.0			24th Dec. 29th "	202 203 204 205 207 208 209 210 212 213 214 215 216 217 218 219	71-2 71-8 68-1 67-2 63-2 60-8 57-5 54-6 55-5 54-6 55-5 55-5 55-5 55-5 55	h. m. 1 58 P.M. 2 24 2 47 3 14 3 34 4 23 4 47 7 57 A.M. 8 34 9 6 9 41 10 20 10 20 10 46 1 32 P.M. 2 4 2 36 3 56	$\begin{array}{c} feet.\\ 6 + 21.9\\ 0 & 21.8\\ 0 & 22.1\\ 0 & 22.7\\ 0 & 22.0\\ 0 & 23.1\\ 0 & 24.5\\ 0 & 24.5\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.4\\ 0 & 25.5\\ \end{array}$		
TI H	1e da eight	ot on t of s	Pin No. 3, et No. 219	was f above	ixed ex Pin N	actly 0.3 =	in the = 2.5	e normal a feet.	it th	e adva	anced end of	set No. 2	19.	'
29th Dec. 30th "	220 221 222 222 222 222 222 222 222 222	60.7 59.0 35.5 39.6 45.0 50.0 55.0 60.5 50.0 55.0 60.5 50.5 60.5 50.5 5	4 21 P.M. 4 46 5 10 7 41 A.M. 8 21 8 56 9 41 10 30 11 18 11 44 0 42 P.M. 1 22 3 19 3 50 4 22 4 54 5 21 7 41 A.M. 8 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+ 25.5 24.6 23.5 22.2 20.9 20.2 18.3 15.7 12.5 11.0 13.3 14.6 14.7 14.8 15.5 10.1 15.7 15.3 15.7		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31st Dec. 2nd Jan.	245 247 248 250 251 252 253 253 255 255 255 255 255 255 255	71.3 70.4 60.3 64.8 63.2 59.0 52.7 47.1 45.5 50.3 54.5 55.0 53.5 55.0 53.5 56.1	I 37 P.M. 2 2 2 27 2 53 3 18 3 37 4 0 4 20 4 43 5 0 5 30 7 45 A.M. 8 15 8 45 9 10 9 42 10 5 10 39 11 12	$\begin{array}{c} 6 + 13 \\ 6 \\ 11 \\ 7 \\ 6 \\ 12 \\ 0 \\ 12 \\ 0 \\ 12 \\ 0 \\ 10 \\ 10 \\ $		
	230 239 240 241 242 243 243 244	39 3 44`5 48`4 51`9 54`0 56`9 60`2	8 46 9 9 9 44 10 9 10 40 11 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15.4 15.7 15.9 16.4 15.9 15.3 14.5	I I I I I I I	2 2 2 2 2 2 2 2	•	203 264 265 266 267 268 269	58 1 63 4 65 0 66 9 68 5 70 5 71 4	1 13 1 11 P.M. 1 36 2 3 2 32 3 2 3 25	6 121 6 13'1 6 13'5 6 13'4 6 12'4 6 11'4 6 11'3	I J I I I J	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

£.

DETAILS OF THE 1st MEASUREMENT.

Extracts from the Field Book-(Continued.)

Mpen com- bared of Air.	Mean time of	bars used. f Set above gin.	Numeral shewing arrange- ment of	When com- to pared 2	S Mean time of	oars used. ' Set above gin.	Numeral shewing arrange- ment of
「 1835 N 田 日	enumg.	No. of 1 Height o ori	Bare. Micros :	1835 g	F ending.	No. of 1 Height of ori	Bars. Micros :
2nd Jan. 270 70°1 271 66'8 272 62'8 273 58'0 3rd , 274 40'5 275 42'5 276 45'0 277 48'8 278 53'5 279 56'4 280 60'8 281 64'9 282 68'0 283 69'6 284 74'2 285 73'0 284 74'2 285 74'0 285 74'0 284 74'2 285 74'0 284 74'2 285 74'0 284 74'2 285 74'0 284 74'2 293 45'0 294 48'5 295 52'1 290 51'0 5th , 291 37'2 292 41'2 293 45'0 294 48'5 295 52'1 290 66'9 300 65'2 301 59'0 302 43'0 303 48'5 302 43'0 305 35'0 306 39'9 307 45'0 308 49'5 309 54'0 310 57'3 311 62'5 312 63'1 313 65'3 314 57'6	\hbar . m. 3 52 P.M. 4 15 4 47 5 17 7 40 A.M. 8 8 39 9 7 9 39 7 9 39 10 7 10 43 11 47 2 7 3 0 3 38 4 27 3 0 3 38 4 27 5 13 5 32 7 54 A.M. 8 27 9 28 10 1 11 47 1 47 2 37 3 0 3 8 4 47 5 13 5 32 7 54 A.M. 8 27 9 28 10 1 11 47 1 47 2 48 3 14 4 44 5 39 4 44 5 39 8 0 4.M. 8 36 9 12 9 51 10 35 11 9 11 43 1 38 P.M. 2 5 3 28 3 59	$\begin{array}{c} feet.\\ 6 + 10.3\\ 10.8\\ 10.3\\ 10.8\\ 11.4\\ 12.8\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.2\\ 6 12.3\\ 6 13.4\\ 13.6\\ 6 12.3\\ 6 12.3\\ 6 13.6\\ 12.3\\ 6 12.3\\ 6 13.6\\ 12.3\\ 6 13.6\\ 12.3\\ 6 13.6\\ 12.3\\ 6 13.6\\ 12.3\\ 6 13.6\\ 13.6\\ 13.6\\ 6 13.6\\ 15.2\\ 15.2$	I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 2 2 2 2 2 2 2 2 2 2 3 1 2 2 3 2 2 3 1 1 2 2 2 3 3 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6th Jan. 316 317 318 7th ,, 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 333 334 335 336 340 341 342 343 344 345 346 347 348 349 350 351 352 9th ,, 354 355 356 357 358 359 360 361 362	h m . 55° 4 23 $P.M$. 51° 4 51 4° 51 451 4° 7 50 $A.M$. 31° 8 20 $36^{\circ}5$ 8 58 $40^{\circ}9$ 9 23 $46^{\circ}7$ 9 58 $40^{\circ}9$ 9 23 $46^{\circ}7$ 9 58 $49^{\circ}8$ 10 27 $54^{\circ}8$ 10 25 $7^{\circ}1$ 1 49 $70^{\circ}1$ 1 49 $70^{\circ}8$ 2 19 $62^{\circ}0$ 2 49 $50^{\circ}0$ 3 18 $50^{\circ}0$ 3 18 $50^{\circ}3$ 4 33 $50^{\circ}3$ 4 33 $50^{\circ}3$ 4 52 $29^{\circ}8$ 7 43 $31^{\circ}9$ 8 52 47°	$\begin{array}{c} feet.\\ +\\ 23^{11}\\ 24^{13}\\ 25^{34}\\ 25^{34}\\ 22^{706}\\ 8^{11}\\ 8^{30}\\ 30^{31}\\ 31^{32}\\ 6^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 35^{5}\\ 5^{33}\\ 5^{33}\\ 5^{5}\\ 5^{33}\\ 5^{33}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^{5}\\ 5^{3}\\ 5^{5}\\ 5^$	I 2 I

ł

II____9

Extracts from the Field Book-(Continued.)

When com- 3 pared 2	ure of Air.	Mean time of	ars used. Set above	Nur. shev arra mer	neral ving nge- nt of	When com- pared	the Set.	ure of Air.	Mean time of	bars used. f Set above igin.	Num shew arran men	neral ving nge- it of
1835 g	Temperatu	ending.	No. of 1 Height of	Bars.	Micros:	1835	No. of	Temperat	Re	No. of Height o ori	Bars.	Micros:
9th Jan. 3(3(3(3(3(3(3(3(3(3(3(3(3(3	63 65.5 64 67.1 65 67.0 66 60.6 67 59.5 68 58.4 69 57.5 70 55.3 71 52.5 72 47.8 73 45.2 74 28.5 75 30.6 70 33.6 t on Pin	h. m. 1 37 P.M. 2 3 2 26 2 56 3 20 3 44 4 6 4 30 4 50 5 18 5 41 7 44 A.M. 8 19 8 49 No. 4, <i>i.e.</i> S	f 6 + 5! 6 55 6 55 6 65 6 65 6 65 6 65 6 65 6 65 6 65 6 70 6 70 6 70 6 70 6 70 6 70 6 70 6 70 6 70 6 70 7 70 6 8 10 7 10 6 10 7 1	et. 5 I 9 I 12 I 13 I 13 I 15 I 17 I 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10th Jan 12th "	- 377 378 379 380 381 382 383 384 385 386 387 388 389 e nor	39 .9 44.4 49.5 53.9 57.9 65.8 65.5 58.0 57.5 54.8 34.2 mal a	h. m. 9 22 A.M. 9 50 10 27 10 54 11 29 11 54 1 52 P.M. 2 17 2 47 3 30 4 12 4 42 8 16 A.M. t the advance	fret. 6 + 74'2 6 75'3 6 75'9 6 77'7 6 78'3 6 78'3 6 77'7 6 78'3 6 78'3 6 80'3 6 81'3 6 84'0 6 86'2 6 86'7 ed end of se	I I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Height	of set l	No. 389 abov	e Station	ι Б = 2'	o ieet	• 1 <i>4</i> +h Tom	410	60.4	2 41 P.M.	6 + 08.0	Г т	1
12th Jan. 3 3 3 3 13th ,, 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	90 39'9 91 46'4 92 49'3 93 53'2 94 55'5 95 33'5 96 50'5 97 42'8 993 53'2 995 53'5 996 50'6 997 42'8 998 50'6 999 52'0 601 64'5 603 60'1 403 60'1 400 31'8 413 45'8 4113 45'8 4113 44'8 4113 44'8 4113 50'4'5 4113 50'4'5 4113 44'8 4113 50'5'5 50'4'5'5'5'5'5'5'5'5'5'5'5'5'5'5'5'5'5'5	0 51 A.M. 9 30 9 56 10 25 11 26 8 11 9 11 10 19 10 54 11 52 0 30 2 35 3 32 4 0 4 30 5 33 7 40 5 0 13 8 9 13 9 40 10 14 11 17 11 46 2 13	5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 1 1 1 1 1 <tr td=""> <</tr>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15th "	+420 422 422 422 422 422 422 422	5 0 3 0 5 7 5 0 5 8 9 9 9 8 0 8 5 5 1 9 9 9 9 0 7 3 3 3 3 4 4 8 5 2 5 7 0 9 8 0 9 9 8 0 6 8 5 5 1 4 9 3 9 9 9 0 8 5 5 5 1 4 9 5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 13 3 39 4 17 4 50 7 52 A.M. 8 25 8 59 9 28 9 59 10 30 11 3 11 35 1 54 P.M. 2 24 3 0 3 27 4 25 5 5 5 38 7 55 A.M. 8 36 9 15 9 48 10 20 10 52 11 24 11 57	6 99.0 6 99.7 6 99.7 6 101.8 6 103.2 6 103.9 6 104.2 6 105.3 6 105.3 6 105.3 6 105.3 6 105.3 6 105.3 6 105.3 6 105.3 6 105.3 6 104.3 6 105.3 6 105.3 6 104.3 6 105.3 6 105.3 6 104.3 6 105.3 6 105.3 7 105.3 6 105.3 6 105.3 7 105.		

11_____30

Digitized by Google

٩

Extracts from the Field Book-(Continued.) .

When o pare	om- d	the Set.	ure of Air.	Mean time of	ars used.	f Set above igin.	Nur shev arra men	neral wing nge- nt of	When com- pared	the Set.	ure of Air.	Mean time of	ars used.	f Set above gin.	Nur she arra mei	meral wing inge- nt of
183	5	No. of	Temperat	enaing.	No. of 1	Height of or	Bars.	Micros :	1835	No. of	Temperat	enaing.	No. of 1	Height of ori	Bars.	Micros :
16th . 17th	Jan. "	444512234455678900123446667890011234444444444444444444444444444444444	0776655577346626777666666555476910988354556677776435	h. $m.$ 2 4 2 32 3 16 3 56 4 32 4 59 5 27 5 49 7 43 8 58 9 30 10 44 11 20 4 33 10 44 11 20 4 33 4 57 3 42 4 33 4 57 5 23 7 35 8 38 9 34 11 3 12 21 13 21 14 32 9 34 9 34 11 3 12 21 2 21 2 21 <tr< td=""><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>feet. 97'0 98'0 99'4 101'1 101'0 99'2 99'4 99'4 99'4 99'7 99'5 100'0 101'8 103'1 103'1 103'1 103'1 103'1 104'2 100'8 100'1 98'9 98'8 100'1 98'9 98'8 100'1 104'1 104'2 104'2 104'2 105'7 100'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7</td><td></td><td></td><td>19th Jan. 20th " 21st " 23rd "</td><td>48607899912344550789901233455078990112314507899</td><td>6 552 0 3 4 95 9 9 2 58 5 7 8 6 28 4 3 58 3 54 0 57 0 6 3 4 4 5 2 7 7 9 6 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>$\begin{array}{rrrrr} h. & m. \\ 4 & 4 & P.M. \\ 4 & 40 \\ 5 & 8 \\ 8 & I & A.M. \\ 8 & 3I \\ 9 & 23 \\ 9 & 5I \\ 10 & 3I \\ 10 & 56 \\ 1 & 54 & P.M. \\ 2 & 24 \\ 3 & 0 \\ 3 & 3I \\ 4 & 9 \\ 4 & 45 \\ 5 & I5 \\ 7 & 45 \\ 4 & 55 \\ 5 & I5 \\ 7 & 45 \\ 4 & 55 \\ 7 & 45 \\ 5 & A.M. \\ 9 & 1I \\ 9 & 43 \\ 10 & 25 \\ 11 & 35 \\ 9 & 1I \\ 9 & 43 \\ 10 & 25 \\ 11 & 35 \\ 9 & 1I \\ 12 & 26 \\ 7 & 45 \\ 4 & 26 \\ 7 & 45 \\ 4 & 55 \\ 4 & 26 \\ 3 & 19 \\ \end{array}$</td><td>66666666666666666666666666666666666666</td><td>feet. 108:4 108:5 1077 106:5 104:8 103:0 103:2 104:4 104:5 105:0 105:3 105:8 107:1 107:0 107:0 107:0 105:4 106:4 105:6 108:4 107:1 113:0 113:5 111:3 111:6 114:8 119:9 122:4 123:9</td><td></td><td></td></tr<>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	feet. 97'0 98'0 99'4 101'1 101'0 99'2 99'4 99'4 99'4 99'7 99'5 100'0 101'8 103'1 103'1 103'1 103'1 103'1 104'2 100'8 100'1 98'9 98'8 100'1 98'9 98'8 100'1 104'1 104'2 104'2 104'2 105'7 100'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7 105'5 105'7			19th Jan. 20th " 21st " 23rd "	48607899912344550789901233455078990112314507899	6 552 0 3 4 95 9 9 2 58 5 7 8 6 28 4 3 58 3 54 0 57 0 6 3 4 4 5 2 7 7 9 6 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{rrrrr} h. & m. \\ 4 & 4 & P.M. \\ 4 & 40 \\ 5 & 8 \\ 8 & I & A.M. \\ 8 & 3I \\ 9 & 23 \\ 9 & 5I \\ 10 & 3I \\ 10 & 56 \\ 1 & 54 & P.M. \\ 2 & 24 \\ 3 & 0 \\ 3 & 3I \\ 4 & 9 \\ 4 & 45 \\ 5 & I5 \\ 7 & 45 \\ 4 & 55 \\ 5 & I5 \\ 7 & 45 \\ 4 & 55 \\ 7 & 45 \\ 5 & A.M. \\ 9 & 1I \\ 9 & 43 \\ 10 & 25 \\ 11 & 35 \\ 9 & 1I \\ 9 & 43 \\ 10 & 25 \\ 11 & 35 \\ 9 & 1I \\ 12 & 26 \\ 7 & 45 \\ 4 & 26 \\ 7 & 45 \\ 4 & 55 \\ 4 & 26 \\ 3 & 19 \\ \end{array}$	66666666666666666666666666666666666666	feet. 108:4 108:5 1077 106:5 104:8 103:0 103:2 104:4 104:5 105:0 105:3 105:8 107:1 107:0 107:0 107:0 105:4 106:4 105:6 108:4 107:1 113:0 113:5 111:3 111:6 114:8 119:9 122:4 123:9		
	Th He	e do eight	t on i of se	Pin No. 5, s t No. 520 a	was fi ibove	xed exa Pin No	ctly i 5. 5, :	in the = 2.0	normal at feet.	the	advar	nced end of a	set N	lo. 520	•	
24th J	an.	521 522 523 523	65 [.] 9 61 [.] 3 56 [.] 5 47 [.] 6	3 46 P.M. 4 26 4 56 5 30	6 + 6 6 6	124'5 124'2 123'0 120'8	I I I I	I I I	26th Jan. 5 5 5	27 28 29 30	44°3 4 9° 9 54°5 60°3	857 A.M. 931 103 1041	6 + 6 6 6	122°5 122°1 121°6 120°7	I I I I	I I I I
26th	>>	525 526	31.9 38.8	7 51 A.M. 8 30	6 6	122.4 122.7	I I	I	5	31 32	65 [.] 5 74 [.] 5	11 21 1 44 P.M.	6 6	121 ^{.7} 122 ^{.6}	I I	J 1

II_____31

1.

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ure of Air.	Mean time of	ars used.	Set above gin.	Nun shev arrs men	neral wing inge- it of	When com- pared	the Set.	ure of Air.	Mean time of	ars used.	Bet above gin.	Num shev arra mer	neral ving nge- at of
1835	No. of	Temperat	enaing.	No. of 1	Height of ori	Bars.	Micros:	1835	No. of	Temperat	endung.	No. of b	Height of ori	Bars.	Micros:
26th Jan. 27th "	533 534 535 535 537 538 539 540 543 544 545 544 545 544 545 547 548 549 550 550 551	° 75 [•] 77 [•] 77 [•] 68 [•] 53 [•] 53 [•] 54 [•] 59	h. m. 2 16 P.M. 2 53 3 24 3 55 4 18 4 41 5 9 5 39 7 55 A.M. 8 23 8 50 9 24 9 50 10 19 10 44 11 16 1 34 P.M. 1 59 2 λ 1	, , , , , , , , , , , , , , , , , , ,	feet. 123'3 124'2 125'4 127'9 128'0 129'6 129'6 129'6 129'6 129'6 130'7 130'8 130'7 130'8 130'7 130'8 130'7 131'8			29th Jan. 30th "	581 583 583 585 585 585 585 599 599 599 599 599 599	54755 5938377255 5938377255 5938377355 673558 6338 61355 53755555 5375555 537555555 53755555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66666666666666666666666666666666666666	feet. 137'3 137'1 137'1 139'0 139'0 139'0 139'3 140'3 140'3 140'3 140'3 142'9 143'8 144'4 144'5 144'4 144'5 144'1 141'0 144'0 146'0		
28th "	5 52 5 53 5 55 5 555 5 55 5 55 5 55 5 55 5 55 5 55 5 55 5 55 5 55 5 555 5 555 5 5555 5 555555	7750 700 700 700 700 700 700 700	2 45 3 5 3 54 4 20 4 47 5 11 5 39 8 6 A.M. 8 33 8 57 9 24 9 53 10 54 11 34 1 40 P.M. 2 18	00000000000000000000000000000000000000	132'0 131'7 129'4 125'3 125'5 126'2 126'0 126'0 126'0 127'4 128'3 128'9 129'4 130'6 130'6 130'6 130'6 130'6 130'6 130'6 128'1				399 600 602 603 603 605 605 605 605 605 605 605 611 612 613 614 615 616	5448555075815555555555555555555555555555555	9 4 9 25 9 47 10 8 10 30 10 50 0 40 P.M. 1 11 1 44 2 4 2 29 2 49 3 20 3 46 4 11 4 33 5 2	እ 	146 8 148 0 148 0 148 0 150 3 151 1 150 3 148 3 148 3 148 0 148 5 148 3 149 9 150 5 150 5 150 5		
29th "	569 570 571 572 573 574 575 576 577 578 579 580	66.5 64.5 58.3 58.0 52.8 30.5 34.5 39.3 44.0 48.0 51.5	2 47 3 27 4 8 4 44 5 2 5 25 7 35 A.M. 8 4 8 31 8 57 9 16 9 43	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1293 1313 1338 1362 1379 1384 1389 1494 1405 1405 1405 1498			31st " 5th Feb. 17th "	617 6181 6182 6191 6193 6201 6203 6211 6213 6223 6223	48.8 36.3 41.4 48.0 53.3 57.5 61.4 65.2 67.5 67.4 59.5 67.0	5 32 7 43 A.M. 8 18 9 1 9 26 10 9 10 51 11 34 0 6 P.M. 1 28 3 33 11 30 A.M.	6 3 3 3 3 3 3 3 3 2 1	- 55 96 155 76 157 6 159 6 164 7 167 9 171 6 174 3 177 5 178 8 179 1 179 2	1 4 5 4 5 4 5 4 6 3	1676767689

The dot at East-End was fixed exactly in the normal at the advanced end of set No. 622_3 . Height of set No. 622_3 above dot at East-End = 1.6 feet.

Digitized by Google

DETAILS OF THE 2ND MEASUREMENT.

Disposition of the bars and microscopes.

Typical illustrations shewing the permutations and combinations of the bars and microscopes during the 2nd measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set; and the numbers assigned to the illustrations, will be found employed in the tables of "Extracts from the Field Book &c." as a means of reference.

Extracts from the Field Book of the remeasurement, and calculated heights of sets above the origin.

Adopted heights above mean sea level.

East	End	(origin)	=	1957.7	feet.
	-				_

When com- pared	the Set.	ure of Air.	Meas	n time of	ars used.	set above gin.	Nun shev arra men	neral ving nge- nt of	When com- pared	the Set.	ure of Air.	Mean time of	need.	set above jin.	Nun shev arrs mer	neral wing unge- nt of
1835	No. of	Temperat	61	nding.	No. of b	Height of orig	Bars.	Micros :	1835	No. of	Temperat	ending.	No. of be	Height of orig	Barn.	Micros :
19th Feb.	1 23 31 33 41 43 5	62.3 66.3 69.9 72.5 76.8 76.9 71.0 66.4	h. 9 10 11 11 2 3 3 4	m. 32 A.M. 12 4 39 31 P.M. 12 50 32	6 3 3 3 3 3 3 3 5 6	feet. + 2.2 - 3.0 5.8 10.5 13.8 16.4 18.8	I 2 3 2 3 2 3 1	I 2 3 2 3 2 3 4	20th Feb.	б 7 8 9 10 11 12 13	48.4 57.0 59.9 62.2 63.7 68.6 71.9 76.3	<i>h. m.</i> 7 22 A.M. 8 23 9 1 9 26 10 1 10 36 11 12 1 19 P.M.	00000000000000000000000000000000000000	<i>feet.</i> - 21'9 23'7 25'4 20'8 27'4 29'2 29'3 29'3		4 4 4 4 4 4

West End (terminus) = 1770.1 feet.

Norz.-The rear-end of set No. 1 stood exactly over the dot at East-End.

When com- pared	the Bet.	me of Air.	Moto	n time of	biths used.	of Beb above igin.	Nur shev afre mer	neral wing mge- nt of	When com- pared	f the Set.	ure of Air.	Mean time of	bars used.	f Bet above igin.	Nur she arra mer	neral wing ange- nt of
1885	No. ef	Temporhi	· ·		Ho. of	Heigh é c ei	Pare .	Mieros :	1835	No. 0	Temparat		Jito of 1	Height o	Barn.	Microe :
20th Feb.	14 15 16	0 74:8 72:5	. h. 1 2 3	т. 56 г.м. 33 10	999	foet. - 28-8 29-0 27-0	I I I	4 4	24 th Feb.	59 60	o 74°0 76'9	h. m. 10 42 А.М. 11 10 1 10 Р.М.	66	foct. - 47.5 48.6	I I I	4
21st "	17 18 19 20	69'5 66'5 63'3 49'2	4 4 5 7	а 3В 32 л.м.	9999	26.7 204 27.3 28.4	t t t I	4 4 4 4		62 63 64 65	77'7 78'8 78'9 78'5	I 44 2 14 2 42 3 5	6 6 6	50°1 50°9 51°7 52°1	I I I I	4 4 4 4
	21 22 23 24	53.9 57.4 60.7 63.6	7 8 8 9	56 25 51 25	00000	29°2 29°8 30°9 32°0	1 I I	4 4 4 4	-	66 67 68 69	79°0 77°3 74°8 69°5	3 36 4 6 4 37 4 59	0000	52°5 52°3 51°6 49°8	1 1 1	444
	25 26 27 28	07.0 69.3 72.1 77.8	9 10 1 1	54 26 55 7 P.M.	00000	341. 35.4 33.9 32.9	1 1 1 1 1	•	25th "	70 71 72 73	00.8 50.0 57.7 60.0	5 34 7 21 A.M. 7 47 8 16 8 08	0000	47.7 46.5 46.7 46.6	1 I I I	4 4 4 4
	30 31 32 33	79 3 82 2 80 9 78 9	2	3 27 55 21	6 6 6 6 6 6 6	334 330 343 350 350	I I I I	4 4 4 4		74 75 76 77	63.0 65.9 67.0 70.1	9 8 9 33 10 0	00000	47 6 47 6 47 7 47 7		4 4 4
	34 35 36 37	72.8 70.1 65.5 58.6	3 4 4 5	47 11 40 13	000	30°0 37°5 38°3 39'0	T T T	4 4 4		79 80 81 82	72°1 76°3 76°9 78°0	10 41 0 44 P.M. ,I 15 1 39	6666	48·2 48·5 48·6 48·8	I I I I	4444
23rd "	38 39 40 41	58.7 61.7 65.5 07.1	7 7 8	25 л.н. 57 30 5 5	\$ \$ \$ O'O	38.0 38.1 39.9 39.9	() # 11 	4		83 84 85 80	73.4 75.6 76.5 72.5	2 5 2 26 2 50 3 6	9999	48.9 49.6 50.4 51.0	1 1 1 1	4 4 4 4
	43 43 44 45	67.7 68.6 70.3 71.0	9 9 10 10	25 55 24 52	0000	399 379 369 370	I I I	4 4 4	0641	87 88 89 90	71°5 699 670 658	3 28 3 50 4 10 4 38	0000	51.5 52.4 53.5 54.3	C J I I	4 4 4 4
· ·	40 47 48 49	74 0 75 8 74 3 73 9	1 1 2 2	о р.м. 29 12 35 б	00000	372 379 387 395	I I I I	4 4 4	2011 "	91 92 93 93 94	43'7 49'0 51'3 53'9	7 33 A.M. 8 5 8 35 8 59	0000	55.2 56.2 57.3 56.3	I I I	444
24ťh , ¹	50 51 52 58 58	710 099 032 541 580	3 3,5,78	32 15 39 л.м. 10	\$ \$ \$ \$ \$ \$	399 41*2 48*6 47*0 48*7	I I I I	4 4 4 4		95 97 97 98 90	502 58.3 5013 61.3 63.6	y 20 9 48 10 14 10 39 11 6	9000	55.8 55.4 55.3 55.3 55.3	I I I I	4 4 4
1. 1 1. 3 1. 3	55 50 57 58	61.5 63.3 66.9 71.0	999 10	44 6 35 16	ୁ କ କ କ କ ଜ	50.4 50.0 49.4 47.4		4 4 4 4		99 100 101 102	67.8 08.8 69.0	I 12 P.M. I 40 2 55	6 6 6	55°4 54°¥ 53°8	I I I	4 4 4

Extracts from the Field Book-(Continued.)

The advanced end of set No. 102 fell in excess, (i.e., west) of dot by 1st measurement on Pin No. 5, 0.0425 feet, as measured on Carty's bitass scale with a pair of compasses. Height of set No. 102 above Pin No. 5 = 2.7 feet.

Digitized by Google

DETAILS OF THE 2ND MEASUREMENT.

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ure of Air.	Mean time of	bars need.	f Set aboye gin.	Nun she arrs mer	neral wing nge- nt of	When com- pared	the Set.	ure of Air.	Mean time of	oars used.	f Set above gin.	Nun shev arra mer	neral wing nge- nt of
1835	No. of	Temperat	enang.	No. of	Height o ori	Barn.	Micros :	1835	No. of	Temperat	encing.	No. of 1	Height o ori	Barr.	Micros :
26th Feb. 27th "	103 104 105 107 108 109 110 111 112 113 114 115 117 118 119 120 121 121 122 123 124 125 126	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre></pre>	- 53.7 54.4 55.7 58.4 55.5 58.4 55.4 55.4 55.4 55.4 55.4		444444444445555555555555555555555555555	2nd Mar. 3rd "	150 151 152 153 154 155 156 157 158 159 161 163 164 165 166 167 168 167 171 172 174 175	0 7 7 7 7 7 7 7 7 7 7 7 7 7	\hbar . m. 2 45 P.M. 3 12 3 36 3 59 4 20 4 43 5 5 29 7 11 A.M. 7 38 8 26 8 57 9 24 9 50 10 12 10 37 11 3 1 52 P.M. 2 26 2 47 3 9 3 57 4 23 4 45 5 7	୪୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦	feet. 74-2 76-1 777-8 78-5 79-1 78-5 79-2 78-7 78-7 78-7 78-7 78-7 78-7 78-7 78		。 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
2nd Mar.	129 130 131 132 133 134 135 137 138 139 140 141 143 144 145 144 145 144 145 144 145	74°04 78°47 78°47 78°47 71°09 67°07 607°07 78°07 777 78°077 78°07 7	I 5 I 51 J 34 J 10 J 55 4 19 4 43 5 36 7 19 8 20 8 52 9 17 9 46 10 14 10 37 11 1 12 30 2 21	\$	73.6 73.1 73.7 74.0 75.5 73.7 73.7 73.7 70.4 69.3 69.9 70.1 69.8 69.4 70.3 71.3 71.4 70.9 71.3 71.4 73.0 71.3 71.4 73.0 73.0 73.0 71.3 73.0 73.0 75.5 73.1 70.4 69.3 70.1 70.3 70.1 70.4 69.3 70.1 70.5 70.1 70.1 70.4 69.3 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1		੶ ੶ ੶ · · · · · · · · · · · · · · · · ·	4th "	176 177 178 179 180 181 183 184 183 184 185 186 187 188 189 190 191 192 193 194 195 196	60.5 46.1 55.3 55.3 55.3 55.3 55.5 55.5 55.5 55	5 30 7 30 A.H. 7 58 6 28 6 59 9 34 10 3 10 3 10 3 11 3 1 15 P.H. 3 15 P.H. 3 45 3 46 4 29 4 53 5 18 5 52 7 22 A.H. 7 54 8 30 8 50 8 50	ଡ଼୶୶୶୶୶୶୶୶ ୶୶୶୶୶୶୶୶୶୶୶୶୶	Bo 9 799 799 798 797 789 764 744 758 733 745 739 739 739 739 739 739 739 739 739 739		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

II_____35

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	are of Air.	Mean time of	ers used. ' Set abore gin.	Nun she arrs men	neral wing inge- nt of	When com pared	the Set.	ure of Air.	Mean time of	ers used.	. Set above gin.	Nun shev arra men	neral wing nge- it of
1835	No. of	Temperat	ending.	No. of b Height of ori	Bars.	Micros :	1835	No. of	Temperat	encing.	No. of b	Height of ori	Bars.	Micros :
5th Mar. 6th " Th No. 4 or He	197 198 199 200 201 203 204 205 207 207 208 207 208 207 212 213 211 212 213 214 215 me ad	64.8 69.6 72.1 74.6 80.6 79.6 79.4 80.0 79.4 80.0 79.4 80.0 79.4 80.0 79.4 70.5 76.0 71.2 70.5 53.2 45.0 53.2 45.0 53.2 45.0 53.2 45.0 53.2 45.0 53.2 45.0 53.2 58.0 54.7 58.0 54.7 58.0 54.7 58.0 54.7 58.0 54.7 58.0 54.7 58.0 54.7 58.0 54.7 58.0 55.5 54.7 58.0 55.5 54.7 58.0 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 54.7 55.5 55.5	h. m. 9 36 A.H. 10 28 10 58 1 30 P.M. 1 54 2 19 2 41 3 9 3 30 3 55 4 17 4 40 5 7 5 35 7 7 A.M. 7 34 7 58 8 24 d-end of set 3, 0°0493 fee 2 No. 238 a	feet. 6 - 74'1 6 74'9 6 75'5 6 76'7 6 79'3 6 80'3 6 80'3 6 81'4 6 81'6 6 83'7 6 83'7 6 83'7 6 83'7 6 83'7 6 83'7 6 83'7 6 85'9 6 85'2 6 85'2 7 85'2 7 85'2 7 85'2 7 85'2 7 85'2 7 85'2 8 85'2 7 85'2 8 85'	I I I I I I I I I I I I I I I I I I I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6th Mar 6th Mar 7s brass s feet.	216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 233 est) cale	o 61.7 64.4 67.0 68.2 71.9 73.8 75.0 79.0 83.9 82.0 82.3 81.0 77.0 75.3 72.8 66.1 0f the with a	$\begin{array}{c} h. & m. \\ 8 & 54 & A.M. \\ 9 & 20 \\ 9 & 42 \\ 10 & 0 \\ 10 & 25 \\ 10 & 43 \\ 11 & 8 \\ 1 & 14 & P.M. \\ 1 & 36 \\ 2 & 1 \\ 2 & 24 \\ 2 & 50 \\ 3 & 13 \\ 3 & 37 \\ 3 & 57 \\ 4 & 20 \\ 4 & 45 \\ 5 & 35 \\ \end{array}$	- - - - - - - - - - - - - - - - - - -	feet. 88.7 89.9 91.3 91.7 92.5 94.3 95.6 98.8 98.9 99.0 97.1 97.2 97.1 97.2 97.1 97.2 97.1 95.7 95.0 92.0 8801remos	I I I I I I I I I I I I I I I I I I I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7th Mar. 9th "	234 2356 2336 2338 2339 2412 2445 2445 2445 2445 2512 253 255	78.000 778.000 777777770 53.000 5550 559.100 5550 559.100 5550 5550 5550 5550 5550 5550 5550	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 - 90 ⁸ 6 92 ² 6 94 ⁵ 6 96 ⁸ 6 99 ⁶ 6 99 ⁶ 6 100 ⁵ 6 100 ² 6 110 ² 7 6 110 ² 6 110 ² 7 6 110 ² 6 110 ² 6 110 ² 6 111 ² 7 6 111 ² 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	9th Mar 10th "	256 257 258 260 262 265 265 265 265 265 265 265 265 271 273 273 275 277	76'9'0'6 77'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'	1 7 P.M. 1 29 1 51 2 11 2 32 2 53 3 13 3 35 3 57 4 23 4 49 5 10 5 35 7 7 A.M. 7 38 8 25 8 47 9 8 9 26 9 48 10 11	, , , , , , , , , , , , , , , , , , ,	118'1 119'0 120'3 121'5 122'9 124'2 125'2 125'2 125'2 125'2 125'2 125'2 127'2 127'2 127'2 129'7 130'1 132'9 131'3 131'8 132'9 133'6 134'3 135'1 137'0		、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

II_____36

-

:

0

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ure of Air.	Mean time of	ars used.	f Set above gin.	Nun shev arra mer	neral ving nge- nt of	When com pared	the Set.	ure of Air.	Mean time of	bars used.	. Set above gin.	Nur shev arra mer	neral wing nge- nt of
1835	No. of	Temperat	ending.	No. of b	Height of ori	Bars.	Micros :	1835	No. of	Temperat	ending.	No. of 1	Height of ori	Bars.	Micros :
10th Mar.	278 2790 2881 2822 2883 2884 2885 2887 2992 2993 2994 2995 2999 2999 2999 2999 3001 3003 3004 3005 3007 3089 3010 3111 313 314 315	77778788888777766665556809667777788888888888888888888888888888	h. m . 10 $36 A.M$. 11 7 1 $9 P.M$. 1 50 2 16 2 16 2 16 2 43 3 23 3 24 3 23 3 24 3 23 3 24 3 323 3 44 4 5 4 7 5 30 6 $44 A.M$. 7 51 8 33 9 30 9 30 9 30 9 30 9 48 10 9 10 49 11 10 2 57 3 37 3 37 3 37 3 37 <td>, , ,</td> <td>feet. 137'4 136'9 137'2 137'2 137'2 137'2 140'2 140'2 140'9 141'2 141'2 141'2 141'3 142'3 142'3 142'3 142'3 142'3 142'3 142'3 143'1 145'3 155'5 155'7 155'9 155'8 159'7 155'9 159'7 159'8 159'7 159'7 159'8 159'7 159'7 159'8 159'7 159'7 159'8 159'7 15</td> <td></td> <td>۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲</td> <td>12th Mar.</td> <td>325 327 3229 3329 3331 3332 3333 3334 3343 3343 3343 3343</td> <td>6576677777788888888888877776665566666666</td> <td>h. m. 8 17 A.M. 8 38 9 21 9 44 10 0 10 19 10 38 10 59 0 55 P.M. 1 10 1 39 2 0 2 21 2 41 3 7 3 35 3 55 4 19 4 48 5 7 5 29 4 48 5 7 5 29 5 40 15 20 2 20 3 30 2 30 2 30 2 30 3 34 3 53</td> <td>ᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡ</td> <td>feet. 162'9 164'7 164'7 164'7 164'7 164'7 165'3 165'3 165'3 165'3 165'3 165'3 167'2 167'7 167'5 167'7 167'5 169'1 167'0 167'3 167'3 16</td> <td></td> <td>、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、</td>	, , ,	feet. 137'4 136'9 137'2 137'2 137'2 137'2 140'2 140'2 140'9 141'2 141'2 141'2 141'3 142'3 142'3 142'3 142'3 142'3 142'3 142'3 143'1 145'3 155'5 155'7 155'9 155'8 159'7 155'9 159'7 159'8 159'7 159'7 159'8 159'7 159'7 159'8 159'7 159'7 159'8 159'7 15		۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	12th Mar.	325 327 3229 3329 3331 3332 3333 3334 3343 3343 3343 3343	6576677777788888888888877776665566666666	h. m. 8 17 A.M. 8 38 9 21 9 44 10 0 10 19 10 38 10 59 0 55 P.M. 1 10 1 39 2 0 2 21 2 41 3 7 3 35 3 55 4 19 4 48 5 7 5 29 4 48 5 7 5 29 5 40 15 20 2 20 3 30 2 30 2 30 2 30 3 34 3 53	ᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡ	feet. 162'9 164'7 164'7 164'7 164'7 164'7 165'3 165'3 165'3 165'3 165'3 165'3 167'2 167'7 167'5 167'7 167'5 169'1 167'0 167'3 167'3 16		、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
12th "	316 317 318 319 320 321 322 323 324	75 ^{.8} 73 ^{.9} 7 ^{1.7} 68 ^{.7} 53 ^{.0} 55 ^{.0} 57 ^{.7} 63 ^{.5}	4 32 4 48 5 11 5 28 6 30 A.M. 6 54 7 13 7 33 7 56	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	162.8 162.7 162.9 163.8 164.7 164.7 164.7 164.0 164.1 163.3		555555555555555555555555555555555555555	14th "	362 363 364 365 366 367 368 369 370	05'3 63'5 45'4 40'7 49'8 51'7 54'1 56'2 57'9	4 15 4 40 6 56 A.M. 7 21 7 45 8 11 8 39 9 5 9 26	0 6 6 6 6 6 6 6 6 6 6 6	170 ² 171 ³ 171 ³ 171 ² 172 ⁴ 172 ⁴ 171 ⁴ 170 ⁸ 170 ⁷	I I I I I I I I I	\$\$\$\$\$\$\$\$

II_₃₇

.

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ure of Air.	Mean time of	ars used.	Set above gin.	Nun shew arra men	ne ral ving nge- it of	When com- pared	the Set.	are of Air.	Mean time of	bars used. Set above gin.	Num shew arrs men	neral ving nge- it of
1835	No. of	Tomperat	ending.	No. of h	Height of ori	Bars.	Micros:	1835	No. of	Temperati	ending.	No. of 1 Height of ori	Barn.	Micros:
14th Mar. 17th " No. 3 •	371 372 373 374 375 376 377 378 380 381 382 383 384 385 386 387 he ad	59.2 60.3 61.1 62.0 73.0 73.0 72.4 59.8 50.3 47.2 59.8 57.3 59.8 57.3 59.8 62.2 vance 99.39 9	h. m . 9 46 h .M. 10 7 10 31 10 53 11 20 4 14 P.M. 4 35 4 59 5 23 5 45 6 4 7 22 h .M. .7 44 8 7 8 30 8 52 9 14 ed-end of see feeet, as meet the 102	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	feet. 170°0 170°2 170°2 160°1 168°1 168°4 169°0 167°7 166°1 165°0 164°2 164°2 164°2 164°5 165 165 165 165 165 165 165 16	I I I I I I I I I I I I I I I I I I I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17th Mar. 18th ,, , (<i>i.e.</i> we cale with	388 389 390 391 393 393 393 395 397 398 399 400 401 402 403 st) 0 a pai	640 65.8 68.2 69.7 72.4 80.1 78.8 80.0 77.7 75.0 73.6 72.9 70.6 68.3 65.5 57.0 f the ir of c	$\begin{array}{c} h. & m. \\ g & 36 \text{ A.M.} \\ g & 56 \\ 10 & 20 \\ 10 & 39 \\ 11 & 6 \\ 1 & 50 \text{ P.M.} \\ 2 & 16 \\ 2 & 44 \\ 3 & 25 \\ 3 & 54 \\ 4 & 32 \\ 5 & 33 \\ 5 & 44 \\ 4 & 52 \\ 5 & 10 \\ 5 & 32 \\ 5 & 53 \\ 7 & 49 \text{ A.M.} \\ \end{array}$	feet 6 — 164.2 6 164.2 6 164.2 6 165.2 6 165.2 6 165.2 6 167.2 6 167.2 6 167.2 6 167.2 6 167.2 6 165.2 6 167.2 6 165.2 6 155.2 6 15	I I I I I I I I I I I I I I I I I I I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
18 th Mar , 19th "	404 405 406 407 408 409 410 411 413 414 415 416 417 418 419 421 423 424 423 424 423 424 423 424 425 426 427 427 427 427 427 427 427 427 427 427	57.8 59.3 59.3 59.6 59.6 59.6 59.6 59.7 50.5 59.7 71.7 70.4 50.7 50.7 50.7 50.7 50.7 50.7 50.7 50.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , , , , , , , , ,	155'1 155'1 155'8 155'5 155'4 155'9 155'4 155'4 155'4 155'4 155'4 155'4 155'4 155'4 155'4 158'8 158'8 158'8 158'8 158'8 158'8 158'8 158'8 158'9 159'1		555555555555555555555555555555555555555	19th Mar 21st "	. 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 451	57°0 58°3 64°0 68°6 68°7 73°0 73°5 75°5 75°5 75°5 74°7 72°6 71°5 71°3 65°0 71°5 60°3 71°5 60°3 71°4 71°5	8 35 A.M. 9 3 9 25 9 49 10 10 10 32 10 58 1 27 P.M. 1 52 2 14 2 32 2 55 3 13 3 37 4 1 4 25 4 40 5 12 5 33 5 53 9 32 A.M. 9 58 10 21 10 40	6 - 159 6 161 6 161 6 160 6 160 6 160 6 160 6 159 6 158 6 158 6 158 6 158 6 158 6 158 6 158 6 158 6 157 6 157	0 1 1	\$\$\$\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$\$\$\$

DETAILS OF THE 2ND MEASUREMENT.

Extracts from the Field Book-(Continued.)

When com- to pared a	ure of Air.	Mean time of	barrs used. f Set above igin.	Nun shev arra mer	neral ving nge- it of	When com- pared	the Set.	ure of Air.	Mean time of	oars used.	f Set above gin.	Num shev arra men	ving nge- t of
1835 v	Temperat	enaing.	No. of 1 Height of	Barn.	Micros:	1835	No. of	Temperat	enaing.	No. of 1	Height o ori	Bærs.	Micros:
21st Mar. 452 453 454 455 455 457 458 The a No. 2 or St	o 72 ² 3 749 75 ⁸ 75 ⁸ 75 ⁸ 75 ⁸ 78 ⁷ 78 ⁷ 78 ⁷ 78 ⁹ 79 ⁰ dvance	h. m. 11 0 A.H. 11 22 11 44 0 2 P.H. 0 22 0 40 1 1 ed-end of set A, 0.1131 fee	feet. 6 — 153:5 6 152:4 6 151:9 6 151:9 6 151:9 6 151:4 6 151:4 6 151:4 6 151:4 151:6 No. 465 t, as measu	I I I I I I I I I I I I I I I I I I I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	21st Mar. 23rd " 18, (i. e. w	459 460 461 463 463 464 465 vest) cale	80 ³ 82 ⁰ 83 ³ 83 ⁷ 81 ² 80 ⁰ 66 ⁰ of the with a	h. m. 1 23 P.M. 1 44 2 3 2 25 2 47 3 12 10 0 A.M. e dot by 1st 5 pair of com	6 – 6 6 6 6 meas	feet. - 152.0 152.4 152.3 152.5 152.3 151.2 151.3 sureme es.	r r r r r r r	5 5 5 5 5 5 5 5 5 7 8
Heigh	nt of S	Set No. 465 a	bove Stati	on \mathbf{A} =	= 2·4	feet.				- F	-		
24th ,, 48 48 48 48 48 48 48 48 48 48	7 8 8 1	10 25 And 10 49 11 10 1 8 P.M. 1 28 1 49 2 10 2 32 2 52 3 14 3 31 3 54 4 12 4 34 5 57 6 56 7 19 7 41 8 22 8 42 9 10 9 57 10 20 9 57 10 20 9 57 10 40 11 3 1 8 1 27 1 52	6 152°G 6 152°G 6 152°G 6 152°G 6 152°G 6 152°G 6 153°G 6 153°G 6 153°G 6 153°G 6 154°G 6 154°G 6 154°G 6 154°G 6 156°G 6 155°G 6 154°G 6 155°G 6 156°G 6 156		<u></u>	25th "	501 501 503 503 505 500 500 500 500 500	24648 8674 8674 8674 8674 87777 87777 87777 87777 87777 87777 87777 87777 87777 87777 87777 87777 8877777 8877777 8877777 8877777 8877777 88777777 88777777 88777777 88777777 88777777 88777777 887777778 8877777778 887777778 887777778 87777778 87777778 87777778 877777777	2 36 2 57 3 21 3 45 4 5 4 25 4 40 5 7 5 26 5 45 6 45 4. 7 10 7 30 7 49 8 11 8 30 8 54 9 15 9 35 9 35 9 35 9 35 9 35 9 14 10 33 10 54 11 18 1 11 P.M. 1 32 1 56 2 13 2 32 3 11 3 30	\$	150 96 150 96 162 15 150 14 162 15 159 14 159 16 164 15 166 16 166 76 166 79 9 169 7 170 2 170 2 170 2 171 2 170 2 171 5 170 2 170 2 171 5 170 2 170 2 171 5 170 2 170 2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Extracts from the Field Book-(Continued.)

When com pared	the Set.	ure of Air.	Mean tir	ne of	oars used.	Set abore gin.	Nur she arre mer	neral wing inge- nt of	When com pared	the Set.	rre of Air.	Mean time of	ars used.	. Set abore gin.	Nun shev arra me	neral wing onge- nt of
1835	No. of	Temperat	endin	g.	No. of 1	Height of ori	Bars.	Micros :	1835	No. of	Temperatu	ending.	No. of b	Height of ori	Bara.	Micros :
25th Mar. 26th "	534 535 536 537 538 539 540 541 542 543 544 545	86°2 85°8 84'9 84'0 82'5 76'2 70'2 70'2 70'2 70'2 70'2 70'2 70'2 70	h. m. 3 48 1 4 6 4 25 4 42 4 59 5 17 5 38 6 48 4 7 11 7 31 7 50 cd-end 0	P.M. A.M.	- - No No	feet. 171'7 172'5 172'6 172'2 171'6 171'2 171'2 171'2 172'0 172'0 172'2 172'2 172'3 556	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26th Mar 198, (i.e. w	- 546 547 548 549 550 551 552 553 554 555 556 eest) c	59'4 61'3 64'0 66'5 70'0 72'7 74'1 76'0 77'5 79'2 85'0 f the	h. m. 8 11 A.M. 8 26 8 53 9 13 9 38 10 2 10 18 10 35 10 53 11 12 2 1 P.M. dot by 1st	6 - 6 6 6 6 6 6 6 6 6 6 7 6 7 8	feet. - 171 1 171.6 172.8 170.3 169.3 169.3 168.9 169.2 168.7 168.4 167.5 167.3 Sureme	I I I I I I I I I I I I I I I I I I I	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
No. 1, c	.118	9 feet	, as mea	sured	on	Cary's	brass	scale	with a p	air of	com	passes.				
Н	eight	of se	et No. 58	56 a d	ove	Pin No). 1 =	= 2.9 :	leet.				_			
26th Mar. 27th "	5578 5500 12 550 550 550 550 550 550 550 550 550 55	888888888877666455555566666777777 78855444335296802355790635703566802355790635703568023	2 4 5 2 4 5 2 4 5 2 4 7 4 2 3 3 3 4 4 4 5 5 5 5 5 6 6 7 7 7 7 8 8 8 8 9 9 9 9 9 9 9 10 0 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	P.M.	00000000000000000000000000000000000000	1679 1691 1701 1701 1707 1729 1748 1752 1758 1758 1758 1758 1757 1758 1757 1758 1757 1757 1757 1771 1775 1771 1776 1780 1808 1805 1806 1802 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1798 1799 1795 1806 1807 1807 1807 1807 1807 1807 1807 1807 1807 1775		ៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜៜ	27th Mar 28th "	586 588 588 599 599 599 599 599 599 599 599	795031920500986388222500771777890936	11 $0 A \cdot M.$ 0 $50 P.M.$ 1 9 1 24 1 42 1 59 2 15 2 34 2 52 3 28 3 28 3 45 4 50 5 11 5 20 4 50 5 11 5 20 9 32 9 32 9 38 9 52 10 27 10 50 11 11 11 25 11 40	COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	- 179 ² 179 ³ 179 ⁹ 180 ⁵ 180 ⁶ 180 ⁶ 178 ⁵ 178 ⁴ 178 ⁶ 178 ⁷ 180 ⁷ 180 ⁷ 180 ⁷ 180 ⁷ 180 ⁸ 178 ³ 178 ³ 178 ³ 178 ³ 177 ⁷ 177 ⁷ 177 ⁷ 177 ⁸ 178 ³ 177 ⁸ 177 ⁹ 177 ⁹		、 、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

.

DETAILS OF THE 2ND MEASUREMENT.

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ure of Air	Mean time_of	ars used	Set abore gin	Nun shev arra mer	neral wing nge- nt of	When com- pared	the Set.	ure of Air	Mee	un time of	ers used	Set above gin	Nun shev arra mer	neral wing nge- nt of
1835	No. of	Temperat	ending	No. of 1	Height of ori	Bara.	Micros :	1835	No. of	Tomperat		ending	No. of b	Height of ori	Bara.	Mieros:
28th Mar.	615 616 617 618	82 [°] 2 84 [°] 4 85 [°] 5 85 [°] 3	h. т. 11 54 м.м . 0 11 Р. м . 0 26 0 43	6- 6 6	<i>feet.</i> 179 [.] 6 179 [.] 2 179 [.] 1 179 [.] 6	I I I I	5555	28th Mar. 6 6 6 6	19 20 21 22	86 [°] 4 88'5 87'0 84'7	k 1 1 2	т. о р.м. 18 36 55	6- 6 6	feet. - 179'4 178'7 177'4 177'4	I I I I	5 5 5 5

The advanced-end of set No. 622 fell in excess, (i. e. west) of the dot at West-End, 0.1296 feet, as measured on Cary's brass scale with a pair of compasses. Height of set No. 622 above West-End = 2.3 feet.

Reduction to Mean Sea Level.

Let the sections into which this line is divided be denoted as follows:

West-End to Pin No. 1 by	•••	•••	•••	•••	Section I
Pin No. 1 to Pin No. 2 by	•••	•••		•••	" II
Pin No. 2 to Pin No. 3 by	•••	•••	•••	•••	" III
Pin No. 3 to Pin No. 4 by		•••	•••	•••	" IV
Pin No. 4 to Pin No. 5 by	•••		•••	•••	" V
Pin No. 5 to East-End by	•••	•••	•••	•••	" VI

Then in the notation of (7) page I_{22} we have

For the 1st measurement—(in feet.)

 $H = 1770; h = 187.6; \delta h = 10.0; Log R = 7.32068; and n = 622.$

		$\begin{bmatrix} h \end{bmatrix}_{1}^{p}$	a	n	dh	F	λ	C_{2}	<i>C</i> ₁	C
Section	T	+		66	+	+	+			•2521
Dection	*	92	U	00	••	129	4130	0,004	33-1	3521
	II	1505	0	91	1.2	1674	5733	•0050	•4849	•4899
,,	III	1482	0	62	1.0	1675	3906	. 0050	•3304	•3354
,,	IV	5163	15	170	2.2	5991	10710	•0180	•9059	·9239
,,	V	13262	0	131	2'1	14226	8253	•0428	•6981	•7409
,,	VI	14827	1026	102	1.6	14740	6426	•0444	•5435	•5879

Digitized by Google

Reduction to Mean Sea Level-(Continued.)

For the 2nd measurement—we have in feet.

		H = 1958	; h = -	- 187.6	;	- 7'9;	$\log R$	= 7:3206	8; and <i>n</i>	= 622.
		$\begin{bmatrix} h \end{bmatrix}_1^p$	a	n	dh	F	λ	C_2	<i>C</i> ₁	C
Section	1	 11731	+	66	<u></u> 0*8	 12227	4158	+ •0368	- <u>-</u> •3891	 •3523
>>	·Π	14811	o	91	1.1	15408	573 3	•0464	•5364	•4900
>>	III	97°5	0	62	o.8	10052	3906	• 0 303	•3655	•3352
> >	IV	25524	168	170	2.3	26054	10710	•0784	1.0071	•9237
"	V	10106	0	131	1.7	10388	8253	•0313	•7722	•7409
"	VI	4 177	25	102	1.3	4219	6426	· 0127	·6013	•5886

. .

.

١

.

11₋₋₋₄₃

.

	Me	asured wi	th	Reduction		
Statement	Compensated bars pages I1_10 and II_15	Compensated microscopes pages II_21 and II_24	Beam compass pages IIto II4I	to sea level pages II42 and II43	Length by each measurement	Mean length by the two measurements
		West	-End to Pin	No. 1.		
By 1st measurement, "2nd "	3960°1554 °1534	198 ^{.01} 52 .0024	0.0 0.0102	- 0.3521 - 0.3523	4157 [.] 8185 7928	4157.8057
		Pin No. 1 to	Pin No. 2 (or Station A.)		
By 1st measurement, "2nd "	5460°2143 °2114	273°0115 '0027	0°0 — 0°0058	— 0 [.] 4899 — 0 [.] 4900	5732°7359 °7183	5732.7271
		Pin No. 2 (0	or Station A)	to Pin No. 3.		
By 1st measurement, "2nd "	3720°1460 °1441	186 [.] 0086 •0004	0.0 - 0.03	- 0.3354 - c.3352	3905 [.] 8192 .7901	3905 [.] 8046
		Pin No. 3 to	Pin No. 4 (0	or Station B.)		
By 1st measurement, "2nd "	10200 [.] 4003 *3951	510.0281 .0009	0°0 — 0°0446	- 0 [.] 9239 - 0 [.] 9237	10709 [•] 5045 `42 77	10709.4661
		Pin No. 4 (o	r Station B.)	to Pin No. 5.		
By 1st measurement, "2nd "	7860 [.] 3085 *3045	393.0295 .0050	0.0 — 0.0008	- 0'7409 - 0'7409	8252°5971 *5618	8252.5795
		Pin I	No. 5 to East	-End.		
By 1st measurement, "2nd "	б120°2402 °2370	306 [.] 0213 .0188	0'0 — 0'0425	— 0·5879 — 0·5886	6425 [.] 6736 •6247	6425.6491
		West	-End to East	-End.		
By 1st measurement, "2nd "	37321°4647 °4455	1866'1142 '0302	0.0 — 0.130Q	- 3'4301 - 3'4307	3918411488 391839154	39184.0321

Final length of the Base-Line and of its Parts in feet of Standard A.

And from the foregoing,

		feet		
West-End to Pin No. 2 (or Station A)	=	9890.5328,	Log.	3.995219688
Pin No. 2 (or Station A) to Pin No. 4 (or Station B)	=	14615.2707,	Log.	4.164806863
Pin No. 4 (or Station B) to East-End	=	14678.2286,	Log.	4.166673647
West-End to East-End	=	39184.0321,	Log.	4.593109124

II_____44

Digitized by Google
Verificatory Minor Triangulation.

of gle					Distance	in	of gle
No. Trian	Name of Station	Corrected Angle	Log. Sine	Log. Distance	Feet	Miles	Error Trian
1	West-End of Base, Station A, ,, a	0 71 11 41 [*] 526 71 34 35 [*] 359 37 13 43 [*] 149 180 0 0 [*] 034	9'976175848 9'977150135 9'781753455	4.189642081 4.190616368 3.995219688	9890'5328	1.873	-2 ["] 291
2	Station a ,, A , ,, β	78 11 26.844 34 3 2.605 67 45 30.585 180 0 0.034	9`990709265 9`748131086 9`966421760	• 4`213929586 3`971351407 4`189642081			+ 1.804
3	Station A, ,, β ,, B,	74 22 21.452 48 33 17.647 57 4 20.955 180 0 0.054	9:983641598 9:874823932 9:923947698	4 [.] 273623486 4 [.] 164805820 4 [.] 213929586	14615-2356	2.768	-0.322
4	Station β ,, B, ,, γ	56 28 14.570 74 23 44.453 49 8 1.065 180 0 0.088	9:920959539 9:983690437 9:878658232	4·315924793 4·378655691 4·273623486			<u>-</u> 1*408
5	Station B, ,, γ East-End of Base,	48 31 54 [.] 200 45 3 15 [.] 634 86 24 50 [.] 220	9 [.] 874668723 9 [.] 849896485 9 [.] 999148810	4`191444706 4`166672468 4`315924793	14678.1888	2.780	—0 °266
		180 0 0.054		Sums	391839572	7'421	

NOTE.-Each side of a triangle is given in the same horizontal line with the angle which it subtends.

The angles of the verificatory triangulation were measured with a 3-foot Theodolite (either the one by Troughton or that by Barrow) read by 5 micrometer-microscopes. At stations A, γ and E. End, 2 measures were taken on each of 12 zeros. At the remaining 4 stations, 3 measures were made on each of 12 zeros. The stations on the line are W. End, A, B, and E. End.—The auxiliary stations are α , β and γ .

II____45

•

Comparison in feet between the values computed by means of the verificatory triangulation and the measured value.

Of the entire line.

West-End to East-End by the mean of the two measurements page II_44 $39184\cdot0321$ $4\cdot593\ 1091\ 24$ ", computed in terms of West-End to Station A page II_45 $39183\cdot9572$ $4\cdot593\ 1082\ 93$ Log. computed value – Log. measured value – $0\cdot000\ 0008\ 31$

In terms of the entire line by measurement.

	Computed	Computed Measured*
West-End to Station A	9890.5517	+0.0189
Station A to Station B	14615.2636	-0.0021
Station B to East-End	14678-2168	-0.0118

Of each section in terms of the others.

	W. End to Station A	Station A to Station B	Computed Measured	Station B to E. End	Computed Measured
Measured lengths*	9890*5328	14615.2707	•••	14678-2286	
Computed on base West-End to Station A		14615-2356	 *03 5 I	14678•1888	0398
Computed on base Station A to Station B	}	••• ••• •••		14678-2241	0045

NOTE.—Since $\operatorname{Log}_{\theta}(x + dx) = \operatorname{Log}_{\theta} x + \frac{(dx)}{x} - \frac{(dx)^2}{2x^2} + \&c.$ $dx = \left\{ \operatorname{Log}_{10}(x + dx) - \operatorname{Log}_{10} x \right\} \frac{x}{16x^3}$

 $dx = \left\{ \log_{10} \left(x + dx \right) - \log_{10} x \right\} \frac{x}{\text{Modulus}} \text{ nearly, by which expression the required}$ variations in the foregoing natural numbers have been calculated.

Digitized by Google

II____46

Description of Stations.

WEST-END OF DEHRA DOON BASE, Lat. 30° 20', Long. 77° 54', is situated in the district of Dehra Doon, about 2 miles to the E. of the small village of Sherpúr, and about 1 mile S. from the Asan river.

The following description of the station is taken from the original record by Colonel Everest :---

"A stone 5 feet in length and 1 foot square base was sunk to the surface of the ground and lodged in s "pile of masonry 14 feet square with a circular pillar of masonry in the middle of 4 feet diameter, the pillar being built "disjointed from the rest of the pile in order that the instrument might remain isolated. Into the exposed surface of "the central stone a piece of brass was soldered on which was inserted a fine silver wire to receive the small dot which "marked the limit of the base-line. This was covered over by a circular brass plate 2 inches diameter fixed by 3 screws, "the female screws of which were cut in pieces of brass soldered into the stone. The upper surface of the brass plate "was left even with that of the stone, a circular space being hollowed out to admit it. A parapet wall of 12 inches high "was erected round the platform and ultimately when the base was concluded the whole was built up to a level with this "parapet, a supplemental stone of 1 foot square and 3 inches thick with a piece of brass and dot soldered into it being "accurately placed over the dot in the lower stone by means of the centering telescope of the large theodolite. For "protection against cattle and other intruders a thick hedge of prickly pear was planted round the platform."

The station was constructed in 1834-35, but when visited in 1867, was found with great difficulty; the prickly pear hedge had disappeared, and there was nothing to distinguish the station from the numerous mounds which were scattered around. For its future better protection and to facilitate identification, a tower was built over the masonry platform above described, with sides parallel or perpendicular to the line of the base, and an arched passage 5 feet wide and 6 feet high, to allow of access to the mark-stones, should the base be remeasured at any future time. The tower is about 10 feet square and 8 feet high; it has an external masonry staircase leading to the summit, which is horizontal, to serve as a platform for future observations. A central pillar 4 feet in diameter rests on the vault, and rises to the level of the platform, but is separated therefrom by an annulus; it is perforated for reference to the marks below, the perforation being closed above by a mark-stone containing the usual circle, and a fine hole bored through the stone instead of the usual central dot; the mark on this stone is truly in the normal of those below, and is 10.23 feet above Colonel Everest's upper mark.

As the mark on the top of the new tower will suffice for ordinary use, the entrances to the vault have been bricked up with masonry, for the better protection of the original marks.

EAST-END OF DEHRA DOON BASE, Lat. 30° 17', Long. 78° 1', is situated on the extremity of one of the spurs of the Gháti or Siwalik range of hills, in the district of Dehra Doon. The nearest village is Mohabáwála, about a mile to the South-East. The Asan river winds round the foot of the spur, and one branch of it takes its rise in a ravine about 100 yards to the westward of the station.

This station is described by Colonel Everest as having been "marked in the same manner as the western limit, so that a description of one will answer for the other."

It was visited by Captain Branfill in January 1862, to be connected with the line of spirit levels which had been brought up from Karáchí harbour, as a part of the operations of this department. As no record was forthcoming of the height of Colonel Everest's upper mark above the mark on the stone pyramid, to which the base-line measurement was referred, it was necessary to remove the upper mark-stone; then the level of the summit of the pyramid was determined as 1957.65 feet above the mean sea level of Karáchí harbour; Colonel Everest's upper mark was found to have been 17 inches, or 1.42 feet above the mark on the pyramid; the stone slab containing the said upper mark was replaced in the normal of and at its original height above the mark on the pyramid.

In 1867 a tower was built over the station similar to the one that was constructed in the same year over the west end of the base, the description of which may be referred to for further details. The mark in the stone on the summit of the tower is 8.71 feet above Colonel Everest's upper mark, and consequently 1967.78 feet above the mean sea level of Karáchí harbour, as determined by the spirit levelling operations.

II_____47

Description of Stations—(Continued.)

STATION A OR HELIOTROPE-WALA.* This station is 157 sets of bars from the West-End. It is marked by a stone 2 feet long sunk into the ground, on the upper surface of which is a piece of brass with a dot engraved on it; a hedge of cactus was planted round it to prevent intrusion.

STATION B OR BAR-WALA.* This station is at the distance of 389 sets of bars from the West-End, or 232 sets from station A, and as the whole base is 622 sets long, the distance of station B from the East-End is 233 sets. It was marked and protected exactly in the same manner as station A.

STATIONS α , β , γ .* These stations are situated on the northern face of the Ghati or Siwalik range of hills, which affords spurs and eminences sufficiently favorable for stations. They are in the midst of Sal jungle, and have no village near them or any other token by which they can be described. Each is marked with a stone 2 feet long sunk into the ground into the upper surface of which a piece of brass with a dot engraved on it is soldered.

J. B. N. HENNESSEY.

* See page 266 Everest's Meridional Arc of India, 1847.

II____48

•

+

,

Digitized by Google

The middle point of the base-line is in Latitude N. 24° 7', Longitude E. 77° 51'; the Azimuth of North-East End at South-West End is 49° 26' and the line is 7.28 Miles in length. The measurement was effected under the directions of *Major G. Everest R.A., with the assistance of the following:

> Lieutenant A. S. Waugh R.E. "T. Renny, R.E. "W. Jones, R.E. Mr. G. Logan. "J. Peyton. "W. N. James "H. Keelan Baboo Radhanath Sickdhar. Mr. G. Terry. "N. Parsick.

> > Digitized by Google

* Afterwards Colonel Sir G. Everest, C.B.

III__2

INTRODUCTION.

This base-line was selected and originally measured with a steel chain in 1825 by Captain G. Everest. He subsequently remeasured it, in 1837-38, with the compensated apparatus, and the details hereafter given appertain to the latter operations. The terminal points were practically identical on the two occasions of measurement: they are situated in Malwa or Central India, generally to the east of Sironj, the South-West-End being some 5 miles distant and nearly due East from that town.

The measurement was commenced at the South-West-End, bar-tongues pointing North-West, and was carried on *continuously* to the North-East-End, so that every succeeding set originated at the terminus of its predecessor.

The compensated bars were compared with the standard **A**. both before and after the measurement, at Rasuli, a village near the base-line and about 2 miles from the South-West-End. Seventy-nine comparisons were made on the first occasion and sixty-one on the second, and this "process was gone through in the usual manner, both before and after the measurement, under the same tents as those used during that operation."* It is not stated in the field records whether the bar-tongues during comparisons pointed in the same direction as during the measurement.

Of the two comparing microscopes employed in the preceding bar comparisons, one was fitted with a micrometer while the other had its wires (or lines) fixed.

The compensated microscopes were compared with their scales on 11 occasions, including the comparisons taken prior and subsequent to the measurement.

In respect to time, the first set of bar comparisons was made on the 23rd November 1837, the last on the 22nd of the following January.

The base-line was not verified by means of minor triangulation.

* Page XXXiv Everest's Meridional Arc of India (1847).

III___3

Comparisons	between	the	Star	ıdard	Bar	A	and	the	Con	npensate	ed	Bars	A,	Β,	C,	D,	Е,	H,	made
•			at	Rasu	li vi	llag	e, be	fo re	the	measur	em	ent.							

	beerving A	Air	rature of A	MICROMETER BEADINGS IN DIVISIONS. 1 Division = $\frac{1}{20088 \cdot 6}$ Cary's Inch [7.8], = 1.3830 m.y. of A									
1837. Novr.	Mean of the times of 0	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	C	D	Е	н	Mean of the compensated bars	REMARKS.
23rd	$\begin{array}{c} h. \ m. \\ 6 \ 51 \ A.M. \\ 7 \ 31 \\ 8 \ 6 \\ 8 \ 41 \\ 9 \ 20 \\ 9 \ 57 \\ 10 \ 29 \\ 1 \ 22 \ P.M. \\ 1 \ 53 \\ 2 \ 26 \\ 2 \ 57 \\ 3 \ 33 \\ 4 \ 4 \end{array}$	1 2 3 4 5 6 7 8 9 10 11 12 13	0	56°17 56°97 58°75 61°47 65°30 69°25 72°57 80°22 81°07 81°07 81°07 81°02 82°02 81°82	+ 349'1 379'9 429'7 560'0 613'1 726'6 740'1 736'9 745'7 740'5 738'4	+ 54.5*4 533.5 534.1 533.9 526.9 536.9 536.9 538.9 552.9 552.9 553.1 542.6 549.9 548.4 554.9	+ 516.8 509.1 502.6 507.6 500.0 508.1 513.0 531.2 528.1 526.0 524.2 529.9 531.2	+ 531.3 521.9 525.9 535.9 536.9 538.9 546.9 551.3 551.2 554.4 555.4 555.4	+ 571.5 563.9 565.9 569.2 577.3 584.0 598.1 592.4 586.9 592.6 590.0 590.0 594.9	+ 514.9 514.2 516.4 521.9 526.8 532.5 537.8 538.9 532.9 532.9 532.9 532.9 532.9 532.9 532.9 532.9 532.9	+ 521.7 515.9 513.9 525.9 528.9 536.2 536.0 535.7 528.0 535.7 528.0 530.1 529.2 533.2	+ 533.6 526.8 526.5 529.2 535.8 540.6 550.5 549.9 544.6 547.1 546.3 551.4	Lts. Waugh and Renny at the microscopes.
24th	6 42 A.H. 7 39 8 28 8 28 8 51 9 15 9 40 10 29 1 16 P.M. 1 39 2 2 2 27 2 50 3 18 3 43 4 7	14 15 17 18 20 12 23 24 25 0 78 20 30		53.75 53.92 54.47 55.25 50.50 58.10 60.27 62.62 67.72 76.30 77.12 76.30 77.12 76.30 77.12 78.77 79.47 79.47 79.85 80.05 79.95	326.6 329.7 337.5 351.6 376.4 400.4 433.6 471.5 549.0 681.2 697.6 709.0 720.5 732.2 742.5 746.6 743.5	5729 5716 5717 5649 5731 5699 5659 5649 5636 5709 5721 5749 5759 5849 5859 5859 5899 5870	545.0 543.8 538.7 540.1 532.5 538.8 533.1 531.3 530.3 546.1 550.1 550.1 550.1 557.0 558.9 503.9 505.9	5619 5588 5581 5540 5532 5589 5522 5493 5622 5772 5723 5772 5739 5739 5739 5739 5780 5869 5850 5850	602'9 599'9 599'9 597'1 600'1 598'5 598'1 593'0 599'9 614'1 615'9 619'2 617'9 622'4 626'0 628'1 629'9	545.4 545.0 542.9 542.1 548.1 548.4 547.1 538.0 546.0 554.2 556.9 557.9 557.9 503.9 572.3 570.9 572.4	553.1 558.9 546.9 549.9 551.0 553.0 543.0 547.0 552.0 555.9 555.1 555.1 555.1 555.1 555.1 556.1 556.1 568.4 566.2 566.9	563.5 562.0 557.5 559.5 559.5 559.5 550.9 558.2 553.3 558.2 553.3 558.2 559.1 570.7 572.1 572.0 578.4 583.1 584.0 584.9	Cirro-strati in horizon.
25th	6 5 A.M. 6 32 6 56 7 20 7 45 8 9 8 34 8 58 9 23 9 49	31 32 33 34 35 30 37 38 39 40		52'30 52'25 52'52 53'42 54'92 56'77 58'95 61'30 63'75 66'27	335.0 332.4 339.5 354.5 379.4 410.9 442.6 477.5 515.5 553.9	5959 6049. 6021 6010 5880 5880 5858 5790 5790 5787	573°9 571°1 568°9 565°0 559°9 551°8 553°1 545°9 545°9 546°3	592'1 588'0 587'1 580'0 576'1 576'0 574'2 568'1 568'8 567'2	633'9 632'1 630'9 628'4 622'2 622'4 613'3 612'8 615'1 614'8	580.3 579.6 574.9 573.1 569.1 565.7 564.9 563.1 562.9 567.2	5852 5837 5822 5770 5750 5750 5750 5670 5659 5653 5672	593.6 593.2 591.0 587.4 581.9 579.2 576.4 572.5 572.8 573.6	Sky clear. Error of chro. this morning 43', slow.

^{III}-4

BAR COMPARISONS

Before the measurement—(Continued.)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MICEOMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{20088\cdot 6}$ Cary's Inch [7.8] = 1.3820 m.y of A							rature of A	Air.	eon.	observing A		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Remarks	Mean of the compensated bars	н	Е	D	С	В	A	Mean A	Corrected mean tempe	Temperature of	No. of compari	Mean of the times of	1837 Novr.
	Sky clear.	+ 600'1 602'8 605'3 606'5 608'1 609'0 608'5 611'7 612'0	+ 579'8 582'9 586'2 590'0 591'9 593'9 593'9 599'1 594'9 592'2	+ 586·8 590·9 591·7 591·0 595·9 596·0 593·6 598·0 598·0 596·7	+ 648·1 651·3 652·9 650·1 656·0 655·0 655·0 655·0	+ 601'2 603'9 611'3 614'0 613'7 613'7 612'3 609'9 617'1	+ 579'9 584'9 582'4 584'9 584'1 586'0 589'9 594'1 591'1	+ 604.8 602.9 607.1 609.1 609.9 613.4 614.0 618.0 619.0	+ 729 ^{.6} 745 ^{.0} 758 ^{.4} 767 ^{.0} 773 ^{.6} 778 ^{.7} 78 ^{.7} 78 ^{.7} 78 ^{.7} 78 ^{.7}	77 [.] 60 78 [.] 40 79 [.] 10 79 [.] 67 80 [.] 12 80 [.] 45 80 [.] 55 80 [.] 57 80 [.] 50	0	M. 41 42 43 44 45 40 47 48 49	h. m. 1 35 P.J 2 20 2 44 3 6 3 27 3 48 4 8 4 29	25th
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sky clear. Hazo Sky clear. Do.	641.7 638.6 635.2 630.1 624.8 622.7 618.8 618.1 620.5 642.3 646.0 649.4 651.5 656.9 658.4	635'8 626'9 625'2 621'0 618'0 618'0 612'0 611'1 614'9 625'9 631'0 632'1 637'9 638'5 640'1	624'0 621'3 620'1 617'4 612'3 612'3 607'9 610'0 607'9 610'0 607'9 613'1 630'9 638'0 648'1	685:4 676:9 677:0 677:0 664:2 660:0 660:5 650:1 660:8 690:1 693:4 696:0 699:0 702:6 704:0	633°0 637°2 628°0 626°0 619°1 624°9 615°9 615°9 615°9 642°3 648°0 651°1 651°3 659°1 662°9	622.0 620.3 614.9 608.8 601.3 599.0 593.2 588.1 593.0 621.1 619.2 625.0 628.0 628.0 637.0 637.9	650°1 648°9 646°1 637°3 634°0 623°2 624°3 625°4 643°3 646°1 651°2 650°0 659°0 659°0	344 [•] 2 347 [•] 4 362 [•] 1 392 [•] 5 43 [•] 3 475 [•] 4 53 [•] 5 5 [°] 5 62 ⁸ [•] 9 82 ⁸ [•] 1 847 [•] 9 862 [•] 6 872 [•] 6 876 [•] 6 873 [•] 0	49.85 50.00 50.87 52.67 55.20 58.22 61.95 65.32 80.90 82.07 83.10 83.72 83.87 83.65		м. 50 51 53 54 55 56 57 58 60 61 62 63 64	6 48 A.B 7 19 7 48 8 16 8 44 9 13 9 48 10 19 10 45 1 32 P.M 2 0 2 31 3 3 5 0 4 22	27th
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		657.5 657.6 651.8 642.7 637.9 632.5 627.9 629.8 650.8 654.4 658.3 662.8 665.5 665.8	649°2 649°0 642°0 631°2 627°4 625°4 622°3 622°1 620°1 633°3 635°0 644°9 646°9 646°9 647°1 648°9	646.6 642.9 636.4 628.2 624.3 621.1 619.4 622.1 642.1 640.0 645.1 648.2 653.0 653.8 652.9	695 ² 694 ⁹ 687 ⁸ 685 ⁹ 674 ⁹ 674 ⁹ 670 ⁹ 671 ¹ 669 ² 668 ³⁰ 697 ⁴ 703 ⁹ 707 ⁵ 706 ⁹ 709 ⁰ 709 ⁰	648·3 654·4 646·9 634·2 636·9 629·9 625·0 624·2 630·9 653·2 659·0 658·8 671·1 668·0 671·8	6350 6350 6320 6209 6149 6076 6001 5965 5999 6259 6283 6324 6350 6431 6431	670°5 669°4 664°9 655°9 640°3 633°2 633°2 633°0 655°1 655°2 658°0 663°8 671°8 669°0	356.6 355.3 304.5 392.9 432.0 477.3 525.4 573.0 622.7 809.9 827.9 842.0 853.7 859.8 861.7	49.55 49.40 49.97 51.72 54.37 57.45 60.50 63.65 66.87 79.47 80.65 81.50 82.17 82.55 82.62	47.0 54.5 50.3 65.9 70.5 76.8 78.9 83.8 84.1 84.0 83.8 83.2 82.2 82.2	м. 65 67 68 69 79 71 72 73 м. 74 75 75 75 75	6 39 A.N 7 6 7 33 8 5 8 38 9 8 9 36 10 3 10 32 1 39 P.N 2 9 2 39 3 10 3 37 4 4	28th

III_5

Before the measurement—(Continued.)

Let the mean length of the compensated bars minus the Standard A at 62° F. be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = 0$$

Treating the preceding bar comparisons as shewn in this equation, we obtain the following series of results :---

		a			đ
$x + 5.83 (E_a \cdot$	$- dE_a$	J - 193.5 = 0	$x + 7.08 (E_a -$	- dE _{a,}) - 202.5 = 0
x+ 5°03	33	-177.7 = 0	x+ 5 [.] 23	"	-168.3 = 0
x+ 3 [.] 25	,,	-146.6 = 0.	x + 3.05	"	-133.8 = 0
#+ 0 [.] 53	,,	- 99°° = °	<i>x</i> + 0.70	"	- 95 [.] 0 = 0
x - 3.30	"	-34.5 = 0	<i>x</i> — 1.75	"	- 57:3 = 0
x - 7 [.] 25	ź	+ 24.2 = 0	x - 4 [.] 27	,,	-19.7 = 0
x - 10.57) }	+ 72.5 = 0	x —15 [.] 60	"	+ 129.5 = 0
x —18·22	"	+176.1 = 0	x-16.40	"	+142.3 = 0
x-19.07	"	+190.5 = 0	x-17·10	"	+153.1 = 0
x —19 [.] 67	"	+192.3 = 0	x —17 [.] 67	"	+160.5 = 0
x —19 [.] 92	"	+198.6 = 0	x-18.13	"	+ 165.2 = 0
x-20.02	"	+194.3 = 0	x—18·45	"	+ 169 . 7 = 0
x —19 [.] 82	"	+1870 = 0	<i>x</i> —18·55	"	+173.0 = 0
x + 8·25	"	-236.9 = 0	<i>x</i> —18·57	"	+ 169.3 = 0
<i>x</i> + 8.08	"	-232.3 = 0	x 18.50	,,	+ 165°0 = 0
x + 7.53	"	-222.5 = 0	x+12.15	"	-297.5 = 0
x + 6·75	"	-205.9 = 0	x+12.00	,,	-291.2 = 0
x + 5.20	,,,	-183.1 = 0	x+11.13	"	-273'I = 0
x + 3.90	,,	-160.5 = 0	x+ 9.33	,,	-237.6 = 0
<i>x</i> + 1.73	"	-124.6 = 0	x+ 6.80	"	-193.5 = 0
# — 0 [.] 62	"	-81.8 = 0	<i>x</i> + 3.78	<i>))</i>	-147.3 = 0
x - 5.72	"	-9.2 = 0	<i>x</i> + 0.02	"	- 85.1 = 0
x —14.30	"	+112.1 = 0	x - 3.40	"	-32.6=0
x-15.12	"	+126.9 = 0	x— 6·32	"	+ 8.4 = 0
x —15.92	"	+136.9 = 0	x—18.90	"	+185.8 = 0
x —16·77	,,	+148.5 = 0	x-20°07	"	+201.9 = 0
x —17.47	"	+153·8 = 0	<i>x</i> -21.10	"	+213.2 = 0
x —17·85	"	+ 159.4 = 0	x-21.72	"	+221.1 = 0
x —18.05	"	+162.6 = 0	x -21.87	,,	+219.7 = 0
x -17 · 95	"	+158.6 = 0	x-21.65	"	+214.6 = 0
x + 9°70	"	-258.6 = 0	x+12.45	,,	-300.9 = 0
x+ 9.75	,,,	-260.8 = 0	x+12.00	,,	-302.3 = 0
x + 9.48	,,	-251.5 = 0	x+12.03	22	-287.3 = 0
x + 8.58		-232.9 = 0	0		

III___6

BAR COMPARISONS

Before the measurement—(Continued.)

$x + 10.28 (E_{0})$	$_{1} - dE$	a - 249.8 = 0	$x - 17.47 (E_a$	- dE	a + 159.1 = 0
x+ 7.63	"	-205.9 = 0	x—18.65	"	+ 173.5 = 0
x+ 4.55	,,	-155.2 = 0	x — 19.50	,,	+183.7 = 0
x+ 1.20	"	-103.1 = 0	x-20°17	"	+190.9 = 0
<i>x</i> — 1.65	,,,	- 54.9 = 0	x-20.22	"	+194.3 = 0
<i>x</i> - 4 [.] 87	"	-7.1 = 0	x-20.62	"	+ 195.9 = 0

And from the mean of these results,

$$x = 10.49 + 6.01 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 16.404,$$

and
$$x = 109.08 - 6.01 dE_a = 150.75 - 6.01 dE_a = L - A;$$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading 597.72, page III_{-5} .

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	A – L	B – L	C – L	D – L	E – L	H - L
Micrometer divisions	+ 5 [.] 62	-22.76	-0.21	+42·36	—12·36	-12.38
Millionths of a yard.	+ 7.77	-31.45	-0.20	+5 ^{8·54}	—17·08	-17.11

Also combining the values in this table with the equivalent of L-A above determined, there result,

$$A - A = 114.70 - 601 \ dE_a = 158.52 - 601 \ dE_a$$

$$B - A = 86.32 - ,, = 119.30 - ,,$$

$$C - A = 108.57 - ,, = 150.05 - ,,$$

$$D - A = 151.44 - ,, = 209.29 - ,,$$

$$E - A = 96.72 - ,, = 133.67 - ,,$$

$$H - A = 96.70 - ,, = 133.64 - ,,$$

and
$$6 \ x = 904.5 - 36.1 \ dE_a.$$

III_7

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made after the measurement.

	beerving A	100 I	Air	rature of A	MICEOMETEE READINGS IN DIVISIONS 1 Division = $\frac{1}{20076.77}$ Cary's Inch [7.8], = 1.3828 m.y of A								
1838 Jany.	Mean of the times of c	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	C	D	E	Н	Mean of the compensated bars	Remarks
19th	<i>h. m.</i> 7 41 A.M. 8 16 8 52 9 20 9 49 10 14 10 38 1 28 P.M. 1 53 2 18 2 42 3 10 3 40 4 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14	43·3 50·4 57·0 64·4 67·2 68·9 74·4 75·5 76·2 75·9 75·7 75·8 75·0	39 ⁸ 2 41 ⁴⁵ 44 ⁷ 5 47 ⁶ 5 51 ⁰⁰ 54 ²⁰ 57 ¹² 68 ⁹ 7 7 ⁰²⁰ 71 ³⁵ 72 ²⁵ 73 ¹⁰ 73 ⁷⁰ 74 ⁰⁰	+ 184.7 209.5 257.6 303.1 353.8 399.3 441.8 614.2 633.0 649.5 664.5 677.5 687.5 692.6	+ 644.1 632.1 618.1 614.9 607.2 605.0 618.0 619.9 625.0 624.9 628.2 629.1 633.0	+ 506.9 597.0 590.1 585.9 578.1 572.0 576.1 591.0 595.4 588.2 601.2 601.2 600.1 606.1	+ 616.9 613.9 599.9 599.9 594.0 597.0 595.1 620.1 619.2 620.0 623.8 624.9 629.0 629.9	+ 654'2 659'1 655'2 652'1 640'1 640'8 641'9 665'3 662'9 665'2 663'9 670'6 668'9 670'1	+ 612.0 607.3 604.1 597.1 597.9 590.1 596.0 608.1 605.0 611.1 612.9 614.8 618.2 617.9	+ 620.8 610.3 604.6 598.3 589.1 589.0 593.4 597.1 600.4 603.4 604.2 603.9 608.8	+ 627.5 620.0 614.7 608.6 602.4 599.4 600.5 616.0 618.3 621.7 624.0 624.9 627.6	Sky clear.
20th	6 51 A.M. 7 18 7 58 8 22 8 54 9 27 9 53 10 20 10 42 1 28 P.M. 2 4 2 27 2 52 3 16 3 39 4 0 4 21	15 16 17 18 20 21 22 22 20 27 20 30 31	36.74 47.4 57.1 557.1 562.5 66 76.1 76.5 76.7 76.5 77 76.7 76.7 77 75.7 74.9	38.77 38.82 40.20 41.92 44.82 48.25 51.42 54.57 57.22 70.37 72.27 73.22 74.02 74.02 74.02 75.32 74.55	165 ^{.2} 164 ^{.0} 183 ^{.0} 209 ^{.1} 253 ^{.8} 3 ^{03.3} 35 ^{0.5} 398 ^{.6} 436 ^{.7} 610 ^{.8} 648 ^{.8} 663 ^{.9} 677 ^{.0} 685 ^{.6} 692 ^{.2} 696 ^{.6} 699 ^{.0}	643.9 639.9 635.0 626.9 618.5 607.1 603.8 596.4 599.0 601.4 603.9 605.0 612.0 611.9 616.9 618.6 620.0	604.1 598.0 596.0 589.7 579.9 572.8 564.4 558.9 578.0 578.0 578.0 578.0 578.0 578.0 578.0 578.0 583.2 584.4 588.8 588.8 592.9 593.0	6199 6201 6131 6059 5989 5924 5854 5854 5871 6121 6123 6101 6129 6118 6161 6162 6189	661.9 667.1 653.9 639.9 633.5 633.9 635.0 635.0 635.1 645.9 649.1 653.6 655.3 655.3 655.0 655.0 655.0	609'1 607'7 598'1 589'0 587'9 585'0 585'0 585'0 585'0 585'0 593'2 597'0 597'9 590'0 603'1 603'9 607'0	6199 6159 6082 6030 5913 5848 5800 5781 5790 5760 5760 5824 5850 5827 5869 5877 5902 5881 5911	626.5 623.8 619.6 612.9 602.9 596.4 590.1 590.2 600.4 603.4 603.4 605.7 608.2 607.2 611.9 612.5 614.8	
21st	7 I A.M. 7 30 8 11 8 41 9 11 9 37 9 58 10 19	32 33 34 35 36 37 38 39	37'1 42'1 50'7 56'2 61'7 65'4 67'9 70'0	38.25 38.67 40.87 43.67 47.05 50.17 53.02 55.70	134'3 136'3 170'0 212'1 265'6 312'0 352'6 393'3	620'3 619'0 611'0 600'1 589'8 581'8 576'0 579'2	585 [.] 8 577 [.] 4 571 [.] 0 559 [.] 1 544 [.] 3 548 [.] 9 542 [.] 1 500 [.] 1	600'9 603'1 590'9 582'1 570'9 571'0 565'9 565'2	643 ^{.2} 636 ^{.9} 637 ^{.9} 626 ^{.9} 618 ^{.0} 614 ^{.0} 610 ^{.9} 610 ^{.0}	590°8 587'4 579'2 572'0 569'9 566'1 563'1 564'1	603'1 595'8 582'6 573'0 566'1 561'9 558'7 560'1	607'4 603'3 595'4 585'5 576'5 574'0 569'5 563'1	

III<u>-8</u>

۲

BAR COMPARISONS

After the measurement—(Continued.)

٠

.

•

.

.

	berving A	BOR	Air	ature of A	MICROMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{20076 \cdot 77}$ Cary's Inch [7.8], = 1.3828 m.y. of A								
1838 Jany.	Mean of the times of o	No. of compari	Temperature of	Corrected mean temper	Mean A	A	В	С	D	E	Н	Mean of the compensated bars	BEMAEKS
21st 22nd	<i>h. m.</i> 2 37 P.M. 3 0 3 22 3 45 4 6 4 24 4 43 6 57 A.M. 7 20	40 41 42 43 44 45 46 47 48	78.8 78.4 78.1 77.6 75.6 73.7 38.9 42.6	75'45 70'07 76'55 76'80 76'95 77'00 76'90 40'45 40'62	+ 674.9 684.5 691.9 696.7 700.7 699.0 696.5 158.2 161.4	+ 588.8 583.0 586.1 589.2 593.1 595.1 598.1 613.0 608.8	+ 560.0 557.9 561.4 564.7 564.7 563.8 568.3 568.3 575.2 574.9	+ 603.0 592.1 592.0 593.8 595.1 590.2 592.9 593.1 591.1	+ 650.0 641.8 635.4 635.1 638.1 632.2 632.0 632.0 629.9 632.1	+ 576·4 574·4 574·0 578·9 578·5 577·9 580·1 580·9 582·0	+ 560.1 561.3 562.5 565.0 567.5 567.4 568.9 582.2 582.2 587.9	+ 589.7 585.1 585.2 587.8 589.5 587.8 590.1 595.7 596.1	
	7 51 8 15 8 48 9 11 9 33 9 59 1 40 P.M. 1 59 2 20 2 42 3 3 3 24 3 45	49 51 52 53 54 55 57 57 59 61	48.1 52.6 58.4 62.1 65.4 68.4 77.8 80.6 81.3 81.6 81.7 81.2	41'77 43'32 46'32 48'57 51'12 54'20 73'72 74'70 70'67 70'67 77'52 78'25 78'80	179°0 202°2 245°4 278°9 317°1 363°6 648°1 665°1 681°0 696°5 711°0 721°0 727°7	6059 5959 5832 5806 5739 5670 5751 5780 5787 5780 57844 5888 5899 5899 5899	564-1 554-9 547-2 542-1 537-4 535-1 553-2 553-8 559-2 558-0 561-8 559-9 563-1	5853 5790 5659 5583 5583 5580 5809 5782 5850 5850 5869 5868 5860 5860 5860 5860 5860 5860 5860	622*2 619'9 611'1 610'9 603'0 604'0 627'0 625'4 626'4 631'2 629'9 625'2 630'0	5;0°1 566°1 561°2 554°0 552°0 552°0 552°0 552°2 572°1 577°6 572°9 575°3	580.9 573.0 559.1 555.1 553.9 549.0 552.3 554.9 554.9 554.9 558.9 564.1 563.0 567.2	588.1 581.5 571.3 568.9 563.4 560.9 575.6 575.7 570.7 570.8 581.9 584.9 583.0 585.9	
		Ŋ	leans	59.83	462.17	605.08	572.33	596.78	б40'20	586.68	581.22	597.10	

ш_₉

After the measurement-(Continued)

As on page III_6 we have

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = \circ;$

and from the preceding bar comparisons, we obtain the following series of results :--

$x + 22.18 (E_a$	$-dE_a$	$d_{d} = 0$	$x + 23.75 (E_a$	- dE	$S_a) - 473^{1} = 0$
x+20.55	"	-410.5 = 0	x +23.33	,,	-467.0 = 0
x +17.25	"	-357.1 = 0	x+21.13	,,	-425.4 = 0
x+14.35	,,	-305.5 = 0	x+18.33	"	-373.4 = 0
<i>x</i> +11.00	,,	-248.6 = 0	x +14.95	,,	-310.9 = 0
<i>x</i> + 7.80	,,	-200'I = 0	<i>x</i> +11.83	,,	-262.0 = 0
x+ 4.88	"	-158.7 = 0	<i>x</i> + 8·98	,,	-216.9 = 0
x— 6·97	,,	- 1·8 = 0	x+ 6.30	"	-169.8 = 0
x - 8·20	"	+ 16.4 = 0	x-13.45	"	+ 85.2 = 0
x - 9 ·3 5	,,	+ 31.5 = 0	x —14.07	,,	+ 99'4 = 0
x-10 ² 5	"	+ 42.8 = 0	x-14.55	,,,	+106.7 = 0
<i>x</i> -11.10	"	+ 53.5 = 0	<i>x</i> —14·80	,,	+108.9 = 0
<i>x</i> -11.70	"	+ 62.6 = 0	<i>x</i> - 14.95	,,	+111.5 = 0
x-12.00	,,	+ 65°0 = 0	x -15.00	"	+111.3 = 0
<i>x</i> +23 ² 3	"	-461·3 = 0	x —14.90	"	+ 106·4 = 0
<i>x</i> +23·18	"	-459 [.] 8 = 0	x +21.55	"	-437 · 5 = 0
<i>x</i> +21.80	"	-436 ^{.6} = 0	x+21.38	"	-434 [.] 7 = 0
<i>x</i> +20.08	"	-403 ^{.8} = 0	x+20.23	"	-409 [.] 1 = 0
<i>x</i> +17.18	"	-349.1 = 0	x + 18.68	"	-379 [.] 3 = 0
x +13.75	,,	-293.1 = 0	x+15.68	,,,	-325.9 = 0
<i>x</i> + 10.58	,,	-241.6 = 0	<i>x</i> +13.43	"	-2900 = 0
x+ 7°43	,,	-191·5 = 0	<i>x</i> +10.88	"	-246.3 = 0
<i>x</i> + 4.78	"	-153.5 = 0	<i>x</i> + 7 [.] 80	,,,	-197.3 = 0
x— 8·37	"	+ 19.4 = 0	x-11.72	"	+ 72.5 = 0
<i>x</i> -10.32	"	+ 45.4 = 0	<i>x</i> -12.70	"	+ 88.4 = 0
<i>x</i> -11.55	"	+ 58.2 = 0	x-13.70	"	+101.2 = 0
x—12°02	"	+ 68.8 = 0	x -14.67	,,	+114.9 = 0
x-12.62	"	+ 78.4 = 0	x — 15.52	"	+126.1 = 0
x-13.02	"	+ 80.3 = 0	x-16.25	"	+1380 == 0
x-13.32	"	+ 84.1 = 0	<i>x</i> -16.80	"	+141.8 = 0
x-12.55	,,	+ 84.2 = 0			

¹¹¹_10

BAR COMPARISONS

After the measurement—(Continued.)

And from the mean of these results,

$$x = 134.93 - 2.17 (E_a - dE_a)$$
:

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 16.394,$$

and $x = 99.36 + 2.17 \ dE_a = 137.40 + 2.17 \ dE_a = L - A;$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading 597^{10} , page III____9.

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	A - L	B – L	C – L	D – L	E – L	H - L
Micrometer divisions.	+ 7:98	- 24·77	-0.32	+43.10	- 10 [.] 42	
Millionths of a yard.	+11:03	- 34·25	-0.44	+59.60	- 14 [.] 41	

Also combining the values in this table with the equivalent of L-A above determined, there result,

	d			116.37	
$\mathbf{A} - \mathbf{A} =$	107.34 +	2.17 dE _a	=	148.43 +	2.17 dEa
$\mathbf{B} - \mathbf{A} =$	74:59 +	"	=	103.12 +	"
C - A =	99:04 +	"	=	136.96 +	"
D – A =	142.46 +	"	=	197.00 +	"
E - A =	88.94 +	33	=	122.99 +	"
H – A =	83.81 +	"	=	115.90 +	"
	and $6x$	= 824'4	+	13.0 dE	. •

III_₁₁

Final deduction of the total length measured with the compensated bars.

From page III_7 the excess of the 6 compensated bars above 6 times A before the meast := $904.5 - 36.1 dE_a$,, III_1, ,, after, $= 824.4 + 13.0 dE_a$ Therefore the mean excess of ,, applicable to the base-line = $864.5 - 11.6 dE_a$ Also the mean length of a set of 6 compensated bars in feet of the standard = $60.0025935 \frac{A}{10} - 11.6 dE_a$

Similarly, from pages III_7 and III_1, the mean excess of the 4 compensated bars A, B, C, D above 4 times A = 611.4 - 7.7 dE_a

And the mean length of the set of compensated bars A, B, C, D in feet of the standard = $40.0018342 \frac{A}{10} - 7.7 dE_a$

Hence the total lengths measured with the compensated bars

in sets Nos. 1 to 609 in set No. 6091	$\begin{array}{rcl} & & & \\ for even & & \\ & = & 36541.5794 - & 7064 & dE_a \\ & = & 40.0018 - & 8 & dE_a \end{array}$
in sets Nos. 1 to 6091	$= 36581.5812 - 7072 dE_a$

Now the mean temperature of A during the above bar comparisons was $62^{\circ} + \frac{11^{\circ} \cdot 6}{6}$ (or $62^{\circ} + \frac{7^{\circ} \cdot 7}{4}$) = $63^{\circ} \cdot 9$, for which temperature the corresponding expansion of A from page (19) is $21 \cdot 660$ m.y. Comparing this value of expansion with the original value = $22 \cdot 67$ m.y used in the foregoing; it is found, that $dE_a = +1 \cdot 01$ m.y; and substituting for dE_a this numerical value there results;—

The total length measured with the compensated bars in sets Nos. 1 to $609_1 = (36581 \cdot 5812 - 0214) \frac{A}{10}$ = $36581 \cdot 5598 \frac{A}{10}$

Digitized by Google

III_______12

Comparisons between the Compensated Microscopes and their 6-inch brass scales auring the measurement, and provisional determination of Microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m.i.)

Who	en compared	pe.	ed with.	mpera-	52° Fah. 6″ scale 2.5 m.i.	Mic Microso	roscope cope Scale.	e − 4 , h.	Micros : at 6	— Scale A, 2° Fah.
		licroso	compar	octed ter ture.	tion to sion of $E = 6$	Ubserve terr	d value in ns of	s : Scal		bre er.
	1837		Scale	Corre	Reduc Expan	Divisions 10000=1"	<i>m.i.</i>	Micro	m.i.	Refere
November 29th	Before the measure- ment.	U M O P N R S	U M R P N R S	82.65 83.05 83.01 82.76 83.42 74.51 83.24	+ 1291 1316 1313 1298 1339 782 1327	- 2.35 .00 -10.10 .00 .00	- 235 0 - 1010 0 0	$ \begin{vmatrix} + & 283 \\ - & 21 \\ + & 93 \\ & 350 \\ & 363 \\ - & 75 \end{vmatrix} $	+ 1339 1295 1406 638 1702 875 1252	I 2 3 4 5 6 7
December 6th	Between sets No. 62 and 63.	U M M O P N R S	U M M R P N R S	77.85 78.45 77.05 78.71 79.20 78.42 79.31 77.74	$\begin{array}{r} + 991 \\ 1028 \\ 941 \\ 1045 \\ 1079 \\ 1026 \\ 1082 \\ 984 \end{array}$	$ \begin{array}{r} + 3.03 \\ - 4.93 \\ + 6.90 \\ - 3.20 \\ + 6.37 \\ - 8.67 \\ + 4.67 \end{array} $	$ \begin{array}{r} + 303 \\ - 493 \\ + 690 \\ + 63 \\ - 326 \\ + 637 \\ - 867 \\ + 467 \end{array} $	$ \begin{array}{r} + 283 \\ - 21 \\ 21 \\ + 93 \\ 350 \\ 303 \\ - 75 \\ \end{array} $	+ 1577 514 1610 1201 1103 2026 308 1376	8 9 10 11 12 13 14 15
" 12th	Between sets No. 133 and 134.	U U* M O P N N* R R* S	UUM RPNN RR S	55'45 63'68 57'45 56'31 55'36 52'92 61'42 60'31 69'11 55'24	$ \begin{array}{r} - 409 \\ + 105 \\ - 284 \\ 356 \\ 415 \\ 568 \\ 37 \\ 106 \\ + 445 \\ - 423 \\ \end{array} $	$ \begin{array}{r} + 16.53 \\ 12.33 \\ 9.83 \\ 17.70 \\ 7.03 \\ 16.77 \\ 14.03 \\ .00 \\ - 5.23 \\ + 17.33 \end{array} $	+ 1653 1233 983 1770 703 1677 1403 - 523 + 1733	$ \begin{array}{r} + 283 \\ 283 \\ - 21 \\ + 93 \\ 350 \\ 363 \\ 93 \\ 93 \\ - 75 \\ \end{array} $	$ \begin{array}{r} + 1527 \\ 1621 \\ 678 \\ 1507 \\ 638 \\ 1472 \\ 1729 \\ - 13 \\ + 15 \\ 1235 \end{array} $	16 17 18 19 20 21 22 23 24 25
" 15th	Between sets No. 181 and 182.	U M O P N R S	U M R P N R S	62.02 68.55 64.76 62.51 61.74 63.11 60.24	$\begin{array}{c} + & 1 \\ & 410 \\ & 173 \\ & 3^2 \\ - & 16 \\ + & 70 \\ - & 110 \end{array}$	+ 10.47 5.17 10.70 4.12 12.83 - 1.53 + 14.33	+ 1047 517 1070 412 1283 - 153 + 1433	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ 350 \\ 363 \\ 93 \\ - 75 \end{array} $	+ 1331 906 1336 794 1630 10 1248	26 27 28 29 30 31 32
" 19th	Between sets No. 194 and 195.	T	T	46.28	- 983	+ 7.73	+ 773	- 97	- 307	33
,, 22nd	Between sets No. 252 and 253.	U M O T N R S	U M T N R S	66.65 68.45 68.08 67.90 66.42 69.71 66.74	+ 291 403 380 369 276 482 296	$\begin{array}{r} + 9.67 \\ 6.63 \\ 7.37 \\ - 2.63 \\ + 11.10 \\ - 6.60 \\ + 11.67 \end{array}$	$ \begin{array}{r} + 967 \\ 663 \\ 737 \\ - 263 \\ + 1110 \\ - 660 \\ + 1167 \end{array} $	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ - 97 \\ + 363 \\ 93 \\ - 75 \end{array} $	+ 1541 1045 1210 9 1749 - 85 + 1388	34 35 36 37• 38 39 40

* These microscopes were compared a second time, because they were adjusted after the first comparison.

Digitized by Google

III_₁₃

Microscope Comparisons-(Continued.)

		d with.	apera-	2° Fah. 6″ scale 2·5 <i>m.i</i> .	Micro Microsco	pe Scale.	е- <i>А</i> , h.	Micros: 8 at 62°	Scale — A, ' Fah.	
W De	n compared	icroscol	ompare	cted ten ture.	ion to 6 ion of $= E = 65$	Observed tern	value in us of	s : Scale 62° Fa		nce er.
1	1837-38	M	Scale c	Correc	Reduct Expans for 1°=	Divisions 10000 = 1"	m.i.	Micros	<i>m.i.</i>	Refere numb
December 28th	Between sets No. 331 and 332.	U M O T N R S	U M R T N R S	° 74'92 76'05 75'08 75'70 74'62 77'21 74'24	+ 807 878 817 856 789 951 765	$ \begin{array}{r} + 4.03 \\ - 1.93 \\ + 4.10 \\ - 5.63 \\ + 9.10 \\ - 9.30 \\ + 4.00 \\ \end{array} $	$ \begin{array}{r} + 403 \\ - 193 \\ + 410 \\ - 563 \\ + 910 \\ - 930 \\ + 400 \\ \end{array} $	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ - 97 \\ + 363 \\ - 93 \\ - 75 \end{array} $	+ 1493 664 1320 196 2062 114 1090	41 42 43 44 45 46 47
" 30th	Between sets No. 368 aud 369.	U M O T N R S	U M R T N R S	74 [.] 92 75 ^{.6} 5 72 [.] 71 75 ^{.35} 75 ^{.6} 2 76 [.] 26 74 [.] 74	+ 807 853 670 834 851 891 796	$ \begin{array}{r} + 4.40 \\ - 2.59 \\ + 4.80 \\ - 5.63 \\ + 8.90 \\ - 12.70 \\ + 5.17 \end{array} $	$ \begin{array}{r} + & 440 \\ - & 259 \\ + & 480 \\ - & 563 \\ + & 890 \\ - & 1270 \\ + & 517 \end{array} $	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ - 97 \\ + 363 \\ - 93 \\ - 75 \end{array} $	+ 1530 573 1243 174 2104 - 286 + 1238	48 49 50 51 52 53 54
January 3rd	"	U M O T N R S	U M R T N R S	70·31 70·65 74·85 74·00 69·45 72·25 70·24	+ 519 541 803 750 406 640 515	$ \begin{array}{r} + 7.17 \\ 6.13 \\ 4.10 \\ - 4.10 \\ + 11.60 \\ - 5.73 \\ + 10.50 \\ \end{array} $	+ 717 613 410 - 410 + 1160 - 573 + 1050	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ - 97 \\ + 363 \\ - 93 \\ - 75 \end{array} $	+ 1519 1133 1300 243 1989 160 1490	55 56 57 58 59 60 61
" 9th	Between sets No. 455 and 456.	U M O T N * R S	U M R S N R S	77'12 77'55 79'11 79'44 75'62 79'42 78'71 77'74	+ 945 972 1070 851 1089 1045 984	$ \begin{array}{r} + 3.63 \\ 23 \\ 3.33 \\ - 6.17 \\ + 8.60 \\ 5.27 \\ - 11.30 \\ + 4.50 \\ \end{array} $	+ 363 23 333 - 617 + 860 527 - 1130 + 450	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ - 75 \\ + 363 \\ 363 \\ - 93 \\ - 75 \\ \end{array} $	+ 1591 974 1496 398 2074 1979 8 1359	62 63 64 65 66 67 68 69
" 13th •	Between sets No. 539 and 540.	U M O T N R S	U M R T N R S	76.45 74.15 77.31 76.80 74.32 74.76 75.74	+ 903 760 957 925 770 798 859	$ \begin{array}{r} + 3.27 \\ 2.23 \\ 1.70 \\ - 6.40 \\ + 9.05 \\ - 7.33 \\ + 5.50 \\ \end{array} $	$ \begin{array}{r} + 327 \\ 223 \\ 170 \\ - 640 \\ + 905 \\ - 733 \\ + 550 \\ \end{array} $	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ - 97 \\ + 363 \\ - 93 \\ - 75 \end{array} $	+ 1513 962 1220 188 2038 158 1334	70 71 72 73 74 75 76
" 18th	After the measure- ment.	U M O T N R S	U M R T N R M	67.52 66.05 69.31 69.65 67.42 68.21 68.75	+ 345 253 457 478 339 388 422	$\begin{array}{r} + & 7.53 \\ & 5.20 \\ & 8.07 \\ - & 1.20 \\ + 11.43 \\ - & 5.93 \\ + & 8.07 \end{array}$	$ + 753 \\ 520 \\ 807 \\ - 120 \\ + 1143 \\ - 593 \\ + 807 $	$ \begin{array}{r} + 283 \\ - 21 \\ + 93 \\ - 97 \\ + 363 \\ - 93 \\ - 21 \end{array} $	$ \begin{array}{r} +1381 \\ 75^{2} \\ 1357 \\ 261 \\ 1845 \\ -112 \\ +1208 \end{array} $	77 78 79 80 81 82 83

* These microscopes were compared a second time, because they were adjusted after the first comparison.

III_₁₄

Microscope Comparisons-(Continued.)

The required combinations of individual microscope errors taken from pages III_13 and III_14, are expressed as follows;

					Rej	feren	ce 1	umb	ers.					m.i		mean temp :				
<i>e</i> 1	=	2	+	3	+	4	+	5	+	6	+	$\frac{1+7}{2}$	= +	7212	at (6 ² + 19 [.] 62)	1	efore the me	asurem	ent.
e ₂	=	9	+	11	+	12	+	13	+	14	+	$\frac{8+15}{2}$	= +	6629	at (62 +16.66)	1	oetween sets	62 &	63
e ₃	=	10	+	11	+	12	+	13	+	14	+	$\frac{8+15}{2}$	= +	7725	at (62 + 16·43)		"	do.	
e4	=	18	+	19	+	20	+	21	+	23	+	$\frac{16+25}{2}$	= +	5663	at (e	52 - 5.72)		,,,	133 &	134
e ₅	=	18	+	19	+	20	+	22	+	24	+	$\frac{17+25}{2}$	= +	5995	at (6 2 — 2·15)		"	do.	
e ₈	=	27	+	28	+	29	+	30	+	31	+	$\frac{26+32}{2}$	= +	5966	at (62 + 1·63)		"	181 &	182
e ₇	=	27	+	28	+	30	+	31	+	33	+	$\frac{26+32}{2}$	= +	4865	at (62 — 1.07)	_	"	194 &	195
<i>e</i> ₈	=	29	+	35	+	36	+	38	+	39	+	$\frac{34+40}{2}$	= +	6178	at (62 + 4.98)	made	"	252 & :	253
e ₉	=	35	+	36	+	37	+	38	+	39	+	$\frac{34+40}{2}$	= +	5393	at (62 + 5.88)	SODS	,,	do.	
<i>e</i> ₁₀	8	42	+	43	+	44	+	45	+	46	+	$\frac{41+47}{2}$	= +	5648	at (62 + 13 [.] 54)	mpari	23	331 &	332
<i>e</i> ₁₁	=	49	+	50	+	51	+	52	+	53	+	$\frac{48+.54}{2}$	= +	5192	at (62 +13.07)	с В	"	368 &	36 9
e ₁₂	=	56	+	57	+	58	+	59	+	бо	+	$\frac{55+61}{2}$	= +	633 6	at (62 + 9.91)	$\mathbf{Fr}_{\mathbf{r}}$	"	do.	
e ₁₃	=	63	+	64	+	65	+	66	+	68	+	$\frac{62+69}{2}$	= +	6425	at (62 +15.98)		"	455 &	456
e ₁₄	=	63	+	64	+	65	+	67	+	68	+	$\frac{62+69}{2}$	= +	6330	at (62 +16.01)		"	do.	
ė ₁₅	=	71	+	72	+	73	+	74	+	75	+	$\frac{70+76}{2}$	= +	5990	at (62 +13.57)		"	539 & .	540
e ₁₆	=	71	+	72	+	74	+	<u>70</u>	2 2	<u>'3</u> .			= +	5071	at (62 +13.60)		"	d o.	
e ₁₇	=	78	+	79	+	80	+	81	+	82	+	<u>77+83</u> 2	= +	5398	at (62 + 6.13)		after the mea	sureme	nt.
e ₁₈	=	78	+	79	+	81	+	<u>77</u>	+8	0			= +	477 5	at (б2 + 5 [.] 84)		,,	do.	

And from the foregoing, we obtain the following equations for the microscope errors per set (or *m.e.*); where dE expresses the error in the adopted value of the expansion of the 6-inch scales.

(m.e.) ₁	=	$\frac{e_1 + e_3}{2}$	=	+	т.з. 692 I	_	6	×	18·14 dE	applicable	to sets Nos.	I to 62
(m.e.) ₂	=	$\frac{e_3+e_4}{2}$	-	+	6694		6	×	5·36 dE	"	"	63 to 133
(m.e.) ₃	=	$\frac{e_5+e_8}{2}$	=	+	5981	+	6	×	0°26 dE	"	"	134 to 181
(m.e.) ₄	I	$\frac{e_6+e_8}{2}$	=	+	6072	_	6	×	3.31 dE	3 2	"	182 to 194

(Microscope errors per set (or m.e.) continued on next page.)

.

III_15

•

Microscope Comparisons-(Continued.)

Microscope errors per set (or m.e.) continued from preceding page.

(m.e.)5	$=\frac{e_7+e_7}{2}$	[%] = +	<i>т.і.</i> 5129 — б х	2'41 dE	applicable t	o sets Nos.	195 to 252
(m.e.) ₆	$=\frac{e_{0}+e_{1}}{2}$	<u>10</u> = +	5521 — 6 ×	9'71 dE	"	"	253 to 331
(m.e.) ₇	$=\frac{e_{10}+e_{10}}{2}$	⁶ 11 = +	5420 – 6 X	13·31 dk	с,,	33	332 to 368
(m.e.) ₈	$=\frac{e_{12}+e_{12}}{2}$	⁶ 18 = +	6381 — 6 x	12.95 dE	· >>	"	369 to 455
(m.e.) ₉	$=\frac{e_{14}+e_{14}}{2}$	⁶ 15 = +	6160 — 6 X	15.09 dE	* *	"	456 to 539
(m.e.) ₁₀	$=\frac{e_{15}+e_{15}}{2}$	¹⁷ = +	5694 — 6 ×	9 ^{.8} 5 dE	37	**	540 to 609
(m.e.) ₁₁	$=\frac{e_{16}+e_{16}}{2}$	¹⁸ = +	4923 - 4 ×	9.72 dE	applicable to	set No.	6091

Hence the total microscope errors are as follows :---

								m.i.					feet of	Δ		
in sets Nos.	1	to	62	*	62	$(m.e.)_1$	=	429102	-	6748	dE	=	·0358	-	6748	dE
	63 1	to	133	=	71	(m.e.) ₂	=	475274		2283	dE	=	•0396		2283	dE
,	134 1	to	181	z	4 8	(m.e.) ₃	=	287088	+	75	dE	=	·0239	+	75	dE
	182 (to	194	Ŧ	13	(m.e.) ₄	Ŧ	78936		258	dE	=	•0066		258	dE
	195	to	252	~	58	(m.e.) ₅	æ	297482		839	dE	=	·0248	_	839	dE
	253	to	331	*	79	(m.e.) ₆	×	436159	-	4603	dE	=	•0363		4603	dE
	332 1	to	368	Ħ	37	$(m.e.)_{7}$	<u> </u>	200540	-	2955	dE	=	·0167		2955	dE
	369 1	to	455	=	87	(m.e.) ₈	*	555147		6760	dE	=	·0463	-	6760	dE
	456 1	to	539	=	84	(m.e.) ₉	=	517440		7605	dE	=	·0431	-	7605	dE
	540 1	to	609	Ŧ	70	$(m.e.)_{10}$	=	398580	-	4137	dE	=	.0332	-	4137	dE
in set No.	6091			=	1	$(m.e.)_{11}$	Ŧ	4923		39	dE	=	•0004		39	dE

And the total microscope errors in the base-line = $:3067 - 36152 \ dE$

Microscope Comparisons—(Continued.)

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally: *i.e.* in terms of the 6-inch brass scale A. But from page (31), we have $2 A = 1.0000192 \frac{A}{10}$, value in 1835. Also, the co-efficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that .000,000,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (*m.e*), we have,

Total lengths measured with the compensated microscopes

c	feet of A	-	feet	of	Α
In sets Nos. 1 to $609 = \begin{cases} 60 \end{cases}$	9 × 3 + ·3063 } - 36113 d	dE = (1)	827.3414	— .0101)	= 1827.3313
In set No. $609_1 = \left\{ \right.$	$1 \times 2 + .0004 $ $\Big\} - 396$	dE = (2.0004	— .0000)	= 2.0004
In sets Nos. 1 to 6091 or Sout	h-West-End to North-East-E	nd = (1)	829.3418	0101)	= 1829.3317

Disposition of the bars and microscopes during the measurement.

The following typical illustrations show the permutations and combinations of the bars and microscopes during the measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set; and the numbers assigned to the illustrations, will be found employed in the tables of "Extracts from the Field Book &c."

Statement.

No. 1 occurs in sets Nos. 1 to 609. No. 2 ,, set No. 609_1 . Microscope Illustration.

Statement.

No. 1	occurs in	sets	Nos.	I	to	194.
No. 2	,,		Nos.	195	to	609.
No. 3	"	set	No.	609	L	-

III_

-17

Digitized by Google

III_18.

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin.

Adopted heights above mean sea level. South-West-End (origin) = 1529.4 feet. North-East-End (terminus) = 1479.0 feet.

When com- pared	the Set.	ure of Air	Mean time of	bars used Set abore gin	Nur she arra me	me ral wing ange- nt of	When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above igin	Nur she arra mer	neral wing inge- nt of
1837	No. of	Temperat	ending	No. of 1 Height of ori	Bars.	Micros :	1837	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:
lst Dec.	• 1 2 3 4 5 6 7 8	53 ^{.3} 64 ^{.0} 71 ^{.1} 75 ^{.7} 79 ^{.3} 81 ^{.7} 82 ^{.0} 82 ^{.1}	h. m. 6 55 A.M. 8 0 8 59 9 37 10 25 11 2 1 44 P.M. 2 27	$\begin{array}{c} feet. \\ 6 + 2^{\cdot 2} \\ 6 \\ 1^{\cdot 1} \\ 6 \\ 6 \\ - \\ 7 \\ 6 \\ 1^{\cdot 2} \\ 6 \\ 1^{\cdot 8} \\ 6 \\ 2^{\cdot 6} \\ 6 \\ 3^{\cdot 1} \end{array}$	I I I I I I I I I		5th Dec.	43 44 45 46 47 48 49 50	66'3 71'0 73'8 75'9 78'2 78'7 81'0 81'0	h. m. 8 28 A.M. 9 2 9 26 10 2 10 30 11 6 1 46 P.M. 2 14	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	feet. 17.2 17.3 17.7 17.7 17.7 18.4 18.7 19.3 19.5	I I I I I I I I I I I	I I I I I I I I I
2nd "	9 10 11 12 13 14 15 16 17	82·2 80·3 52·0 58·7 65·0 70·7 75·4 79·0 82·7	3 21 4 9 6 54 A.M. 7 37 8 12 8 42 9 17 9 50 10 31	6 3·2 6 3·3 6 3·6 6 4·3 6 5·0 6 5·3 6 5·9 6 6·7		1 1 1 1 1 1 1 1 1 1 1 1	6th "	51 52 53 54 55 50 57 58 59	81.3 80.8 80.2 79.0 48.0 53.7 60.0 65.1 71.3	2 52 3 22 3 51 4 18 6 58 7 34 A.M. 8 1 8 40 9 16	0000000000	199 199 202 204 204 209 211 216 21.8	I I I I I I I I I	I I I I I I I I I I I I I
4th "	18 19 20 21 22 23 24 25 20 27	84.0 84.2 83.6 82.7 82.0 81.0 78.2 48.1 52.8 60.2	11 3 1 46 P.M. 2 18 3 6 3 36 4 11 4 39 6 47 A.M. 7 18 7 58	6 7 ^{.6} 6 8 ^{.4} 6 8 ^{.5} 6 9 ^{.0} 6 9 ^{.5} 6 10 ^{.3} 6 10 ^{.7} 6 11 ^{.0} 6 11 ^{.2}			7th "	60 61 62 63 64 65 66 67 68 60	72.8 76.6 80.5 48.5 54.0 59.2 63.7 69.0 73.0 75.8	9 46 10 22 10 59 7 3 7 30 7 59 8 30 9 1 9 29	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	22.7 22.6 22.7 23.2 23.6 23.9 24.3 24.6 24.8 25.2		
	27 28 29 31 32 33 34 35 37 37 37	65.7 69.7 73.2 75.2 78.3 81.0 81.8 81.8 80.8	7 50 8 22 8 56 9 21 9 52 10 20 10 54 11 21 2 0 P.M. 2 25 3 23	6 11 ² 6 11 ³ 6 11 ⁶ 6 11 ⁹ 6 12 ⁵ 6 12 ⁵ 6 13 ¹ 6 13 ⁵ 6 14 ⁴ 6 14 ⁴ 6 15 ⁶ 6			8+b	0 7 7 7 7 7 7 7 7 7 7 7 7 7	750 78.1 81.0 81.5 82.0 81.4 80.5 78.7 77.2 74.2	10 1 10 26 10 57 1 32 P.M. 2 1 2 35 2 58 3 28 3 56 4 23 4 47 47	00000000000000000000000000000000000000	252 25.6 25.9 26.2 26.6 26.8 27.0 27.2 27.1 27.1 26.7		
5th "	30 39 40 41 42	78.0 48.3 51.4 60.2	359 440 б37 л.м. 733 757	6 149 6 152 6 156 6 165 6 169	I I I I	I I I I I	otii "	81 82 83 84	44 ⁻⁵ 48 ⁻⁸ 54 ⁻⁸ 59 ⁻¹ 63 ⁻⁸	0 45 л.м. 7 12 7 43 8 7 8 38	0 0 0 0 0 0 0	273 276 283 289 293	I I I I I	I I I I I

Nore.—The rear-end of set No. 1 stood exactly over the dot at South-West-End.

DETAILS OF THE MEASUREMENT.

ш_₁₉

Extracts from	the	Fi eld	Book—((Continued.)	
---------------	-----	---------------	--------	--------------	--

When com- pared	he Set.	tre of Air	Mean time of	bars used	Set above gin	Nun shev arra mer	neral ving nge- nt of	When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above igin	Num shew array men	ne ral ring nge - it of
 1837	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:	1837	No. of	Temperat	enaing	No. of	Height of or	Bars.	Micros :
8th Dec.	85 86 87 88 89 90	68°0 72°5 76°0 78°0 80°0 80°0	$\begin{array}{cccc} h. & m. \\ g & o & A.M. \\ g & 34 \\ 10 & 2 \\ 10 & 30 \\ 10 & 56 \\ 1 & 32 & P.M. \\ 7 & 69 \end{array}$	6 . 6 6 6 6 6 6	feet. - 29.5 28.7 27.1 27.1 27.0 27.0 27.0	I I I I I	I I I I I	11th Dec. 12th "	133 134 135 136 137 138	71.8 76.4 76.0 76.3 77.0 76.0	h. m. 4 16 P.M. 1 19 1 43 2 14 2 38 3 9 2 30	00000000000000000000000000000000000000	feet. - 30'7 30'5 31'1 31'3 31'7 31'0	I I I I I I	1 I I I I I
9th "	91 92 93 94 95 96 97 98	81.5 82.1 80.8 80.7 79.0 77.4 75.3 44.0	1 50 2 27 2 53 3 19 3 41 4 4 4 30 6 41 A.M.	000000000	270 272 273 270 270 270 270 276 278 281 282			13th "	139 140 141 142 143 144 145 146	75 + 74 0 71 0 43 8 46 2 50 0 54 0 54 0 58 8	3 56 4 20 6 42 м.м. 7 5 7 36 7 57 8 25 8 40	00000000000	32.2 32.0 32.4 32.6 33.1 33.3 33.6 34.0	I I I I I I I	I I I I I I I
	99 100 101 102 103 104 105 106	48.0 54.1 59.1 65.0 67.8 72.0 74.0 74.0	7 10 7 40 8 2 8 35 8 57 9 23 9 44 10 22	0000000	204 283 294 298 304 311 310 208	I I I I I I I I			147 148 149 150 151 152 153 154	66.8 69.6 71.0 73.0 73.0 73.5 80.0 81.5	9 18 9 42 10 13 10 25 10 52 1 23 P.M. 1 47	00000000	34'4 349 35'1 35'5 359 30'4 37'0	I I I I I I I	I I I I I I I
	107 108 109 110 111 112 113	79 ^{.2} 81 ^{.3} 81 ^{.4} 81 ^{.0} 80 ^{.2} 79 ^{.2} 78 ^{.1}	10 56 1 20 P.M. 1 44 2 15 2 39 3 2 3 22	00000000	29 ^{.6} 30 ^{.0} 30 ^{.0} 29 ^{.9} 30 ^{.2} 30 ^{.5} 30 ^{.8}	I I I I I I I I I	I I I I I I I	14th "	155 156 157 158 159 160 161	81.2 79.8 78.0 77.6 77.6 77.5 76.0 45.2	2 14 2 50 3 12 3 40 4 7 4 27 6 33 J.M.	0000000	37.6 37.8 37.9 38.5 38.9 39.3 39.9	I I I I I I I	
11th "	114 115 116 117 118 119 120 121	77.2 76.0 74.1 42.7 47.0 53.1 57.0 63.0	3 45 4 6 4 34 6 42 A.M. 7 10 7 43 8 10 8 43	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30 ^{.5} 30 ^{.5} 31 ^{.1} 31 ^{.0} 30 ^{.3} 30 ^{.4} 29 ^{.9}	1 1 1 1 1 1 1 1 1 1 1 1	I I I I I I I I I I I		162 163 164 165 166 167 168 169	49°0 54°0 59°3 64°8 67°1 71°0 73°5 75°8	7 4 7 35 8 1 8 34 8 57 9 25 9 44 10 10	000000000	40 ³ 40 ⁶ 41 ¹ 41 ⁶ 41 ⁹ 42 ⁴ 42 ⁹ 43 ⁴	I I I I I I I	
	122 123 124 125 126 127 128 129	67.2 71.5 73.0 73.3 74.5 76.7 78.0 77.8	9 8 9 31 9 53 10 24 10 50 1 34 P.M. 1 58 2 30	6 6 6 6 6 6 6 6 6	30.1 29.6 30.0 30.2 30.7 30.3 30.3 29.8	I I I I I I I I			170 171 172 173 174 175 176 177	70°1 79°0 82°8 82°3 79°1 80°1 80°7 80°0	10 38 11 4 1 31 P.M. 1 57 2 24 2 46 3 15 3 38	000000000	43 ^{.7} 43 ^{.9} 44 ^{.2} 44 ^{.2} 44 ^{.7} 44 ^{.8} 45 ^{.0}		I I I I I I I
	130 131 132	76.5 75.3 74.0	2 52 3 22 3 52	6 6 6	29 [.] 6 30 [.] 0 30 [.] 2	I I I	I I	15th "	178 179 180	79°0 76°0 54°0	45 43 ⁶ 646 л.м.	0 6 6	45'1 45'5 45'8	I I I	I I I

.

December 14th. (161) Clouds in the East.

.

Digitized by Google

III______

SIRONJ BASE-LINE

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above igin	Num shew arrai men	neral ving nge- t of	When co p ar ed	m-	the Set.	ure of Air	Mean time of	bars used	Set above igin	Num shew arran ment	aral ing ge- t of
1837	No. of	Temperat	ending	No. of	Height of or	Bars.	Micros:	1837		No. of	Temperat	enaing	No. of	Height of or	Bars.	Micros :
15th Dec.	181 5 182 7 183 7	8 [.] 0 9.2	h. m. 7 30 д.м. 9 58 10 3б	6 - 6 6	feet. - 46·2 46·7 47·2	I I I	I I I	21st De	ec.	229 230 231	47 ^{.5} 52 ^{.2} 58 ^{.1}	h. m. 7 52 A.M. 8 18 8 48	6	feet. - 56.4 56.6 56.8	I I I	2 2 2
18th "	184 8 185 4 186 5 187 6 188 6	1°0 3°6 6°8 4°0	11 5 6 56 8 31 9 16 10 3	0 6 6 6	47'7 48'1 48'8 48'6 48'2	I I I I I	I I I I			232 233 234 235 236	02'3 66'2 68'1 71'0 71'5	9 12 9 41 10 5 10 32 10 54	0 0 0 0 0 0 0	50.7 57.5 58.0 58.2 58.3	I I I I	2 2 2 2 2
	189 7 190 7 191 7 192 7 193 7 194 7	2.6 7.0 7.0 7.0 7.0	10 45 1 52 P.M. 2 35 3 18 4 1 4 35	6 6 6 6 6 6 6 6	48.3 48.5 48.8 49.6 50.2 50.4	I I I I I I	I I I I I I			237 238 239 240 241 242	72.7 73.7 73.3 74.3 73.1 72.0	1 26 P.M. 1 49 2 18 2 42 3 9 3 30	000000	58.5 58.7 59.0 59.1 59.1 59.1	I I I I I	2 2 2 2 2 2 2 2
19th "	195 4 196 5 197 0 198 0 199 7	47.0 54.8 53.3 57.2 71.0 74.0	7 35 A.M. 8 36 9 12 9 43 10 16 10 38	6 6 6 6 6 6 6	49 ^{.6} 49 [.] 7 49 [.] 9 50 ^{.0} 50 ^{.0}	I I I I I	2 2 2 2 2 2 2 2 2	22nd	"	243 244 245 246 247 248	71'4 70'2 37'0 42'8 47'3 52'3	4 6 4 28 6 50 A.M. 7 25 7 49 8 18	0 0 0 0 0 0 0 0 0	58.9 58.3 58.5 58.6 59.1 50.0		2 2 2 2 2 2 2
	201 202 203 204 205	76 .0 75.0 75.6 76.2 75.3	11 IO I 35 Р.М. 2 4 2 3I 4 2 56	6 6 6 6 6	50°4 50°5 50°7 51°1 51°2	I I I I I	2 2 2 2 2			249 250 251 252 253	58.0 64.7 68.3 71.0 72.5	8 49 9 27 9 56 10 29 1 54 P.M.	6 6 6 6	61.4 62.9 64.4 65.4 66.6	I I I I I	2 2 2 2 2 2
20th "	206 207 208 209 210	75°0 74°1 73°0 40°0 43°3	3 25 3 48 4 20 6 53 л.ж. 7 20	6 6 6 6 6 6	51.3 51.5 51.7 51.9 52.2	I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	92-1		254 255 256 257 258	74°0 74°8 73°2 71°8 69°6	2 24 2 53 3 28 3 54 4 21	6 6 6 6	66·9 66·8 66·4 66·0 66·0	I I I I	2 2 2 2 2 2
	211 212 213 214 215 216	49 ⁻² 53 ⁻⁴ 57 ⁻⁸ 61 ⁻² 65 ⁻ 0	7 53 8 16 8 42 9 4 9 30 5 9 50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	52.3 52.6 52.6 52.6 52.6		2 2 2 2 2 2 2 2 2	2 3 ru	"	259 260 261 262 263	30.0 42.8 49.8 59.0 64.4	0 47 7 36 8 13 9 11 9 43	0 6 6 6	05.7 64.7 62.7 61.7 60.4		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	217 217 218 219 220 221	68.0 70.3 71.0 72.2	5 y 50 5 10 15 3 10 40 5 11 3 2 1 52 P.M. 1 2 12	0 0 0 0 0 0 0 0 0 0	53 4 53 4 53 9 53 9 53 9		2 2 2 2 2 2			204 265 266 267 268	713 757 770 765	$\begin{array}{c} 10 & 11 \\ 10 & 43 \\ 1 & 58 \text{ P.M} \\ 2 & 32 \\ 3 & 2 \\ 2 & 28 \end{array}$	6 . 6 . 6	59 59 58 58 58 58		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	222 223 224 225 226	73 73 72 69 8 67	2 45 1 3 12 5 3 48 8 4 14 5 4 43	6 6 6 6 6	54 55 55 56 56	7 I 2 I 6 I I I 0 I	2222222	25th	"	270 271 272 273 273 274	75°2 72°8 50°3 51°1	3 54 3 4 20 7 1 A.M 7 36 7 8 7		5 58°3 5 56°3 5 55°3 5 57°5 5 58°3	3 1 7 1 9 1 9 1 9 1 9 1	2222
21st "	227 228	38 42	і б <u></u> о л.м 5 7 20	. 6 6	56. 56.	4 I 4 I	2 2			275 276	58.9 5 63.7	839 799	6	5 <u>5</u> 8·1 5 59·0	8 I 6 I	2 2

-

December 23rd. (259) Clouds in the East.

Digitized by Google

Extracts from the Field Book-(Continued.)

.

.

When com- pared	f the Set	ture of Air	Nean time of	bars used	f Set above rigin	Nun shev arra mer	neral wing nge- nt of	When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above igin	Num shew arrai men	ieral ving nge- t of
1837	No. 01	Tempera	enumg	No. of	Height o	Bars.	Micros:	1837-38	No. of	Temperat	enaing	No. of	Height of or	Bars.	Micros :
25th Dec. 26th "	278 2281 2283 2283 2283 2293 2293 2293 2293 2293	67777777777774455596777777777777734456667777777777777777777	\hbar . m. 9 35 A.M. 10 32 10 55 1 27 P.M. 1 55 2 20 2 41 3 12 3 30 3 53 4 19 6 51 A.M. 7 17 7 46 8 12 8 45 9 14 9 43 10 56 1 31 P.M. 1 59 2 36 3 3 3 29 3 49 4 18 6 45 A.M. 7 13 7 44 8 18 8 46 9 14 9 38 10 56 1 31 P.M. 1 59 2 36 3 3 3 29 3 49 4 18 6 45 A.M. 7 13 7 44 8 18 8 46 9 14 9 38 10 12 10 38 11 1 1 34 P.M. 1 58 2 23 2 53 3 22 3 50 1 3 50 1 31 P.M. 1 59 2 36 3 3 3 29 3 49 4 18 6 45 A.M. 7 13 7 44 8 18 8 46 9 14 9 38 10 12 10 38 11 1 1 34 P.M. 1 58 2 23 2 53 3 50 3 50 5 50	×× <t< th=""><th>feet. 11 587.7206872825555555555555555555555555555555555</th><th></th><th>3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>28th Dec. 29th ,, 30th ,, 3rd Jan.</th><th>50789012333333333333333333333333333333333333</th><th>5000 7777788887777744495000 777778888 77774550000 777777777777777777777777777</th><th>h. m. 7 56 A.M. 8 26 9 09 9 26 9 58 10 56 1 58 P.M. 2 24 2 50 3 19 3 47 4 12 4 37 6 44 A.M. 7 41 8 7 8 30 44 A.M. 7 41 8 7 8 54 9 22 9 49 10 19 10 45 1 30 P.M. 2 3 2 30 2 50 3 46 4 29 4 29 6 54 A.M. 7 22 7 53 8 16 9 9 9 38 10 30 11 38 P.M. 2 35 3 10 3 2 50 3 46 4 29 4 59 10 30 10 30 11 38 P.M. 2 35 3 13 2 20</th><th></th><th><i>feet</i> 49.5 49.7 49.5 5 49.7 49.5 5 5 49.5 5 49.5 6 5 49.5 6 49.5 7 49.5 7 49.5 5 5 49.5 6 5 49.5 7 49.5 5 5 49.5 7 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 7 49.5 7 49.5 5 5 49.5 7 5 7 6 3 9.5 7 6 7 2 9.5 7 7 4 4 4 5 5 7 7 6 7 7 2 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 9 7 7 7 9 7 7 9 7 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 9 7 7 7 7 9 7 7 7 9 7 7 9 7 7 7 9 7 7 7 9 9 7 7 7 9 7 7 7 9 7 7 9 9 7 7 7 9 7 7 9 7 7 7 9 7 7 9 7 7 9 9 7 7 9 7 9 7 7 9 7 7 9 7 7 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 9 9 7 7 9 9 7 7 9 9 9 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 7 7 9 9 7 7 9 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 7 9 9 7 7 9 9 9 7 9 9 9 7 9 9 7 9 9 9 7 9 9 9 9 9 9 9 9 7 9</th><th></th><th></th></t<>	feet. 11 587.7206872825555555555555555555555555555555555		3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28th Dec. 29th ,, 30th ,, 3rd Jan.	50789012333333333333333333333333333333333333	5000 7777788887777744495000 777778888 77774550000 777777777777777777777777777	h. m. 7 56 A.M. 8 26 9 09 9 26 9 58 10 56 1 58 P.M. 2 24 2 50 3 19 3 47 4 12 4 37 6 44 A.M. 7 41 8 7 8 30 44 A.M. 7 41 8 7 8 54 9 22 9 49 10 19 10 45 1 30 P.M. 2 3 2 30 2 50 3 46 4 29 4 29 6 54 A.M. 7 22 7 53 8 16 9 9 9 38 10 30 11 38 P.M. 2 35 3 10 3 2 50 3 46 4 29 4 59 10 30 10 30 11 38 P.M. 2 35 3 13 2 20		<i>feet</i> 49.5 49.7 49.5 5 49.7 49.5 5 5 49.5 5 49.5 6 5 49.5 6 49.5 7 49.5 7 49.5 5 5 49.5 6 5 49.5 7 49.5 5 5 49.5 7 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 6 49.5 7 49.5 5 5 49.5 7 49.5 7 49.5 5 5 49.5 7 5 7 6 3 9.5 7 6 7 2 9.5 7 7 4 4 4 5 5 7 7 6 7 7 2 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 9 7 7 7 9 7 7 9 7 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 7 9 7 7 9 7 7 7 7 9 7 7 7 9 7 7 9 7 7 7 9 7 7 7 9 9 7 7 7 9 7 7 7 9 7 7 9 9 7 7 7 9 7 7 9 7 7 7 9 7 7 9 7 7 9 9 7 7 9 7 9 7 7 9 7 7 9 7 7 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 9 9 7 7 9 9 7 7 9 9 9 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 9 7 7 9 7 7 9 9 7 7 9 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 7 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 9 9 7 7 9 9 7 7 9 9 9 7 9 9 9 7 9 9 7 9 9 9 7 9 9 9 9 9 9 9 9 7 9		
28th "	323 324	73 0 42.0 46.1	а 21 б 5б а.м. 7 27	6 6	49'7 49'3	I I I	2 2 2		370 371 372	75'9 75'9 75'0	2 51 3 12 3 45	0 6 6	44*5 45*2 46*1	I I I	2 2 2

.

.

III_____2 I

•

Extracts from the Field Book-(Continued.)

When com-	bars used f Set above igin	Numeral shewing arrange- te ment of	When com- z pared z	.↓ v 9 Mean time of	bars used f Set above igin	Numeral shewing arrange- ment of
	Ro. of Height of	Height of or Bars. Micros:	1838 9	E Engine	No. of Height of or	Bars. Micros :
o h. m. 3rd Jan. 373 73'9 4 13 374 71'2 4 43 4th 375 40'2 65; 370 43'0 7 24 377 47'5 7 53 378 53'0 8 19 379 58'9 8 45 378 53'0 8 19 379 58'9 8 45 380 64'0 9 9 381 69'2 9 40 382 72'0 10 10 383 73'0 10 32 384 74'5 11 2 385 78'8 154 386 79'0 2 21 387 80'0 2 51 388 76'3 9 57 393 43'5 7 24 394 50'0 7 <th>feet P.M. 6 46 (6) 6 47 (7) 6 48 (3) 7 6 48 (3) 6 48 (3) 7 6 48 (3) 6 48 (3) 6 48 (3) 6 48 (3) 6 48 (3) 7 6 48 (3) 6 49 (4) 6 50 (5) 6 51 (2) 6 52 (4) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 57 (7) 6 55 (7) 6 57 (7) 6<</th> <th>feet 1 2 47.7 1 2 47.7 1 2 47.7 1 2 48.3 1 2 48.6 1 2 48.6 1 2 48.9 1 2 50.5 1 2 50.5 1 2 50.5 1 2 51.2 1 2 52.6 1 2 52.6 1 2 53.7 1 2 53.3 1 2 53.3 1 2 53.4 1 2 54.7 1 2 54.9 1 2 55.6 1 2 56.8 1 2 56.8 1 2 57.6 1 2 57.8 1 2 57.8 1 2 57.7 1 2</th> <th>6th Jan. $421$$422$$423$$424$$425$$420$$427$8th$430$$431$$432$$433$$434$$435$$436$$437$$438$$439$$440$$441$$442$$443$$444$$445$$9th,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,$</th> <th>h. m.$81^{\circ}8$225F.M.$81^{\circ}3$250$81^{\circ}0$319$80^{\circ}5$342$78^{\circ}3$411$77^{\circ}0$436$73^{\circ}0$54$45^{\circ}0$649$4.5^{\circ}0$649$4.5^{\circ}0$828$60^{\circ}1$828$60^{\circ}1$828$64^{\circ}5$854$68^{\circ}1$924$71^{\circ}2$948$72^{\circ}2$1054$81^{\circ}4$145$75^{\circ}0$1031$76^{\circ}2$1054$81^{\circ}4$145$82^{\circ}3$328$81^{\circ}2$350$79^{\circ}2$416$76^{\circ}3$444$45^{\circ}4$758$58^{\circ}3$823$62^{\circ}2$848$66^{\circ}0$99$69^{\circ}0$938$71^{\circ}0$451$70^{\circ}8$346$78^{\circ}2$21$78^{\circ}3$324$70^{\circ}8$346$78^{\circ}2$455$36^{\circ}6$54$45^{\circ}8$748$50^{\circ}8$812$76^{\circ}6$54$45^{\circ}7$719$45^{\circ}8$748$50^{\circ}8$8<</th> <th>$\begin{array}{c} feet\\ 57^{\circ} \\ -\\ 57^{\circ} \\ 58^{\circ} \\ 58^{\circ} \\ 59^{\circ} \\ 59^{\circ$</th> <th>I 2 I</th>	feet P.M. 6 46 (6) 6 47 (7) 6 48 (3) 7 6 48 (3) 6 48 (3) 7 6 48 (3) 6 48 (3) 6 48 (3) 6 48 (3) 6 48 (3) 7 6 48 (3) 6 49 (4) 6 50 (5) 6 51 (2) 6 52 (4) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 53 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 55 (7) 6 57 (7) 6 55 (7) 6 57 (7) 6<	feet 1 2 47.7 1 2 47.7 1 2 47.7 1 2 48.3 1 2 48.6 1 2 48.6 1 2 48.9 1 2 50.5 1 2 50.5 1 2 50.5 1 2 51.2 1 2 52.6 1 2 52.6 1 2 53.7 1 2 53.3 1 2 53.3 1 2 53.4 1 2 54.7 1 2 54.9 1 2 55.6 1 2 56.8 1 2 56.8 1 2 57.6 1 2 57.8 1 2 57.8 1 2 57.7 1 2	6th Jan. 421 422 423 424 425 420 427 8th 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 9 th $,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,$	h. m. $81^{\circ}8$ 225F.M. $81^{\circ}3$ 250 $81^{\circ}0$ 319 $80^{\circ}5$ 342 $78^{\circ}3$ 411 $77^{\circ}0$ 436 $73^{\circ}0$ 54 $45^{\circ}0$ 649 $4.5^{\circ}0$ 649 $4.5^{\circ}0$ 828 $60^{\circ}1$ 828 $60^{\circ}1$ 828 $64^{\circ}5$ 854 $68^{\circ}1$ 924 $71^{\circ}2$ 948 $72^{\circ}2$ 1054 $81^{\circ}4$ 145 $75^{\circ}0$ 1031 $76^{\circ}2$ 1054 $81^{\circ}4$ 145 $82^{\circ}3$ 328 $81^{\circ}2$ 350 $79^{\circ}2$ 416 $76^{\circ}3$ 444 $45^{\circ}4$ 758 $58^{\circ}3$ 823 $62^{\circ}2$ 848 $66^{\circ}0$ 99 $69^{\circ}0$ 938 $71^{\circ}0$ 451 $70^{\circ}8$ 346 $78^{\circ}2$ 21 $78^{\circ}3$ 324 $70^{\circ}8$ 346 $78^{\circ}2$ 455 $36^{\circ}6$ 54 $45^{\circ}8$ 748 $50^{\circ}8$ 812 $76^{\circ}6$ 54 $45^{\circ}7$ 719 $45^{\circ}8$ 748 $50^{\circ}8$ 8<	$\begin{array}{c} feet\\ 57^{\circ} \\ -\\ 57^{\circ} \\ 58^{\circ} \\ 58^{\circ} \\ 59^{\circ} \\ 59^{\circ$	I 2 I

-

III____22

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book-(Continued.)

When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above gin	Nun shev arra men	neral ving nge- it of	When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above igin	Num shev arra men	neral ving nge- nt of
1838	No. of	Temperat	ending	No. of	Height of ori	Bars.	Micros:	1838	No. of	Temperat	ending	No. of	Height of or	Bars.	Micros:
10th Jan.	44712 44773 447754	66667777777777777777777777777777777777	$\begin{array}{c} h. & m. \\ 9 & 22 & A.M. \\ 9 & 41 \\ 10 & 3 \\ 10 & 27 \\ 10 & 51 \\ 1 & 53 & P.M. \\ 2 & 17 \\ 2 & 44 \\ 3 & 8 \\ 3 & 34 \\ 3 & 56 \\ 4 & 20 \\ 4 & 40 \\ 5 & 4 \\ 40 \\ 5 & 4 \\ 40 \\ 5 & 4 \\ 40 \\ 5 & 4 \\ 40 \\ 5 & 4 \\ 6 \\ 52 & A.M. \\ 7 & 13 \\ 7 & 39 \\ 8 & 0 \\ 52 & A.M. \\ 7 & 13 \\ 7 & 39 \\ 8 & 0 \\ 52 & A.M. \\ 7 & 13 \\ 7 & 39 \\ 8 & 0 \\ 52 & A.M. \\ 7 & 13 \\ 7 & 39 \\ 8 & 25 \\ 8 & 47 \\ 9 & 9 \\ 9 & 36 \\ 10 & 0 \\ 10 & 18 \\ 11 & 2 \\ 2 & 3 \\ 2 & 27 \\ 2 & 48 \\ 3 & 9 \\ 9 & 36 \\ 10 & 0 \\ 10 & 18 \\ 11 & 2 \\ 2 & 3 \\ 2 & 27 \\ 2 & 48 \\ 3 & 9 \\ 3 & 31 \\ 3 & 58 \\ 4 & 17 \\ 1 & 30 \\ 7 & 25 \\ 7 & 50 \\ 8 & 20 \\ 8 & 46 \\ 9 & 11 \\ 9 & 26 \\ 9 & 45 \\ 10 & 3 \\ 10 & 24 \\ 10 & 47 \\ 11 \\ 8 \end{array}$, , , , , , , , , , , , , , , , , , ,	<i>fee.</i> 8 <i>f</i> 56 4 4 6 3 3 2 5 3 3 2 7 2 7 9 0 8 6 7 2 6 9 9 5 8 4 7 7 1 7 4 8 8 4 9 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12th Jan. 13th "	518 90 55 55 55 55 55 55 55 55 55 55 55 55 55	781222231506562112220570071300806301477988888888888888888888888888888888888	h. m. 1 32 P.M. 1 53 2 15 2 33 2 54 3 14 3 58 3 57 4 19 4 39 5 0 55 A.M. 7 18 7 43 8 49 9 14 9 35 9 58 10 19 2 7 F.M. 2 56 3 16 3 38 4 24 4 48 7 15 A.M. 7 52 3 16 3 38 4 24 4 48 7 15 A.M. 7 25 3 16 3 38 4 24 4 48 7 15 A.M. 7 25 7 52 8 16 3 38 4 24 4 48 7 13 A.M. 7 25 7 52 3 16 3 38 4 2 48 4 24 4 48 7 1 A.M. 7 25 7 52 3 16 3 38 4 2 48 4 24 4 48 7 13 A.M. 7 25 7 52 3 16 3 38 4 2 50 3 16 3 38 4 2 48 4 24 4 48 7 15 3 16 3 3 1 3 1 7.M. 1 55 3 20 3 41	ᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐᲐ	<i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>feet.</i> <i>fe</i>		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

III____23

III_₂₄

.

SIRONJ BASE-LINE

Extracts	from	the	Field	Book(Continued.	.)

When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above gin	Nun shev arra mer	neral wing mge- nt of	When com- pared	the Set.	ure of Air	Mean time of	bars used	Set above igin	Num shew arran men	ring nge- t of
1838	No. of	Temperat	ending	No. of	Height of or	Bars.	Micros :	1838	No. of	Temperat	ending	No. of	Height of or	Bars.	Micros :
15th Jan. 16th "	565 566 567 568 577 577 577 577 577 577 577 577 577 57	80.5 80.5 74.0 74.7 45.2 47.3 58.0 68.2 71.8 75.3 68.2 71.8 77.3 82.8 86.0 85.3 81.6 85.3 81.6 74.0 73.8 77.3 79.2 86.8 85.3 81.6 74.0 74.0 73.8 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2	h. m. 4 8 P.M. 4 31 4 59 6 51 A.M. 7 16 7 39 8 3 8 25 8 52 9 13 9 38 10 54 11 24 2 41 P.M. 3 4 3 32 3 57 4 25 4 50 6 55 A.M. 7 20		feet. - 40.8 40.3 40.3 40.6 40.8 41.3 41.5 41.5 41.4 41.5 41.4 41.5 41.4 41.5 41.4 41.5 41.4 41.5 41.4 40.7 41.1 40.8 40.6 40.7 41.1 40.8 40.6 40.7 41.1 40.5 40.6 40.5 40.6 40.7 41.1 40.5 40.6 40.7 41.1 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 41.5 40.6 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.6 40.7 40.			17th Jan. 18th "	589 590 591 592 593 594 595 597 598 599 500 600 600 600 600 600 600 600 600 600	55.0 65.1 68.2 71.2 74.2 78.0 82.1 82.4 82.4 82.6 81.0 81.0 81.0 73.5 64.0	h. m. 8 8 $a.m.$ 8 31 8 56 9 20 9 45 10 35 10 35 10 58 1 13 $P.M.$ 1 34 1 55 2 33 2 50 3 9 3 25 3 45 4 0 4 35 5 0 9 5 $A.M.$	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	feet. - 403 406 398 399 400 399 388 378 368 378 368 359 352 352 343 341 344 339 318	I I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	588	51.0	7 46	6	40'0	ī	2		_		Total	- 2	6500.8		

The advanced-end of set No. 609_1 fell in defect, (*i. e.* south) of the dot at North-East-End, 5.3567 feet, as measured on Cary's brass scale with a beam compass.

Height of set No. 609_1 above North-East-End = 2.1 feet.

5

Reduction to Mean Sea Level.

In the notation of page I_{-22} we have

 $\lambda = 38416$; Log R = 7.31987; H = 1529; $[h]_{1}^{p} = -26500.8$; a = 10.6; $\delta h = -16.5$, all in feet; and n = 609.

Hence from the equation $C_1 + C_2 = -\lambda \frac{H}{R} - \frac{63}{R} \left\{ \left[h\right]_1^p + a + \frac{(n+1)}{2} \delta h \right\}$, see page I_{21} , we obtain in feet,

$$C_1 = -2.8122$$
; $C_2 = +0.0951$; and $\therefore C = C_1 + C_2 = -2.7171$.

Final length of the base-line in feet of Standard A.

Measured with t	he compensated	bars,	page III_12	=	365	81.5598
<i>))</i>	"	microscopes	, page III_17	=	18	29.3317
	beam compa	55,	page III— ₂₄	=		5 [.] 35 ⁶ 7
Reduction to sea	level as above			=	-	2.2121
Length South-V	Vest-End to Nor	rth-East-End	at mean sea level	=	384	13.2311
			Log.	=	4.2	8448423

Note.—(1) A correction of + 0.005 feet was accidentally lost sight of at the time of deducing this length. Referring to this quan-tity, Colonel Everest remarks at page 277 of his Meridional Arc of India 1847, that "the small correction of 0.005 of a foot which is "applied to this measurement, is due to the circumstance that the angles about the base were observed in the years 1836-37 with the upper "marks of the platform in their existing positions, which upper marks, on subsequent reference to the lower ones embedded in the earth, "shewed small discrepancies, and it was found to involve less computation to reduce the measured base to the positions used in 1836-37 "than to correct the angles about the base." As the omission was not recollected until a considerable amount of calculations based on the length here educted had been completed a

As the omission was not recollected until a considerable amount of calculations based on the length here adopted had been completed ;

it was considered unnecessary to incur the numerous arithmetical alterations involved, especially since the correction is only $\frac{\cos 5}{38414}$ or o'r

millionth part of the base-line. The length of the base-line is therefore accepted at the value given above.
(2) The limiting points of the base-line adopted in the foregoing measurement (of 1837) are practically identical with those laid down by Captain Everest in 1825 when he obtained the length of this line by measuring with a chain. The value obtained on the latter occasion when expressed in terms of Standard A is 38410.543 feet (see Everest's Arc Book of 1847, foot note p. xxxiii) being 2.988 fect in defect of the final value above deduced.

Digitized by Google

Description of Stations.

SOUTH-WEST-END OF SIRONJ BASE, Lat. 24° 5′, Long. 77° 48′, is situated on the lands of the village of Parsora, in pargana Sironj of the territories of the Nawab of Tonk. The circumjacent villages, with their distances and bearings, are as follows:—Parsora, 1·1 miles E.; Rasali, 3·5 miles N.N.W.; Eklaod and Kachpura, 3·0 miles N.E.; Bania Dhana and Ekodia, 1·3 miles S.E.

The station is marked by a prismatic stone, having a circle and dot engraved on the upper surface, sunk endwise to a level with the surface of the ground. Over this stands a pillar of masonry 2 feet high, and 4 feet in diameter, having a mark-stone in its upper surface with the usual circle and dot engraved on it adjusted normally over the lower mark. The whole is enclosed by a square pile of earth. The lowest dot is the one that was used in the measurement of this base-line.

The South-West-End was connected in 1861, by a double line of spirit levels, with the mean sea level at Karachi, when it was found that the height of the upper markstone was 1531.36 feet above this datum.

NORTH-EAST-END OF SIRONJ BASE, Lat. 24° 9', Long. 77° 53', stands on the lands of the village of Rájpúr, in pargana Sironj of the territories of the Nawab of Tonk. The circumjacent villages, with their distances and bearings, are,—Rájpúr, 0.7 miles E.; Tal Barodia, 1.5 miles N.E.; Thanarpúr Binchakeri, 1.2 miles E.S.E.; and Sialpúr, 1.7 miles S.

The station is marked precisely after the method adopted for the South-West-End Station.

J. B. N. HENNESSEY.

III_____26

BIDER BASE-LINE.

BIDER BASE-LINE

The middle point of the base-line is in Latitude N. 17° 56' Longitude E. 77° 37' Azimuth of East-End at West-End 305° 51'. Length 7.87 miles.

The measurement was effected under the directions of Lieutenant A. S. Waugh, R.E., with the aid of the following Officers and Assistants.

Lieutenant T. Renny, R.E.

" W. S. Jacob, R.E.

- Mr. G. Logan.
- " J. Olliver.
- " T. Olliver.
- " G. Terry.
- " N. Parsick.
- " J. Rossenrode.
- " DaCosta.
- Mir Siud Mohsin.

IV___2

BIDER BASE-LINE

IV_3

INTRODUCTION.

This base-line was measured in the valley of the Manjra River near the town and fortress of Bider, from which the West-End is distant about 2 miles to the North. The line was selected and prepared for measurement by Lieutenant A. S. Waugh, R.E., who in the first instance endeavoured to search out the extremities of the base-line measured with a chain in this vicinity by Colonel Lambton in the year 1815; but as no traces of the old line could be discovered, the intention of including it in the new line and determining its length with the compensated apparatus was necessarily relinquished.

The measurement was commenced at the West-End, bar-tongues pointing North, and carried on *continuously* to the East-End, so that every succeeding set originated at the point marking the terminus of its predecessor. The line was divided into 3 sections by the subdividing points A and B, to admit of verification by Minor Triangulation.

Fifty-seven comparisons were made between the compensated bars and the standard A before the measurement was commenced and as many more after it was completed. On the first occasion the site selected was very near the West-End of the base, the comparing piers of granite were set up *parallel* to the line, and the bar-tongues pointed *North*, as they did during measurement. The spot chosen for the after comparisons was in the low-grounds bordering the little streamlet near the village of Malgi; the piers were set up as before *parallel* to the line, but in order to obtain a more favorable light the ends of the bars were reversed so that their tongues now pointed *South*.

Of the two comparing microscopes employed in the preceding bar comparisons, one was fitted with a micrometer while the other had its wires (or lines) fixed.

The compensated microscopes were compared with their scales on 7 occasions, including the comparisons taken prior and subsequent to the measurement.

In respect to time, the first set of bar comparisons was made on the 12th October 1841, the last on the 8th of the following December.

The stations of the verificatory triangulation were 7 in number, forming a single series of triangles. Of these stations 4 were in the alignment, *viz.*, W. End, A, B and E. End; while the auxiliary stations a, β and γ were selected on suitable prominences south of the line. The angles were observed with Troughton's 3-foot theodolite, the mean being derived from 24 measures taken in equal numbers at 8 equidistant zeros.

Digitized by Google

BIDER BASE-LINE.

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at Bapur, or West-End of the base-line, before the measurement.

	beerving A	on.	Air.	rature of A		MICB 1 Div	0 M B T B B islon =	BBAD <u>1</u> 59.67 Cary's	INGS II Inch [7.8]=	N DIVI 1.3888 m.y	BIONS of A		
1841 Octr.	Mean of the times of o	No. of comparia	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E .	Н	Mean of the compensated bars	REMARKS.
12th	h. m. 7 36 A.H. 8 12 8 44 9 14 9 42 10 8 10 35 11 2 7 2 34 3 28 3 56 4 24 4 51 5 19	1 2 3 4 56 78 90 11 12 34 156 17	0 75978 8242 8552 8899 8888 8897 8896 8888 8888 887 9888 8888 8	69'97 71'65 73'65 75'75 77'47 80'75 82'27 87'35 87'32 88'07 88'32 88'07 88'32 88'60 88'35 88'60 88'35 88'35 87'95 87'35	+ 118.0 145.5 177.6 210.0 239.0 264.7 289.7 312.7 384.3 389.8 394.6 398.0 397.5 394.6 390.9 383.9 371.1	+ 119'2 116'9 116'9 113'2 111'2 107'7 107'3 106'8 105'0 102'8 104'1 104'3 102'8 102'2 101'9 106'9 102'7	+ 9 96'4 96'3 93'7 92'1 89'2 89'7 91'8 89'4 90'4 91'9 89'0 89'0 89'0 89'0 89'0 89'0 89'0 89	+ 118.3 115.8 114.3 117.0 114.0 113.4 110.9 115.4 114.9 117.5 116.2 114.9 116.8 117.8 116.9	+ 136.4 134.6 134.8 136.9 134.9 133.3 132.1 131.0 128.8 128.3 132.9 128.4 129.3 130.0 127.1 128.3	+ 110 ^{.6} 112 ^{.9} 114 ^{.1} 113 ^{.8} 113 ^{.4} 113 ^{.4} 113 ^{.4} 112 ^{.1} 104 ^{.6} 106 ^{.3} 104 ^{.7} 101 ^{.6} 100 ^{.1} 99 ^{.9} 101 ^{.1} 96 ^{.9} 98 ^{.9}	+ 106'1 102'6 102'9 104'1 102'2 101'0 100'0 97'9 93'1 91'7 89'0 88'0 88'0 88'0 87'0 87'0	+ 115.3 113.2 113.1 113.1 111.3 109.7 108.6 108.1 106.6 105.6 106.3 105.5 104.3 103.8 104.6 104.5 104.4	Sky clear, with a few cirri here and there. Lt. Waugh, at the micrometer microscope; Lt. Renny at the plain micro- scope. Afternoon warm, strong gusts of wind occasion- ally; a few clouds.
13th	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 19 21 22 22 22 22 22 22 20 78 90 12 33 45 3 3 7	70°3 72°8 75°1 77°5 77°5 79°8 82°4 83°8 83°4 83°4 83°4 83°4 83°4 83°5 85°8 85°5 85°5 84°5 85°5 84°5 85°5	69.62 69.75 70.40 71.22 72.10 73.15 74.20 75.30 76.60 78.07 79.40 85.65 86.35 86.35 86.35 86.35 86.30 86.17 86.02 85.82	68.8 72.0 83.0 97.7 111.6 128.0 145.1 163.4 185.6 207.6 227.1 333.4 340.1 341.2 341.0 340.2 338.8 336.9 332.2 326.2	75 ¹ 80 ² 79 ⁰ 78 ⁰ 73 ² 69 ⁸ 68 ⁹ 66 ² 76 ³ 80 ² 76 ³ 80 ² 70 ³ 80 ¹ 79 ³ 77 ⁰ 80 ¹ 79 ³ 77 ⁰ 80 ⁰ 79 ²	65 ² 62 ³ 57 ⁷ 58 ³ 5 ¹⁰ 5 ¹⁰ 5	86.6 90.8 85.0 85.1 80.4 82.1 74.9 74.1 74.0 70.0 70.0 94.4 91.2 96.0 89.8 95.6 895.8 95.4 91.2	99°4 978 96°6 96°8 91°1 91°0 91°8 93°2 90°0 111°0 109°7 108°1 110°5 107°9 109°0 110°1 106°8 107°7	66'1 69'0 65'1 64'0 65'0 63'0 65'0 63'0 65'0 63'1 65'0 63'1 83'1 80'0 78'8 77'7 78'8 80'0 77'7 72'7 77'0	64.9 64.5 61.8 61.6 60.1 59.2 55.8 55.8 55.8 55.8 55.8 68.0 65.0 68.0 65.0 65.8	76.2 77.4 74.5 74.5 74.5 74.5 74.5 74.5 70.6 68.7 67.5 67.7 66.9 83.7 83.2 83.7 83.2 84.1 82.2 84.1 82.5 84.1 81.8 82.0	A few clouds to- wards the E. & S. horizon, the rest of the sky clear. Sky overcast with clouds.

IV_4

Digitized by Google

BAR COMPARISONS

Before the measurement—(Continued.)

	obeerving A	son.	Air.	rature of A	MIOBOMETEE READINGS IN DIVISIONS 1 Division = $\frac{1}{30069\cdot67}$ Cary Inch [7.8] = 1.3833 m.y of A								
1841 Octr.	Mean of the times of	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	Е	н	Mean of the compensated bars	REMARKS.
14th	$\begin{array}{c} m. \\ 6 & 25 \text{ A.M.} \\ 6 & 25 \text{ A.M.} \\ 7 & 25 \text{ A.M.} \\ 7 & 42 \\ 8 & 51 \\ 9 & 41 \\ 9 & 15 \\ 9 & 41 \\ 1 & 25 \\ 9 & 34 \\ 1 & 25 \\ 2 & 31 \\ 2 & 31 \\ 2 & 31 \\ 2 & 31 \\ 2 & 31 \\ 2 & 31 \\ 3 & 57 \\ 3 & 51 \\ 3 & 51 \\ 4 & 46 \end{array}$	38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 53 54 55 50 57	73.0 74.0 77.1 81.5 83.8 85.1 88.5 88.7 88.7 88.7 88.7 88.7 88.7 88.7	0 70'97 71'17 71'60 72'27 73'15 74'25 75'52 76'90 78'27 79'67 81'07 87'22 87'57 87'55 87'5	+ 67.6 70.5 78.4 90.0 104.6 122.8 143.4 163.8 183.4 205.1 228.4 318.6 323.5 323.3 319.9 318.6 317.2 311.3 302.9 292.4	+ 55.2 56.1 52.8 53.8 53.3 48.7 51.5 47.0 40.0 40.0 40.0 40.0 40.0 40.0 47.3 49.2 47.1 40.0 47.3 49.2 47.8 45.5 47.0 40.	+ 39°0 39°2 34°1 34°0 33°5 34°8 32°8 32°8 32°0 29°3 29°3 29°3 29°2 33°1 31°1 34°8 37°0 36°0 37°6 35°2 30°7	+ 59.5 58.1 56.3 59.1 53.8 51.6 51.3 54.1 55.8 51.6 51.3 54.1 55.8 51.6 51.3 54.1 55.8 51.6 51.3 54.1 55.8 51.3 55.5 58.1 55.5 55.5 55.5 55.5 55.5 55.5	+ 77'1 77'4 75'0 72'3 76'1 75'1 73'3 70'2 70'4 72'1 73'0 74'8 72'7 74'1 75'9 74'1 72'7	+ 43.1 43.0 45.0 46.0 44.6 44.8 46.5 45.3 47.1 47.5 45.0 47.1 44.5 45.0 41.7 40.1 36.4	+ 43'9 42'6 41'5 41'3 40'1 41'8 38'8 35'8 32'1 34'7 35'7 35'7 37'3 37'3 35'7 35'7 35'7 35	+ 53.0 52.7 51.5 50.3 50.9 49.8 50.9 48.5 46.7 46.8 46.8 46.8 46.8 46.8 46.8 46.8 46.8	
		Me	ans	80.65	246.80	75.84	60.69	84.35	100.Q3	72.41	63.84	76.29	

IV_5

BIDER BASE-LINE

Before the measurement-(Continued.)

Let the mean length of the compensated bars minus the Standard A at 6[°] F. be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$x - (t^\circ - 62^\circ) (E_a - dE_a) - \delta = o$$

Treating the preceding bar comparisons as shewn in this equation, we obtain the following series of results :---

s - 7.97 (E	. – dE	(a) + 2.7 = 0	$x - 24.07 (E_{c})$	" – dE	a) + 256.9 = 0
\$ — 9 [.] 65	"	+ 32.3 = 0	x -24.27	"	+257.1 = 0
\$ -11.65	,,	+ 64.5 = 0	x-24.35	,,	+258.8 = 0
s -13.75	"	+ 96.9 = 0	x - 24 ·35	"	+258.1 = 0
s -15.47		+127.7 = 0	x-24.30	,,	+256.3 = 0
a -17.12	"	+1550 = 0	<i>x</i> - 24.17	"	+252.8 = 0
a — 18·75	"	+181.1 = 0	<i>x</i> -24.02	"	+250.4 = 0
a -20.27	"	+204.6 = 0	x-23.82	,,	+244.2 = 0
a -25.35	,,	+277.7 = 0	x - 8.97	,,	+ 14 [.] 6 = 0
x -25.82	,,	+284.3 = 0	x - 9 ^{.17}	"	+ 17.8 = 0
\$-26. 07	"	+288.3 = 0	x - 9.60	"	+ 26.9 = 0
a -26.32	"	+292.5 = 0	x -10.27	"	+ 39.7 = 0
\$ -26.55	,,	+293.5 = 0	x-11.15	"	+ 53.7 = 0
# 26 .60	,,	+290.8 = 0	x-12.25	"	+ 73.0 = 0
x- 26.35	"	+286.3 = 0	x-13.52	"	+ 92.5 = 0
x-2 5.95	"	+ 279.4 = 0	x -14.90	"	+115.3 = 0
x-25 .35	. 22	+266.7 = 0	x -16·27	"	+136.7 = 0
x— 7.62	"	- 7·4 = 0	x -17 [.] 67	"	+158.3 = 0
x - 7.75	"	- 5.4 = 0	x —19.07	"	+ 181. <u>0</u> — 0
x— 8·40	"	+ 8.5 = 0	x-25.22	"	+271.8 = 0
x - 9.22	,	+ 23.3 = 0	x -25.47	"	+275.1 = 0
x -10.10	"	+ 38.5 = 0	x-25.57	"	+273.8 = 0
x-11.15	"	+ 57.4 = 0	x -25.55	"	+269·9 = 0
x -12.20	"	+ 76.4 = 0	e -25.45	"	+268.5 = 0
x -13.30	,,	+ 95.9 = 0	a —25·32	"	+267·9 = 0
x-14.60	,,	+117.9 = 0	x -25.07	"	+262.2 = 0
\$-16.07	"	+140.7 = 0	x —24.70	,,,	+255.0 = 0
x -17 .4 0	"	+162.8 = 0	x — 24·20	"	+246.9 = 0
# —23.65	"	+ 249.7 = 0			·

IV_6
BAR COMPARISONS.

Before the measurement—(Continued.)

And from the mean of these results,

$$x = -170^{\circ}51 + 18^{\circ}65 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_{a} = 22.67 = 16.388,$$

and $x = 135.13 - 18.65 dE_{a} = 186.93 - 18.65 dE_{a} = L - A;$

where L denotes the mean length of the compensated bars obtained from all the comparisons, as represented by the mean micrometer reading 76.29, page IV_{-5}

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following:----

In terms of	A – L	B – L	C – L	$\mathbf{D} - \mathbf{L}$	E - L	H - L
Micrometer divisions	0·45	— 15·60	+ 8.06	+ 24 [.] 33	-3 ^{.88}	—12·45
Millionths of a yard.	0·62	— 21·58	+11.15	+ 33 [.] 66	-5 ^{.37}	—17·22

Also combining the values in this table with the equivalent of L-A above determined, there result,

$$A - A = 134.68 - 18.65 dE_a = 186.31 - 18.65 dE_a$$

$$B - A = 119.53 - , = 165.35 - , = 165.35 - , = 165.35 - , = 165.35 - , = 165.35 - , = 10.55.35 - , =$$

IV_7

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made near the village of Malgi, after the measurement.

	beerving A	ROL	Air	rature of A									
1841. Decr.	1841. Decr. of the times of No. of compa		Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	н	Mean of the compensated bars	BBMARIS.
6th	h. m. 6 55 A.M. 7 23 7 46 8 8 3 4 9 25 9 47 10 9 10 34 1 22 P.M. 1 43 2 28 2 52 3 16 3 41 4 11 4 42	1 2 3 4 56 78 90 11 1 2 3 4 56 78 90 11 1 2 3 4 156 178 19	62 ² 2 63 ⁷ 7 65 ⁷ 7 75 ³ 3 77 ³ 4 77 ³ 1 81 ¹ 3 81 ³ 4 81 ³ 6 81 ³ 6 81 ³ 6 81 ³ 6 81 ³ 6 81 ³ 7 81	59'97 60'42 61'02 61'77 63'07 64'82 66'50 68'50 68'52 69'57 79'55 79'55 79'55 79'55 80'57 80'50	+ 167.2 169.2 176.0 189.9 209.1 234.7 257.7 278.2 300.6 323.6 438.4 443.9 449.0 456.1 460.7 461.5 460.5 458.5 453.9	+ 321.2 323.0 318.9 316.9 312.3 309.3 304.2 309.8 293.0 294.2 295.0 294.2 297.4 293.3 293.0 299.2	+ 303'0 295'3 299'2 291'4 288'3 282'0 280'0 276'8 274'9 272'8 277'0 279'0 279'0 279'0 279'7 280'9 279'7 280'9 279'7 280'9 279'7 280'9 279'7 280'9 279'7 280'9 279'7	+ 318'3 315'8 317'1 311'9 310'0 304'6 302'9 299'3 299'3 299'3 299'2 301'3 300'1 301'9 304'2 304'0 301'2 304'0 301'2 304'0	+ 338'4 339'2 333'9 331'7 326'1 322'9 318'7 314'9 312'1 317'4 319'1 317'4 318'0 318'2 317'3 317'7 312'4 312'2 312'3	$+ 300^{\circ}9$ $304^{\circ}0$ $304^{\circ}0$ $304^{\circ}0$ $305^{\circ}1$ $200^{\circ}4$ $280^{\circ}2$ $203^{\circ}4$ $280^{\circ}2$ $203^{\circ}4$ $290^{\circ}2$ $292^{\circ}4$ $290^{\circ}9$ $292^{\circ}3$ $322^{\circ}3$ $292^{\circ}3$ 292°	+ 313.0 307.0 304.0 304.0 294.4 293.0 289.4 285.0 295.0 295.	+ 316.8 313.9 313.0 310.1 306.6 209.1 205.8 204.8 204.8 204.8 204.9 205.9 205.9 205.9 205.9 205.9 205.9 205.9 205.9 205.9	Lt. Waugh at the micrometer microscope; Lt. Renny at the plain micros- cope.
7th	6 58 A.M. 7 20 7 44 8 8 8 30 8 30 9 18 9 45 10 8 10 42 1 24 P.M. 1 48 2 10 2 33 2 56 3 20 3 43 4 26 4 46	20 22 22 22 22 22 22 22 22 22 22 22 22 2	62.2 63.4 65.5 67.9 70.1 72.1 73.7 74.1 75.7 74.1 75.7 74.8 82.0 82.0 82.0 82.0 81.0 81.3 80.3 81.3 80.3 80.7 9.8	60'72 60'92 61'35 62'10 64'25 65'85 67'67 69'22 71'42 78'72 79'40 79'90 80'37 80'75 80'97 81'12 81'12 80'92	109'I 111'4 117'I 127'7 142'I 159'2 183'2 210'0 233'5 263'I 354'0 363'I 370'6 376'9 381'9 385'5 385'I 383'0 380'I	257.9 255.1 255.9 248.2 250.0 240.9 238.0 232.0 232.0 232.0 232.0 230.4 216.1 217.0 219.2 219.7 219.7 219.7 219.7 219.7 219.7	235.0 233.0 231.0 223.5 218.5 214.6 215.1 210.7 207.1 198.1 196.6 199.7 200.0 198.7 199.2 200.0 198.7 199.2 200.0 198.1 196.0	254.0 256.0 254.3 251.0 247.9 246.2 240.1 241.3 235.1 234.1 231.8 229.8 238.0 231.8 230.0 231.8 230.0 228.7 228.0 228.7 228.0 226.7 227.3	2699 2703 2663 2663 2631 2631 2559 2522 2550 2481 2410 2420 2431 2431 2431 2431 2431 2431 2431 24351 24351	242'3 239'8 241'1 237'0 234'3 232'1 232'0 232'0 232'0 232'0 232'0 232'0 232'0 232'0 232'0 217'4 211'8 217'6 215'5 215'3 216'0 212'8 207'2	247.9 244.4 240.9 239.1 238.0 233.8 229.3 226.3 224.2 206.3 206.3 206.3 205.6 206.3 205.6 206.3 205.6 206.3 203.8 203.8 203.8 203.8 203.8 203.8 203.8 203.0 201.3	251.2 249.6 248.0 245.4 243.3 239.9 235.5 234.2 230.3 228.1 219.2 216.9 218.1 218.8 218.8 218.8 218.8 218.7 217.2 215.8 213.7	Lts. Waugh and Renny changed places at the microscopes.

IV__8

BAR COMPARISONS

After the measurement-(Continued.)

	oberving A	ieon	. Air	rature of A		MICEOMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{20060.34}$ Cary's Inch [7.8] = 1.3826 m.y of A								
1841 Decr.	Mean of the times of c	No. of compar-	. Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	Н	Mean of the compensated bars	BEMABES.	
8th	h. m. 7 ο A.M. 7 22 7 47 8 11 8 34 8 56 9 18 9 39 10 20 10 38 1 20 P.M. 1 42 2 21 2 40 2 58 3 16 4 1 4 18	390 44 44 44 45 47 490 55 53 55 55 55 57	62.8 63.7 64.8 67.5 77.5 66 71.7 75.6 83.5 83.4 2 83.3 83.3 83.3 83.3 83.3 2 83.3 2 7	\$ 59.47 59.92 60.52 61.27 62.30 63.55 64.95 66.35 69.47 71.00 80.60 81.30 81.30 81.30 81.30 81.30 82.35 82.75 83.25 83.12 83.25	+ 14.9 20.4 29.5 40.9 54.9 71.7 92.0 112.8 159.5 180.2 316.8 329.4 347.7 353.8 356.5 358.2 358.3 357.2	+ 186.5 182.0 180.9 175.1 170.0 169.2 167.7 161.8 155.0 154.4 159.0 154.8 157.2 157.2 157.2 157.0 154.7	+ 156'8 157'0 154'1 150'0 147'2 145'0 141'6 139'0 134'7 136'0 137'4 136'3 136'6 137'8 138'7 136'3 138'7 136'3 138'7 136'3 138'7	+ 182.6 178.8 179.8 174.6 169.8 167.1 168.0 158.1 159.2 161.1 168.0 167.2 167.6 169.0 166.3 165.3 165.2 166.1	+ 192.3 193.1 188.4 188.1 184.0 178.2 176.0 178.2 175.0 175.4 175.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 178.0 177.0 178.0 177.0 178.0 177.0	+ 164.8 164.4 163.1 161.8 160.7 157.3 157.3 155.8 155.8 155.8 155.4 155.2 155.2 155.0 155.0 155.7 153.7 153.7 153.7 149.0 148.3	+ 170.7 168.0 165.0 158.0 158.0 155.4 154.0 149.5 150.6 146.8 146.6 145.4 145.6 135.6 145.6 135.6	+ 175.6 173.9 168.9 165.5 162.9 161.4 157.5 154.8 155.1 156.5 157.0 156.5 156.6 156.2 155.7 153.5 153.3	The weather throughout these compa- risons was clear and steady. Wind at N.E.	
		М	eans	72.27	268.75	232.90	211.69	236.85	250.74	225.54	221*30	229.84		

IV_9

1

After the measurement-(Continued)

As on page IV_{5} we have

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = o;$

and from the preceding bar comparisons, we obtain the following series of results :---

$x + 2.03 (E_a$	$-dE_a$	-149.6 = 0	$x - 16.72 (E_a$	-dE	(a) + 134.8 = 0
<i>a</i> + 1.28	,,	-144.7 = 0	x-17.40	"	+146.2 = 0
x + 0.98	"	-1370 = 0	x-17.90	"	+152.5 = 0
x + 0.23	,,	-120.2 = 0	x -18.37	> 2	+158.1 = 0
x - 1.07	"	- 97 [.] 5 = 0	° ~ - 18.75	"	+163·1 = 0
a - 2.82	"	-66.9 = 0	x -18.97	"	+166.8 = 0
x - 4.50	"	- 41.4 = 0	x -19.1 2	"	+167.9 = 0
x— 6.02	"	-17.6 = 0	x-19.12	"	+ 167.2 = 0
x— 7.57	,,	+ 7.0 = 0	x—18·92	,,	+166.4 = 0
x - 9 [.] 17	"	+ 32.9 = 0	x+ 2·53	,,	-160.7 = 0
x -17.20	"	+ 143.6 = 0	x+ 2.08	"	-153.5 = 0
x -17.57	"	+149.1 = 0	<i>x</i> + 1·48	"	-142.4 = 0
x -17.95	"	+154.1 = 0	<i>x</i> + 0.73	,,	-1280 = 0
x -18.30	"	+ 160.0 = 0	x — 0.30	» ·	-110.0 = 0
x -18.57	"	+164.4 = 0	x — 1.55	,	-91.5 = 0
x-18.72	"	+ 165 [.] 6 = 0	a - 2.95	,,	- 69·4 = 0
x —18·87	"	+167.3 = 0	x - 4.35	,,	- 44.7 = 0
x -18.87	"	+ 167.6 = 0	x — 7:47	,,,	+ 4.7 = 0
x -18.62	"	+ 163·8 = 0	x - 9.00	"	+ 25.1 = 0
<i>x</i> + 1.38	"	-142.1 = 0	х— 18.60	"	+160.1 = 0
x + 1.08	"	-138.2 = 0	x -19.30	"	+172.5 = 0
#+ 0°65	"	-130.9 = 0	x -19.90	"	+182.4 = 0
x - 0.10	"	-117.7 = 0	x-20.35	"	+190.8 = 0
x — 1.10	"	-101.5 = 0	x-20.70	"	+197.2 = 0
x – 2·25	"	-80.7 = 0	x -20.95	"	+200.3 = 0
x - 3.85	"	-52.3 = 0	x-21.13	"	+202.5 = 0
x — 5 ^{.67}	"	-24.5 = 0	x -21·27	"	+204.8 = 0
x — 7·22	"	+ 3.5 = 0	x -21.25	"	+203.9 = 0
z- 9.42	,,	+ 35° = 0			

IV__10

BAR COMPARISONS

After the measurement—(Continued.)

And from the mean of these results,

$$x = -3891 + 1027 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 16.397,$$

and $x = 129.49 - 10.27 \ dE_a = 179.03 - 10.27 \ dE_a = L - A$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading 229.84 page IV_{--9} .

Proceeding as on page IV_{-7} we obtain:

In terms of	A – L	B – L	C – L	D – L	E – L	H – L
Micrometer divisions.	+3 ^{.06}	18·15	+ 7.01	+ 20.90	-4·30	- 8 [.] 54
Millionths of a yard.	+4 ^{.2} 3	25·09	+ 9.69	+ 28.90	-5·95	-11 [.] 81

Also the following;

$$A - A = 132^{\circ}55 - 10^{\circ}27 \, dE_a = 183^{\circ}26 - 10^{\circ}27 \, dE_a$$

$$B - A = 111^{\circ}34 - ,, = 153^{\circ}94 - ,,$$

$$C - A = 136^{\circ}50 - ,, = 188^{\circ}72 - ,,$$

$$D - A = 150^{\circ}39 - ,, = 207^{\circ}93 - ,,$$

$$E - A = 125^{\circ}19 - ,, = 173^{\circ}08 - ,,$$

$$H - A = 120^{\circ}95 - ,, = 167^{\circ}22 - ,,$$

and $6 x = 1074^{\circ}2 - 61^{\circ}6 \, dE_a$

Final deduction of the total length measured with the compensated bars.

From page IV_7 the excess of	the 6 compensate	ed bars abo <i>before</i> the n	neasurement }	m.y = 1121.6 -	111.9 dEa
" IV_ ₁₁	"	after	>>	= 1074.2 -	61.6 dE _a
Therefore the mean excess of))	applicable	to the base-line	= 1097.9 -	86·8 dE _a
And the mean length of a set of a	5 compensated bas	rs in feet of	the standard $= 60.0$	032937 A 10 -	86·8 dE _a

Hence the total lengths measured with the compensated bars

in sets Nos.	feet of A 1 to 244 = 14640.8037 - 21179 dE_a
"	245 to 518 = 16440.9025 - 23783 dE_a
. ננ	519 to 660 = $8520.4677 - 12326 dE_a$
))	1 to 660 = $39602.1739 - 57288 dE_a$

Now the mean temperature of A during the above bar comparisons was $62^{\circ} + \frac{86^{\circ}\cdot 8}{6}$ = 76°.5, for which temperature the corresponding expansion of A from page (19) is 21.738 m.y. Comparing this value of expansion with the original value = 22.67 m.y., used in the foregoing; it is found that $dE_a = + 0.932$ m.y.; and substituting for dE_a this numerical value, there result,

Total lengths measured with the compensated bars

in sets Nos. 1 to 244 or W. End, to Stn. A = $(14640^{-8037} - 0.0592) =$	14640.7445
,, 245 to 518 or Stn. A, to Stn. B = $(16440.90250665) = 3$	16440 ·8360
,, 519 to 660 or Stn. B, to E. End = $(8520.4677 - 0.0345) =$	8520 .433 2
,, 1 to 660 or W. End, to E. End = $(39602 \cdot 1739 - 1602) =$	39602 .0 137

Digitized by Google

IV_12

Comparisons betw:en the Compensated Microscopes and their 6-inch brass scales auring the measurement, and provisional determination of Microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m.i.)

TTT.		.e.	ď with.	īpera-	2° Fah. 3″ scale 15 m.i.	Micro Microsco	pe Scale.	b - d , b.	Micros : — at 62°	Scale A , Fah.
W her		icrosop	ompare	cted ten ture.	ion to 6 ion of 6 - E = 62	Ubserned term	value in s of	s : Scale 62° Fa		er.
•	1841	M	Scale c	Corre	Reduct Expans for 1°=	Divisions 10000=1".	m.i.	Micro	m.i.	Refere numb
October 18th	Before the measure- ment.	U S M O N P T	U S M R N T T	80 ^{.55} 78 ^{.27} 77 ^{.36} 83 ^{.21} 80 ^{.42} 79 ^{.25} 72 ^{.85}	+ 1159 960 1326 1151 1078 678	.00 .00 .00 - 1.63 .00 + 1.00	0 0 - 163 + 100	$\begin{array}{r} + 283 \\ - 75 \\ - 21 \\ + 93 \\ + 363 \\ - 97 \\ - 97 \end{array}$	+ 1442 942 939 1419 1351 981 681	1 2 3 4 5 6 7
" 25th	Between sets No. 48 and 49.	U S M O N P T	USSMRNT T	83 95 85 31 85 51 84 76 83 52 83 45 84 35	+ 1372 1457 1469 1423 1445 1345 1345 1340 1397	- 0.73 4.07 2.13 14.73 -00 - 2.37 3.17 5.73	- 73 407 213 1473 0 - 237 317 573	+ 283 - 75 75 21 + 93 363 - 97 97 97	+1582 975 1181 -71 +1538 1471 926 727	8 9 10 11 12 13 14 15
November 4th	Between sets No. 155 and 156.	USMONPT	USMRNTT	68·18 68·94 68·56 68·41 69·75 74·01 73·35	+ 386 434 410 401 484 751 709	$\begin{array}{r} + & 7.10 \\ 3.27 \\ - & 7.87 \\ + & 6.20 \\ 3.23 \\ 1.67 \\ 4.40 \end{array}$	$ \begin{array}{r} + & 710 \\ & 327 \\ - & 787 \\ + & 620 \\ & 323 \\ & 167 \\ & 440 \end{array} $	$ \begin{array}{r} + 283 \\ - 75 \\ - 21 \\ + 93 \\ 3^{63} \\ - 97 \\ 97 \end{array} $	+ 1379 686 - 398 + 1114 1170 821 1052	16 17 18 19 20 21 22
" 9th	Between sets No. 244 and 245.	U S M O N P T	U S M R N T T	83 ^{.65} 85 ^{.77} 83 ^{.13} 84 ^{.81} 84 ^{.42} 82 ^{.88} 85 ^{.15}	+ 1353 1486 1321 1426 1401 1305 1447	- 3'70 6'70 13'63 - 5'50 - 5'50 5'67	- 370 670 1363 - 550 53 567	+ 283 - 75 - 21 + 93 + 303 - 97 97	+ 1266 - 741 - 63 + 1519 1214 1155 783	23 24 25 20 27 28 29
" 16th	Between sets No. 353 and 354.	UU* SMO O* N P R T	UUS MR RN T R T	80.55 80.88 80.77 81.00 82.01 81.94 81.85 82.55 82.41 81.85	+ 1159 1180 1173 1187 1251 1246 1284 1276 1240	- 1.80 .87 2.20 11.67 .00 + 1.43 - 4.90 1.83 2.43 3.80	$ \begin{array}{r} - & 180 \\ & 87 \\ 220 \\ 1167 \\ - & 433 \\ - & 490 \\ & 183 \\ 243 \\ 380 \\ \end{array} $	$\begin{array}{r} + 283 \\ - 283 \\ - 75 \\ 21 \\ + 93 \\ 363 \\ - 97 \\ + 93 \\ - 97 \end{array}$	$+ 1262 \\ 1376 \\ 878 \\ - 1 \\ + 1344 \\ 1482 \\ 1113 \\ 1004 \\ 1126 \\ 763 \\ -$	30 31 32 33 34 35 36 37 38 39

* These microscopes were compared a second time, because they were adjusted after the first comparison.

IV._____13

Microscope Comparisons-(Continued.)

Whe	n companyà		d with.	apera-	2° Fah. 6″ scale 2·5 m.i.	Micro Microsco	pecope 	е - 4, ћ.	Micros: - at 62°	Scale A, Fah.
Wille.		licroscol	ompare	cted ten ture.	ion to 6 sion of - E=63	Observed tern	value in rs of	s : Scale 62° Fa		nce er.
		Scale o	Corre	Reduct Expansion 1°.	Divisions 10000=1"	175.3.	Micro	m.i.	Refere numb	
November 26th December 4th	Between sets No. 518 and 519. After the measure- ment.	USMONPRTSUM	USM RN R T S U M	77:55 79:34 78:26 79:35 79:35 78:55 79:31 79:55 74:71 76:72 76:26	+ 972 1084 1017 1084 1078 1034 1082 1097 + 794 920 892	$\begin{array}{r} + 1.17 \\ - 1.40 \\ 11.50 \\ + 3.10 \\ - 2.27 \\ - 0.93 \\ .00 \\ - 2.27 \\ + 3.30 \\ 1.60 \\ - 10.20 \end{array}$	$ \begin{array}{r} + 117 \\ - 140 \\ 1150 \\ + 310 \\ - 227 \\ 93 \\ 0 \\ 227 \\ + 330 \\ 160 \\ - 1020 \end{array} $	$\begin{array}{r} + 283 \\ - 75 \\ - 21 \\ + 93 \\ - 97 \\ + 93 \\ - 97 \\ - 75 \\ + 283 \\ - 21 \end{array}$	+ 1372 869 - 154 + 1487 r214 844 1175 773 + 1049 1363 - 149	40 41 42 43 44 45 46 47 48 49 50
		O N P T	R N T T	77·48 76·62 76·05 73·65	907 914 878 728	+ 3 ^{.03} .00 .00	+ 303 0 0	+ 93 363 - 97 . 97	+ 1423 1277 781 631	51 52 53 54

The required combinations of individual microscope errors taken from pages IV_{13} and IV_{14} , are expressed as follows;

					Ref	eren	ce #	amb	ms.						ss.i.		mean	n temp :				
e ₁	=	3	+	3	+	4	+	5	+	6	+	$\frac{1+7}{2}$		+ (6694	at	(6 ² -	+ 17.20)	1	pefore the me	asurem	ent.
eg	=	9	+	11	+	12	+	13	+	14	+	8+15	= ·	+ .	5 99 4	at	(62 -	+ 22.38)	1	oetween sets	48 &	49
ez	=	10	+	11	+	12	+	13	+	14	+	8+15	= ·	+ (6200	at	(62 -	+ 22'42)		**	do.	
e4	=	17	+	18	+	19	+	20	Ŧ	2 I	+	$\frac{16+22}{2}$	= -	+ -	4609	at	(62 -	⊦ 8 [.] 07)	9	23	155 &	156
e ₅	=	24	+	25	+	26	+	27	+	28	+	$\frac{23+29}{2}$	= ·	+	5591	at	(62 -	+ 22°24)	s mad))	244 &	245
e ₈	=	32	+	33	+	34	+	30	+	37	+	$\frac{30+39}{2}$	= ·	+ .	5351	at	(62 -	+ 19.26)	rison	"	353 &	354
e ₇	=	31	+	33	+	35	+	36	+	37	+	$\frac{38+39}{2}$	= -	+ .	5919	at	(62 -	+ 19•73)	comp	3 2	do.	
4 8	=	33	+	35	+	36	+	37	+	38	+	$\frac{31+39}{2}$	= -	+ .	57 94	at	(62 -	+ 19 [.] 85)	rom	"	do.	•
eg	=	40	+	42	+	43	+	44	+	45	+	$\frac{46+47}{2}$	= -	+ .	5737	at	(62 -	+ 16 · 73)	H	n	518 &	519
<i>e</i> ₁₀	=	42	+	43	+	44	+	45	+	46	+	<u>40+47</u>	= -	+ .	5639	at	(62 ·	+ 16 [.] 88)		97	do	•
e ₁₁	=	40	+	42	+	43	+	44	+	45	+	$\frac{41+47}{2}$	= -	+	5584	at	(62 ·	+ 16 [.] 74)		"	do	•
` e ₁₉	=	49	+	5 0	+	51	+	52	+	53	+	<u>48+54</u>	= ·	+	5535	at	(62 ·	+ 14.32)		after the me	asurem	ent.

Microscope Comparisons—(Continued.)

And from the foregoing, we obtain the following equations for the microscope errors per set (or *m.e.*); where dE expresses the error in the adopted value of the expansion of the \bullet 6-inch scales.

(m.e.) ₁	=	$\frac{e_1+e_3}{2}$	= +	м.і. 6344 —	6 ×	19 .79	d E	applicable to	sets Nos.	1 to 48
(m.e.) ₃	=	$\frac{e_8+e_4}{2}$	= +	5405 –	б×	15.25	dE	> 7	. 99	49 to 155
(m.e.) ₈	=	$\frac{e_4+e_5}{2}$	= +	5100 —	6 x	15.10	d E	>>	n	156 to 244
(m.e.) ₄	=	$\frac{e_6+e_8}{2}$	= +	5471 —	б×	20.90	d E	**	"	245 to 353
(m.e.) ₅	=	$\frac{e_1+e_2}{2}$	= +	5828 —	б×	18.23	dE	**	87	354 & 355
(m.e.) ₆	=	$\frac{e_8+e_{10}}{2}$	= +	5717 —	бх	18.37	dE	> >	>>	356 to 518
(m.e.) ₇	=	$\frac{e_{11} + e_{13}}{2}$	= +	5560 —	6 x	15.48	đE	9 7	"	519 to 660

Hence the total microscope errors are as follows :---

In sets Nos. I to 244 = $\begin{cases} 48 \ (m.e)_1 = 304512 - 5700 \ dE = 0.0254 - 5700 \ dE = 0.0254 - 5700 \ dE = 0.0482 - 9791 \ dE = 0.0482 -$

In sets Nos. 245 to 518 = $\begin{cases} 109 \ (m.e)_4 = 596339 - 13669 \ dE = 0497 - 13669 \ dE \\ 2 \ (m.e)_5 = 11656 - 219 \ dE = 0010 - 219 \ dE \\ 163 \ (m.e)_6 = 931871 - 17966 \ dE = 0777 - 17966 \ dE \end{cases}$

sum = .1284 - .31854 dE

In sets Nos. 519 to $660 = 142 (m.e)_7 = 789520 - 13189 dE = .0658 - 13189 dE$

IV_16

Microscope Comparisons—(Continued.)

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally; *i.e* in terms of the 6-inch brass scale A. But from page (31), we have $2 A = 1.0000192 \frac{A}{10}$, value in 1835. Also the coefficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that .000,000,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (*m.e*), we have,

Total length measured with the compensated microscopes

In sets Nos. 1 to 244 or W. End, to Stn. A	} • • • • • =	$\left\{\begin{array}{c} \text{feet of } \mathbf{A} \\ 244 \times 3 + 1114 \end{array}\right\}$	-23586 dE = (<i>feet</i> 732 [.] 1255—·	of 00066)=	A 732·1189
or Stn. A, to Stn. B	} =	$\left\{ 274 \times 3 + 1284 \right\}$	-31854 dE = (822.1442-	0090)=	822.1352
, 519 to 660 or Stn. B, to E. End	}=	$\left\{142 \times 3 + .0058\right\}$	-13189 dE = (426.0240—.	0037)=	426.0703
or W. End, to E. End	}	••••••	· · · · · · = (1980'3437—'	0193)=1	980:3244

Disposition of the bars and microscopes during the measurement.

The following typical illustrations show the permutations and combinations of the bars and microscopes during the measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set; and the numbers assigned to the illustrations, will be found employed in the table of "Extracts from the Field Book &c."

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin. Adopted heights above mean sea level.

West-End (origin) = $1980^{\circ}2$ feet.

East-End (terminus) = 1957 feet.

10/1	the Set	ure of Air	Mean time of	bars used	f Set above igin	Nur she arra me	neral wing ange- nt of	104		the Set	ure of Air	Mean time of	oars used	Set above gin	Nun shev arra men	aeral wing nge- nt of
1991	No. of	Temperat	enaing	No. of	Height of or	Bars.	Micros :	104.	L 	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros :
19th Oct.	r 2 3 4 5	° 72·1 75·3 79·2 81·0 88·6	h. m. 6 50 д.м. 8 50 9 54 J0 53 2 0 Р.М.	6 6 6 6 6 6 6	$ \begin{array}{r} feet \\ + 1.5 \\ - 0.8 \\ 3.3 \\ 4.8 \\ 4.8 \\ 4.0 \end{array} $	T I I I	I I I I	23rd C 25th)ct. "	42 43 44 45 ∡6	° 73`3 72`8 75`5 77`9 81:6	h. m. 4 51 Р.М. 6 56 д.М. 7 49 8 27 0 16	6000	feet - 27.3 28.3 29.7 31.5 22.8	I I I I	I I I I T
20th "	5 6 7 8 9 10 11	89'3 88'0 79'8 73'1 76'2 79'5 82'5	2 59 4 10 5 0 6 59 A.H. 7 59 8 55	00000000	5.0 6.4 8.6 10.3 11.5 12.3	I I I I I I		26th	,,	47 48 49 50 51 52	85°0 85°9 86°0 82°6 81°7 72°0	10 8 11 0 4 7 P.M. 4 51 5 28 6 40 A.M.	0000000	36.2 38.9 41.3 44.3 45.1 45.7	1 1 1 1 1 1 1	
	12 13 14 15 16 17 18	84.7 85.4 88.4 84.6 90.1 80.5	у 52 10 48 11 39 2 25 Р.М. 3 16 4 16 5 0	0000000	13.5 15.5 16.3 16.7 17.6 18.6	I I J I I I	1 1 1 1 1 1 1			55 54 55 56 57 58 59	74'3 78'0 81'0 83'8 86'0 86'1	• 8 18 8 55 9 39 10 16 10 48 1 32 P.M.	0000000	45°0 40°3 47°0 47°0 48°0 49°9		
22nd "	19 20 21 22 23 24	70 ^{.2} 73 ^{.8} 76 [.] 7 80 ^{.1} 83 ^{.1} 86 ^{.2}	б <u>38</u> д.н. 7 23 8 15 8 59 9 51 10 38	000000	19.1 19.5 19.8 20.2 21.6 22.1	I I I I I I	I I I I I	27th		60 61 62 63 64 65	85.5 87.8 87.3 81.2 79.3 71.1	2 20 3 4 3 47 4 29 5 16 6 42 A.W.	0000000	49 ^{.6} 48 ^{.4} 48 ^{.1} 48 ^{.3} 49 ^{.1} 50 ^{.0}	1 1 1 1 1 1 1	I I I I I I
	25 26 27 28 29 30	84'3 80'5 82'0 83'9 83'9 82'8	I 29 P.M. 2 10 2 47 3 25 4 II 4 50	600000	22.3 22.0 21.4 21.8 21.6 21.0	I I I I I	1 1 1 1 1 1 1			66 67 68 69 7° 71	72·3 73·7 75·0 76·2 78·2 80·0	7 22 8 8 8 45 9 24 9 57 10 30	6 6 6 6 6 6 6	50·8 51·4 51·5 51·5 51·6 53·1	I I I I I I	I I I I I X
23rd "	31 32 33 34 35 36	81.6 72.3 73.7 76.1 78.2 80.5	5 26 7 26 A.M. 8 5 8 45 9 21 10 5	00000 0000	22.1 22.2 22.8 23.3 23.5 23.7	1 1 1 1 1 1	I I I I I			72 73 74 75 76 77	82·1 82·5 82·0 82·5 82·3 82·0	1 I 2 I 32 P.M. 2 3 2 38 3 14 3 49	6 6 6 6 6 6 6 6 6	53 ^{.5} 54 ^{.2} 54 ^{.7} 55 ^{.2} 55 ^{.8} 50 ^{.0}	I I I I I	I I I I I I
	37 38 39 40 41	83.0 85.6 82.0 76.4 77.7	ю 44 11 23 2 8 р.м. 3 12 3 57	6 6 6 6 6	23.8 24.5 24.9 25.3 26.0	I I I	I 1 1 1 1	28th	"	78 79 80 81 82	81·3 80·6 79·7 70·7 71·0	4 21 4 52 5 25 6 45 A.M. 7 14	6 6 6 6	57.7 58.6 59.8 60.9 61.1	I I I I	I I I I I I

The rear-end of set No. 1 stood exactly over the dot at West-End. (3) Morning cloudy. (5) Afternoon cloudy and threatening. (13) Cloudy and threatening. (39) Heavy shower after the measurement of this set. (42) Raining. (52) Sky clear. (53) Sky overcast with clouds. (57) Sky clearing. (64) Raining slightly. (71) Cloudy morning. (73) Cloudy afternoon. (82) Cloudy and foggy.

IV_17

Digitized by Google

Extracts from the Field Book—(Continued.)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		the Set.	ure of Air	Mean time of	ars used	Set above gin	Nur shev arra men	ne ral wing nge- nt of	- 1841	the Set.	ure of Air	Mean time of	ars used	Set abore gin	Nun shev arra mer	ne ral ving nge- nt of
28th Oct. 83 71°2 7 50 A.M. 6 - 61°2 1 1 1 85 74°7 9 0 6 63°1 1 1 1 87 81°4 10 18 6 64°0 1 1 88 81°2 10 48 6 64°1 1 1 90 85°0 4 4 0 6 63°5 1 1 90 85°0 4 4 7 P.M. 6 63°5 1 1 90 85°0 4 4 7 P.M. 6 63°5 1 1 90 85°0 4 4 7 P.M. 6 63°5 1 1 90 85°0 4 4 30 6 62°8 1 1 90 85°0 4 4 30 6 63°2 1 1 90 85°0 4 4 30 6 63°2 1 1 90 71° 6 50 A.M. 6 63°5 1 1 90 87°0 71° 7 53 6 66°3 1 1 90 87°0 71° 7 53 6 66°5 1 1 90 87°0 71° 6 63°3 1 1 90 87°0 71° 7 53 6 66°5 1 1 90 71° 7 53 8 0 6 66°5 1 1 90 71° 7 53 8 0 6 66°5 1 1 100 80°4 10 2 6 67°7 1 1 100 80°4 2 32 6 71°5 1 1 100 80°4 2 32 6 71°5 1 1 100 80°2 3 14 0 67°1 1 1 100 80°2 3 14 0 67°1 1 1 100 80°2 3 14 0 67°5 1 1 100 80°2 3 25 6 71°7 1 1 100 80°2 4 10 2 6 67°7 1 1 100 80°2 3 58 8 6 738 1 1 100 80°3 1 40 6 63°5 1 1 100 80°3 1 40° 6 50°3 1 1 100 80°3 1 40° 6 75°3 1 1 100 80°3 1 40° 6 75°3 1 1 100 80°3 1 40° 6 75°3 1 1 100 80°3 3 58 4 6 75°5 1 1 100 80°3 3 4 40 6 64°3 1 1 100 80°3 3 58 4 6 75°5 1 1 100 80°3 3 4 40 6 64°5 1 1 100 80°3 3 4 40 6 6	1841	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:	1841	No. of	Temperat	ending	No. of h	Height of ori	Bars.	Micros:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28th Oct. 29th "	83 84 85 86 88 90 91 92 93 94 95 95 97 98 99 900 101	0 7 7 7 7 7 7 7 7 8 8 8 8 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0	h. m. 7 50 A.M. 8 24 9 0 9 33 10 18 10 48 2 47 P.M. 3 17 4 0 4 30 5 8 0 33 A.M. 7 12 7 52 8 30 9 31 10 2 10 31 11 2	- - - - - - - - - - - - - - - - - - -	feet. 61'2 62'3 63'1 63'6 64'0 63'5 63'3 63'3 63'3 63'2 63'5 63'3 63'5 65'5			2nd Nov. 3rd "	133 134 135 137 138 141 142 143 144 145 146 147 148 151 152	87.8 85.3 85.3 85.3 77.2 92 92 92 97.4 82.3 85.4	h. m. 2 35 P.M. 3 9 3 43 4 21 4 55 5 36 6 50 A.M. 7 25 8 0 8 33 9 11 9 46 10 25 10 57 1 24 P.M. 1 54 2 23 2 48 3 14 3 28	\$	feet. - 68.6 68.0 67.6 65.3 65.5 7.5 65.3 65.5 7.5 65.3 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 65.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5		
130 830 10 24 6 706 I I 1 180 875 I 35 P.M. 6 545 I I	30th ,, 2nd Nov.	I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20 I21 I23 I24 I25 I26 I27 I28 I29 I30	83 ⁴ 82 ² 82 ² 82 ² 82 ¹ 82 ¹ 82 ¹ 82 ¹ 77 ⁴ 82 ¹ 77 ⁷ 77 ⁷ 7 ⁸ 7 ⁷ 7 ⁸ 7 ⁸	1 41 P.M. 2 14 2 52 3 25 4 0 4 33 5 8 6 58 A.M. 7 49 8 24 9 1 9 35 10 11 10 46 1 20 P.M. 1 51 2 22 2 51 3 25 3 52 4 34 5 3 7 17 A.M. 7 58 8 41 9 16 9 50 10 24	O O O O O O O O O O O O O O O O O O O	70°1 71°1 71°5 71°7 73°8 74°4 75°5 75°7 75°7 75°7 75°7 75°7 75°5 75°7 75°5 7			4th "	3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	8 8 3 • 1 5 7 7 6 6 8 2 9 0 3 4 5 0 6 3 1 8 0 0 1 0 6 0 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 12 4 41 5 10 8 46 A.M. 9 18 9 52 10 18 10 49 1 20 P.M. 1 46 2 15 2 46 3 16 3 41 4 19 4 48 5 23 6 37 A.M. 7 8 7 44 8 11 8 41 9 31 9 58 10 29 10 58 1 35 P.M.	O O O O O O O O O O O O O O O O O	55457735025554987455380874705 5545555554987455754934553808747705 5535555555554455755493444444555555555555		

(106) A slight shower of rain. (110) Morning cloudy and damp. (121) Rainy and cloudy. (127) A fine clear sunshiny day.

•

,

•

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book—(Continued.)

1	the Set	ure of Air	Mean time of	bars used	. Set above igin	Num shev arra men	neral ving nge- nt of		the Set.	ure of Air	Mean time of	bars used	Set above igin	Nun shev arra men	neral ving nge- t of
1841	No. of	Temperat	ending	No. of 1	Height of or	Bars.	Micros:	1841	No. of	Temperat	ending	No. of	Height of or	Bars.	Micros:
5th Nov	. 183 184 185 186 187 188	88°4 88°7 86°3 86°4 83°0 80°6	h. m. 2 55 P.M. 3 18 3 50 4 17 4 47 5 16	6 - 6 6 6 6	feet. 57'7 58'2 58'7 59'5 60'1	I I I I	I I I I	8th Nov	215 216 217 218 219	80 [.] 6 81.9 83.9 84.8 86.6 88.0	$\begin{array}{c} h. \ m. \\ g \ 23 \ A.M. \\ g \ 48 \\ 10 \ 17 \\ 10 \ 40 \\ 11 \ 4 \\ 1 \ 4 \end{array}$	000000	feet. - 57.8 57.2 57.1 56.7 56.2 55.6	I T I I T	I J I I
6th "	189 190 191 192 193 194	72.6 73.7 74.2 78.0 80.3 82.0	5 10 6 40 A.M. 7 14 7 42 8 18 8 45 9 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61.4 61.6 61.3 61.8 61.1 60.6		1 1 1 1 1 1 1		221 222 223 224 225 226	88.8 89.1 89.6 89.4 88.6 87.7	2 7 2 31 2 58 3 22 3 48 4 13	00000000	53 0 54 7 53 4 52 8 52 2 51 5		
	195 196 197 198 199 200 201	83.7 85.9 88.4 89.7 90.7 91.2 91.8	9 35 10 4 10 35 11 1 1 24 P.M. 1 51 2 20	0 0 0 0 0 0 0 0 0 0 0	59'9 58'6 57'4 50'7 55'7 55'2 54'7	1 1 1 1 1 1 1 1 1 1	I I I I I I	9th "	227 228 229 230 231 232 233	83 [.] 2 82 [.] 1 78 [.] 8 70 [.] 7 71 [.] 3 73 [.] 8 75 [.] 7	4 40 5 2 5 24 6 32 A.M. 6 58 7 26 7 53	0 0 0 0 0 0 0 0 0 0 0 0	5° 4 49'7 49'2 48'4 47'2 46'7 45'5	I I I I I I	I I I I I I I
	202 203 204 205 206 207	92.8 92.9 93.0 89.1 88.5 84.6	2 44 3 11 3 41 4 9 4 33 5 0	000000	5.5.6 56.1 56.3 57.1 57.5 58.4	I I I I I I	I I I I I		234 235 236 237 238 239	777 785 804 828 836 850	8 29 8 52 9 18 9 41 10 6 10 32	000000	45 ^{.2} 44 ^{.3} 43 ^{.8} 43 ^{.2} 43 ^{.1} 42 ^{.3}	I I I I I I	I I I I I I
8th "	208 209 210 211 212. 213 214	81.9 71.3 72.1 73.9 75.1 76.9 78.3	5 20 6 36 A.M. 7 5 7 37 8 2 8 27 8 54	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	58.7 58.5 58.4 58.4 58.5 58.0 58.0	I I I I I I I	I I I I I I I		240 241 242 243 244	88.7 88.7 89.0 89.3 86.0	I 14 P.M. I 44 2 8 2 36 3 4I Total	00000	41'7 41'0 40'8 40'0 40'2	I I I I	1 1 1 1
Ti Cary's H	he ad brass eight	vanced scale v of sei	-end of set No with a pair of No. 244 abov	o. 24 4 compa e Stat	fell in asses.	defect = 1.6	- t (<i>i. e</i> . feet.	west) of	the do	ot at S	tation A, 0.10	133 fi	eet, as n	leasur	l ed on
Th 10th "	245 246 247 248 249 250 251 252 253	minal] 70 [.] 9 74 ^{.0} 76 [.] 9 78 ^{.0} 81 ^{.0} 84 ^{.0} 84 ^{.0} 87 ^{.0} 87 ^{.8}	point of set N 6 57 A.M. 7 28 7 57 8 26 8 56 9 22 9 50 10 17 10 44	o. 24 6 – 6 6 6 6 6 6 6 6	$\begin{array}{c} 4 \text{ was t} \\ -40^{\circ}2 \\ 41^{\circ}7 \\ 42^{\circ}9 \\ 43^{\circ}0 \\ 43^{\circ}1 \\ 42^{\circ}2 \\ 42^{\circ}7 \\ 43^{\circ}2 \\ 44^{\circ}6 \\ \end{array}$	he poin I I I I I I I I	nt of c I I I I I I I I I I I	rigin for 10th "	set No 258 259 260 261 262 263 264 265 266	b. 245. 88.6 90.2 87.0 84.6 70.5 73.4 76.2 77.8 79.1	3 18 P.M. 3 46 4 14 5 1 6 45 A.M. 7 14 7 48 8 17 8 48	00000000000000000000000000000000000000	- 47'1 47'9 49'1 50'1 51'5 52'4 53'5 54'5	1 1 1 1 1 1 1 1 1 1 1 1	I 1 1 1 1 1 1 3 1 1 1 1
	254 255 256 257	88.0 87.5 88.2 87.3	JI 10 I 50 P.M. 2 17 2 48	6 6 6	44`7 44`8 45`5 4 ⁶ `5	I I I	I I I		267 268 269 270	81.2 84.2 85.7 85.0	9 11 9 35 9 57 10 22	6 6 6	56·4 57 [·] 4 58·5 59·8	I I I I	I U I I

IV__19

IV____20

.

Extracts from the Field Book-(Continued.)

1841	the Set.	ure of Air	Mean time of	bars used	Set above gin	Num shew arra men	ne ral ving nge- it of	of the Set.	ure of Air	Mean time of	ars used	Set above gin	Num shew arran men	ieral ring nge- t of	
	No. of	Temperat	ending	No. of	Height of ori	Bars.	Micros:		No. of	Temperat	ending	No. of h	Height of ori	Bars.	Micros:
11th Nov	12222222222222222222222222222222222222	899899988886687777779888888888888888888	h. m. 10 50 A.M. 1 23 P.M. 1 48 2 17 2 41 3 0 3 31 3 55 4 18 4 41 5 55 A.M. 7 9 7 35 8 1 8 27 8 49 9 14 9 39 10 28 10 28 10 26 1 21 P.M. 1 42 2 52 2 28 2 52 3 13 3 37 3 59 4 25 4 47 5 11 0 37 A.M. 7 9 7 36 2 20 P.M. 2 53 3 19 3 44 4 5 4 24	\$	<i>feet.</i> 2 6220 6220 6220 6230 6230 6230 6230 623			13th Nov 15th ,, 16th ,,	32123450789012334507890123345078901233555789012334507890 333333333333333333333333333333333333	°7716167932314474074079994012211909607735888887477778888888888888888888888888	h. m. 4 50 P.M. 5 11 6 47 A.M. 7 15 7 49 8 18 8 43 9 6 9 34 9 57 10 24 10 55 1 25 P.M. 1 49 2 21 2 45 3 12 3 32 4 22 4 22 4 45 5 12 3 32 4 22 4 45 5 12 3 32 4 22 4 5 3 12 3 32 4 22 5 7 10 38 A.M. 7 6 7 35 8 23 8 49 9 13 9 37 10 7 10 30 10 56 3 23 P.M. 3 56 4 44 5 15 6 40 A.M. 7 9 7 35 8 23 8 23 8 49 9 13 9 37 10 7 10 30 10 56 3 23 P.M. 3 56 4 44 5 15 8 23 8 49 9 13 9 37 10 7 10 30 10 56 3 23 P.M. 3 56 4 44 5 15 8 23 8 49 9 13 9 37 10 7 10 30 10 56 3 23 P.M. 3 56 4 44 5 15 8 23 8 49 9 13 9 37 10 7 10 30 10 56 3 23 P.M. 3 56 4 44 5 15 8 23 8 29 9 48 10 19 10 48 11 23 1 29 P.M. 2 17	\$	feet. feet. 111.6 112.8 112.9 113.2 114.6 114.8 115.9 115.9 115.8 115.8 115.8 115.6 115.8 115.6 116.3 115.8 115.6 117.7 118.0 120.6 122.6 122.6 122.6 122.7.3 127.3 127.3 127.3 127.3 127.3 127.5 122.6 122.7.1 122.6 122.7.1		I I I I I I I I I I I I I I I I I I I

DETAILS OF THE MEASUREMENT.

IV____1

Extracts from the Field Book-(Continued.)

1841	the Set.	ure of Air	Mean time of	b ars used	f Set above igin	Num shev arra men	neral ving nge- t of	1841	the Set.	ure of Air	Mean time of	ars used	Set above gin	Num shew arrai men	neral ring nge- t of
	No. of	Temperat	enaing	No. of	Height of ori	Bars.	Micros:		No. of	Temperat	ending	No. of h	Height of ori	Bars.	Micros:
17th Nov. 3	33333333333333333333333333333333333333	888876556677778888888888888875677999476503397556677788888 6444224925516677778888888888888875575882888888888888	h. m. 2 43 P.M. 3 12 3 49 4 13 4 44 5 15 6 35 A.M. 7 4 7 35 8 28 8 28 8 49 9 11 9 35 10 40 11 20 1 47 P.M. 2 20 2 49 3 28 4 38 5 10 1 47 P.M. 2 20 2 49 3 28 4 38 5 10 1 20 1 47 P.M. 2 20 2 49 3 28 4 38 5 10 1 20 1 20 2 49 3 28 4 38 5 10 1 20 1 20 2 49 3 28 4 38 5 10 1 20 1 20 2 49 3 28 4 38 5 10 1 20 2 49 3 28 4 38 5 10 1 20 1 20 2 49 3 28 4 38 5 10 1 20 2 49 3 28 4 38 5 10 1 20 2 49 3 28 4 38 5 10 3 1 1 20 2 49 3 28 4 38 5 10 3 1 1 20 2 49 3 28 4 38 5 10 3 1 1 20 7 40 8 33 9 22 10 31 11 0 1 20 7 40 3 5 1 20 7 40 3 3 9 22 3 54 4 18 8 36 9 3 9 34 9 58 1 0 1 0 1 1 2 0 2 0 3 1 1 1 8 8 8 36 9 34 9 58 1 0 1 0 1 0 1 1 2 0 1 1 1 2 1 2 1 3 1 1 1 0 1 2 1 3 1 3 1 1 1 1 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3	, , ,	fee. fee. 130.8 129.8 129.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.8 127.9 126.9 126.8 127.9 126.9 126.8 127.9 126.9 126.8 127.9 126.9 126.8 127.9 126.9 127.9 126.9 126.9 127.9 126.9 127.9 126.9 126.9 127.9 126.9 127.9 126.9 127.9 127.9 126.9 127.9 1		333333333333333333333333333333333333333	20th Nov. 22nd "	• 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	88888887777766697777788888888877775666977777888888887777556669777778888888777775565547134100559908290156977565547134100554715246444468915697775655547134100554715410	\hbar . m. I 30 P.M. J 55 2 25 2 40 3 II 3 35 4 4 4 30 4 52 5 2I 6 35 A.M. 7 8 8 59 9 51 10 24 I0 54 I 23 P.M. J 52 2 22 2 46 3 II 6 35 A.M. 7 8 8 31 8 59 9 51 10 24 I 52 2 22 2 46 3 II 5 4 8 31 8 59 9 51 10 54 I 23 P.M. J 52 2 22 2 46 3 II 5 4 8 31 8 59 9 51 10 54 I 23 P.M. J 52 2 22 2 46 3 IA M. 7 8 8 31 8 59 9 51 10 54 I 23 P.M. J 52 2 22 2 46 3 IA 4 18 4 50 5 I 5 6 40 A.M. 7 10 8 8 8 38 9 32 9 57 10 58 8 38 9 32 9 57 10 58 1 38 7 39 8 8 8 38 9 32 9 57 10 58 1 38 7 39 8 7 54 1 52 2 31 3 41 4 7 4 31 5 23 2 31 3 41 4 7 4 31 5 23 3 41 4 7 4 31 5 23 6 4 4 0 4 7 4 31 5 23 6 4 6 4.M. 7 7 8 8 8 8 9 32 9 57 10 58 1 38 7 39 8 8 8 31 2 57 3 21 3 41 4 7 4 31 5 23 6 4 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4	, , , , , , , , , , , , , , , , , , ,	- - - - - - - - - - - - - -		

Digitized by Google

ę.

Numeral Numeral above Ąi Height of Set above origin Åir used shewing used shewing Set arrange arrange-Temperature of Temperature of Height of Set a origin the ment of ment of the bars bere Mean time of Mean time of 1841 ending 8 1841 ending No. of ы ы Micros Micros : No. Bars. Bars. No. ю́И h. m. feet. h. m. feet. 24th Nov. 471 62[.]8 **6**1·3 6 82.0 25thNov. 496 947 108 7 8 б 43 ▲.₩. I 3 73'4 A.M. I 3 497 498 74·7 75·3 78·6 80·1 б 6 473 **6**6[.]5 13 80.4 I 3 10 60.0 I 3 70[.]4 73[.]9 33 8 47 б 78.8 I 10 30 6 473 59'5 I 3 б 77[•]9 77[•]4 0 б I 499 9 24 52 P.M. 59°2 58°3 I 3 474 6 6 9 53 10 26 б 75.7 I 3 1 10 475 500 I 3 470 б 75.1 I 3 501 81.5 1 57.8 41 I 3 3 78°0 81°0 2 3 2 26 56[.]2 3 3 477 10 51 б 73[.]9 I 502 80.1 б I 503 478 6 6 6 81.1 6 6 6 I 20 P.M. I 73'3 55.7 I 3 79[.]6 80[.]6 1 48 80.2 2 48 54.6 3 3 479 73.1 I 504 τ 3 480 2 14 1 505 80.7 3 16 3 73.1 53.0 1 <u>4</u>81 80'**0** б 3 3 500 80.6 2 40 7 1 6 6 6 51.0 51.0 3 3 37 72.4 I 482 б 80.4 3 71.2 I 507 79'9 4 2 ı 3 6 4 29 4 50 5 18 6 55 79[.]6 79[.]8 483 70.5 1 3 508 75'3 51.0 I 3 3 3 4 29 54 17 38 6 33 6 50.8 484 60.6 I 509 73[.]9 71[.]4 I 3 3 510 50.1 77'2 б 68.6 б 485 I I 68.5 26th " 6 6 6 57'3 60'3 48.6 486 I 3 511 74.0 4 55 A.M. I 3 7 23 7 51 8 14 68.4 487 73.2 ō I 3 512 48·0 550778 I 3 3 3 513 514 488 б 68.3 I 3 3 64.0 б 46.8 71.0 22 I 25th " 66.7 б 489 67.3 6 6 6 53.1 44 ▲ I 45'9 I 66.3 6 8 40 55[.]4 61[.]4 65[.]6 14 48 69.6 490 1 3 515 44'9 I 3 71.4 72.5 491 65.2 I 3 516 9 2 43'7 I 3 517 518 б 64.7 6 15 I 3 9 29 3 I 492 43.5 8 37 64'2 6 67.9 I 10 45 6 42'0 3 77.9 493 T 3 6 70[.]7 72[.]1 63.5 I 3 3 494 9 2 9 24 6 62.4 I Total - 23263.9 495 The advanced end of set No. 518 fell in excess (i. e. east) of the dot at Station B, 0.2631 feet, as measured on Cary's brass scale with a pair of compasses. Height of set No. 518 above Station B = 1.6 feet. The terminal point of set No. 518 was the point of origin for set No. 519. 26th Nov. 519 83'4 2 43 P.M. 3 8 2 48 P.M. 6 -27th Nov. 539 84.8 42'1 1 б 57.3 I 4 б 42.1 85.4 б 83.1 I 540 57[.]9 58[.]7 3 9 1 4 520 4 6 6 83.9 б 521 84.0 3 35 42'1 I 4 541 3 30 I 4 4 õ 42.9 I 4 4 542 84.9 б 59[.]5 61[.]2 I 4 4 522 83[.]0 3 50 78.5 77.1 4 25 4 48 6 б 81.2 I 543 I 523 **44**'5 4 13 6 6 6 61.0 I 4 I 524 75.3 45'5 544 4 31 4 73°2 58°2 61°2 4 55 5 17 6 54 A.M. 5 6 б 525 12 46.3 I 4 545 75.3 63.0 1 4 27th " 526 б 73.9 63.2 46.8 4 546 б 63.8 4 49 I I 29th Nov. 547 6 19 48 64.0 7 7 8 6 6 6 1 4 **47**:3 1 4 527 548 65.2 65.8 7 21 528 I 4 4 65.1 47'9 I 529 72.6 48.4 1 4 549 67.5 . 7 8 47 8 б 66.8 I 4 59 25 45 8 6 70.2 49[.]6 4 4 б 67.8 4 4 I I 74'7 9 550 530 72.1 6 6 6 50.2 8 б 69.0 I I 30 531 75.9 9 55 t 77.0 77.0 78.4 82.8 73'4 75'0 77'2 б 532 10 51.2 I 4 552 8 52 70'2 I 4 553 554 б 4 4 10 31 I 4 ĭ8 71.0 52.2 9 I 533 58 9 01 б б 73.2 10 52.9 I 4 47 I 534 79[.]1 80[.]5 6 6 6 6 6 555 556 76.4 I I 535 1 19 P.M. 54.4 4 15 4 1 39 2 · 5 2 26 55.1 55.8 56.6 82.9 I 4 4 11 0 I 4 4 536 79.7 83[.]7 85[.]0 537 82.3 б 83.8 I I 557 11 30 538 б 558 82.0 б 85.2 I I 50 P.M. I 4 4

Extracts from the Field Book—(Continued.)

Digitized by Google

DETAILS OF THE MEASUREMENT.

IV____3

Extracts	from	the	Field	Book-(Continued.	:)
----------	------	-----	-------	--------	------------	----

	the Set	ure of Air	Mean time of	ars used	Set above gin	Nua shev arra men	neral wing nge- nt of		the Set	ure of Air	Mean time of	oars used	Set above gin	Nun shev arrai men	neral ving nge- nt of
1841	No. of	Temperat	ending	No. of b	Height of ori	Bars.	Micros:	1841	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros :
29th No 30th "	v. 559 560 561 562 563 564 565 566 568 569 570 571	84.9 86.4 85.4 84.2 81.6 79.6 70.0 71.4 63.9 65.0 67.3 69.9 73.0	<i>k. m.</i> 2 16 P.M. 2 51 3 17 3 39 4 2 4 25 5 0 5 33 6 50 A.M. 7 19 7 42 8 5 8 32	00000000000000000000000000000000000000	feet. - 85.6 83.7 82.8 82.1 81.5 80.3 76.2 73.8 72.7 71.2 69.8 68.1 66.1		4 4 4 4 4 4 4 4 4 4 4 4 4 4	2nd Dec	. 612 613 614 615 616 617 618 619 620 621. 622 623 624	65 [•] 2 67 [•] 5 70 [•] 1 72 [•] 9 75 [•] 4 77 [•] 2 78 [•] 4 79 [•] 0 80 [•] 0 81 [•] 0 81 [•] 0 81 [•] 2 85 [•] 1 85 [•] 0	h. m. 7 14 A.M. 7 40 8 0 8 24 8 45 9 10 9 30 9 53 10 19 10 42 11 1 1 27 P.M. 1 50	00000000000000000000000000000000000000	<i>feet.</i> - 48.6 48.6 48.6 48.6 48.7 49.1 50.1 50.5 51.2 51.2 51.0 50.3 49.6 48.6		4 4 4 4 4 4 4 4 4 4 4 4 4
1st De	572 573 575 575 5777 5778 575 5777 578 581 583 583 583 588 588 588 588 588 588 588	73 0 74 9 76 7 80 2 82 2 86 4 88 2 88 2 88 2 88 2 88 2 88 2 88 2 88	8 57 9 20 9 46 10 3 10 26 1 14 $P.M.$ 1 39 2 2 2 28 2 54 3 15 3 40 4 9 4 34 5 0 5 23 6 40 $A.M.$ 7 7 7 36 8 4 8 28 8 52	0000000000000000000000000000000000000	65.0 64.3 63.1 63.1 63.1 63.1 63.1 63.1 63.1 63		* 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3rd "	6226 78 90 12 33 4 56 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8437 8574 8574 8577 8577 8577 8577 8577 857	2 13 2 13 2 39 3 1 3 23 3 44 4 7 4 25 4 49 5 11 6 44 A.M. 7 13 7 39 8 4 8 25 8 49 9 11 9 34 9 58 10 20 10 44 11 10 1 40 P.M. 2 4	୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰୰	4800 4877 4777 4777 4777 4777 4777 4777		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2nd " T	595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 611 Che ad	78.0 79.2 80.7 81.4 82.9 85.3 86.0 84.0 85.1 86.9 87.3 88.0 85.6 81.9 80.9 80.9 80.1 78.1 78.1 05.1	9 18 9 38 10 2 10 21 10 43 1 3 $P \cdot M$. 1 30 2 1 2 24 2 50 3 13 3 37 3 58 4 23 4 43 5 7 6 46 A \cdot M. - end of set No	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50.3 49.1 48.3 47.4 46.2 45.9 46.0 46.3 46.7 47.9 48.1 48.3 48.7 48.7 48.7 48.7 48.7 48.8 50 fell in	I I I I I I I I I I I I I I I I I I I	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4th "	648 649 650 651 652 653 655 655 655 655 655 658 659 660 the d	84.4 84.3 83.9 83.5 83.1 80.0 78.1 76.3 61.4 63.1 65.1 68.1 74.4	2 28 2 53 3 21 3 46 4 10 4 32 4 51 5 17 6 46 A.M. 7 9 7 33 8 0 9 10 Total East-End 0.17	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25 ² 24 ¹ 23 ⁴ 22 ⁸ 22 ³ 22 ² 22 ² 22 ² 22 ² 21 ⁹ 21 ⁹ 21 ⁵ 20 ⁸ 19 ¹ 7335 ⁷		4 4 4 4 4 4 4 4 4 4 4 4 4 4
Cary's F	l orass Ieight	scale v of set	No. 660 abov	comj e Ea	passes. st-End =	= 1.6	feet.								

١

Digitized by Google

Reduction to Mean Sea Level.

Let the sections into which this base-line is divided be denoted as follows:

West-E	nd	to	Station	A	by	Section	I;
Station	А	to	"	B	-	,,	П;
,,	В	to	East-E	\mathbf{nd}		"	III;

Then in the notation of (7) page I_{22} we have

H = 1980; h = -23.1; $\delta h = -2.4$; Log. R = 7.31990, all in feet; and n = 660.

			$\llbracket h \rrbracket_1^p$	α	n	dh	F	λ	C_2	C_1	C
									+		
Section	Ι	•••	12279	ο	244	0.0	12389	15373	. 0374	1•4572	1.4198
,,	II	•••	23264	ο	274	1.0	23648	17263	·0713	1.6364	1.2621
"	III	•••	7336	ο	142	0.2	7642	8947	•0230	0.8481	0.8221

Final	length	of	the	Base-Line	and	of	its	parts	in	feet	; of	' Standa	rd	A	
-------	--------	----	-----	-----------	-----	----	-----	-------	----	------	------	----------	----	---	--

		Ме	asured wi	t h			
Section		Compensated bars page IV_12	Compensated microscopes page IV ₁₆	Beam compass pages IV_19 to IV_23	Reduction to sea level as above	Total Length	Log.
W. End to Stn. A Stn. A to Stn. B	•••	14640 ^{.7} 445 16440 ^{.8} 360	732 [.] 1189 822 [.] 1352	+ •1033 - •2631	— 1·4198 — 1·5651	15371 [.] 5469 17261 [.] 1430	4·18671,7574 4·23706,9566
Stn. B to E. End	•••	8520.4332	426'0703	+ '1792	0.8251	8945.8576	3.95162,1981
W. End to E. End	•••	39602.0137	1980.3244	+ •0194	- 3.8100	41578.5475	4.61886,9314

IV____24

Verificatory Minor Triangulation.

of gle					Distance i	in	of glo
No. 4 Trian	Name of Station	Corrected Angle	Log. Sine	Log. Distance	Feet	Miles	Error Trian
1	West-End of Base, Station A, ,, a	35 38 55'976 59 19 4'101 85 1 59'951 180 0 0'028	9`765531782 9`934503940 9`998366246	3°953883110 4°122855268 4°186717574	15371-5469	2.911	-0 ["] 604
2	Station a ,, A , ,, β	65 42 8.460 82 23 7.083 31 54 44.490 180 0 0.033	9`959718617 9`996153218 9`723144736	4*190456991 4*226891592 3*953883110			+0'384
3	Station A,, ,, β ,, B,	38 17 47.754 79 37 43.242 62 4 29.043 180 0 0.039	9:792204194 9:992845758 9:946235639	4°036425546 4°237067110 4°190456991	17261.0460	3.269	-0*472
4	Station β ,, B, ,, γ	33 46 10.766 68 44 32.017 77 29 17.232 180 0 0.015	9·744961863 9·969396658 9·989561538	3•791825871 4`016260666 4`036425546	, ,		- 1'270
5	Station B, ",	49 11 1'120 87 5 11'209 43 43 47'681	9 ^{.8} 78985996 9.999438251 9.839641259	3.831170608 3.951622863 3.791825871	8945*8758	1.694	-0'741
		180 0 0.010		Sum	41578.4687	7 ^{.8} 74	

NOTE.-Each side of a triangle is given in the same horizontal line with the angle which it subtends.

The angles of the verificatory triangulation were measured with a 3-foot Theodolite (either the one by Troughton or that by Barrow) read by 5 micrometer-microscopes. At all the stations 3 measures were made on each of 8 zeros. The stations on the line are W. End, A, B, and E. End. The auxiliary stations are a, β and γ .

IV_____25

IV__26

Comparison in feet between the values computed by means of the verificatory triangulation and the measured value.

Of the entire line.

West-End to H	Last-End by the measurement, page IV_{24}	Log. 4.618 869 314
>>	computed in terms of West-End to Station A page IV_25 41578.4687	4.618 868 491
	· Log. computed value – Log. measured value = –	0.000 000 823

In terms of the entire line by measurement.

		Computed	Computed Measured*
West-End to Station A	•	15371.5760	+0.0501
Station A to Station B	.•	17261 . 078 7	-0°0643
" B to East-End	•	8945.8928	+0.0322

Of each section in terms of the others.

	West-End to Station A	Station A to Station B	Computed Measured	Station B to East-End	Computed Measured
Measured lengths*	15371.5469	1726111430	•	8945.8576	
Computed on base West-End to Station A	•••••••	17261.0460	0920	8945.8758	+ .0182
Computed on base Station A to Station B	•• ••	• • •		8945 · 9264	+•0688

Note.—Since $\operatorname{Log}_{\theta}(x + dx) = \operatorname{Log}_{\theta}x + \frac{(dx)}{x} + \frac{(dx)^2}{2x^2} + \&c.$ $dx = \left\{ \text{Log}_{10} \left(x + dx \right) - \text{Log}_{10} x \right\} \frac{x}{\text{Modulus}} \text{ nearly, by which expression the required}$ variations in the foregoing natural numbers have been calculated.

Description of Stations.

WEST-END or BIDER BASE, Lat. 17° 58', Long. 77° 34', is situated on the lands of Marcal village; pargana Bider of the Hydrabad district (Nizam's dominions). The circumjacent places, with their distances and bearings, are as follows; Bider fortress 2 miles S.; Gadgi village 1.4 miles S.E.; the Mausoleum near Fatepur 1.5 miles N.E., and Bankeli village nearly 1 mile N. The station is not on the highest part of the ridge, having been selected at a lower level for convenience in measuring the base-line.

The following description is taken from the original record by Colonel Everest :---

"The platform is 16.9 inches high, with a foundation of 21.5 inches on basalt rock. The distance be-"tween upper and lower marks is 21.4 inches; the marks are dots engraved on brass plugs, fixed in long basalt stones-"by means of lead. The pier for the great theodolite is of stone masonry 4 feet in diameter and circumscribed by an "annulus also of masonry, by which it is isolated from the rest of the platform. The rock *in situ* occurs 3 inches "below the surface of the ground, and therefore the footing of the pier has been sunk 18.5 inches into the rock; the latter "is a basaltic trap of a friable nature, readily splitting into small rhomboidal fragments, and on account of this pecu-"liarity of structure it was impracticable to mark the rock itself."*

EAST-END of BIDER BASE, Lat. 17° 54', Long. 77° 39', is situated on the lands of Malgi village; pargana Bider of the Hydrabad district (Nizam's dominions). The village of Malgi is about 1 mile W. of the station and the town of Bider some 5 miles to the W.N.W.

The following description is taken from the original record by Colonel Everest :--

"The platform is 17 inches high, and constructed on the isolating principle, the pier and annulus being "both of stone masonry. There are 3 marks in the pier; an upper mark, 17 inches above the ground, and a middle "and lower mark at 4 inches and 33 75 inches respectively below the surface. The marks are engraved on brass plugs, "fixed in long basalt stones."*

STATION A.* Is on the line and 2.934 miles from the West-End; and is situated on a gentle swell of land, about a quarter of a mile north of the small village of Sholapur.

The station is marked by a dot on a silver stud let into a slip of brass imbedded in stone.

STATION B.* Is on the line and 1.744 miles from the East-End, and is situated on a swell in the fields N.W. of Malgi village. This swell is the only ground available for the trisectional division of the base.

The station is marked precisely after the method adopted for station A.

AUXILIARY STATION a or BIDER FORT, COUNTERSCARP OF DITCH.* This is the only position available for the minor triangulation. The ditch of the fort has been excavated in the iron-stone rock, leaving a ridge 14 feet thick at the edge of the hill. The village of Mamankheri is N. 30° W. $\frac{1}{2}$ mile; Hamelapur N. 39° E. 1 mile; Mirganj N. 56° E. $\frac{1}{2}$ mile; Agrar N. 81° E. $\frac{1}{2}$ mile; Waldodi, N. 118° E. $\frac{1}{2}$ mile.

AUXILIARY STATION β or MALKAPUR HILL* The village of Malkapur is situated between two isolated hills of trap formation, capped with iron-stone. There are fakir's

IV____27

^{*} Taken from pages 72-74 Everest's Meridional Arc of India, 1847.

IV______28

Description of Stations—(Continued.)

tombs on both these hills; one of these tombs offered no obstruction, but the other occupied the only available ground at top, and therefore the station has been placed on the northern face of the hill.

AUXILIARY STATION γ or MALENA,* This station is at the foot of Malena hill, connected with that on which Malgi G. T. Survey station is fixed, and it is of the same geological character.

* Taken from pages 72-74 Everest's Meridional Arc of India, 1847.

J. B. N. HENNESSEY.

SONAKHODA BASE-LINE.

.

The middle point of this base-line is in Latitude N. 26° 17', Longitude E. 88° 17'; the Azimuth of Rámgunj or North-East End at Sonákhoda or South-West End is 233° 57', and the line is 6.95 Miles in length.

The measurement was effected under the directions of Lieut.-Colonel* A. S. Waugh, R.E., with the aid of the following :

Captain T. Renny, R.E. Mr. G. Logan " C. Lane H. Keelan " T. Olliver ,, J. W. Rossenrode ... J. B. N. Hennessey •• J. O. N. James J. H. Lawrence ... A. T. Haycock ,, – Lawler ,, Mir Siud Mohsin

* Now General Sir A. S. Waugh.

SONAKHODA BASE-LINE

INTRODUCTION.

This base-line was measured on the stretch of level ground which lies between the villages of Sonákhoda and Rámganj in the Purneah district, province of Bengal. The line was selected and prepared for measurement under the immediate directions of Lieutenant-Colonel A. S. Waugh, R.E., who was assisted in the selection by Lieutenant R. Walker, R.E.

The measurement was commenced at Sonákhoda or South-West-End, bar-tongues pointing North-West, and carried on *continuously* to Rámganj or North-East-End, so that every succeeding set originated at the point marking the terminus of its predecessor. The line was divided into 4 sections by the sub-dividing points A, B and C, to admit of verification by minor triangulation.

The compensated bars were compared with the standard A before and after the measurement, as was customary at all the preceding base-lines; and they were also similarly compared for the first time about the middle of the measurement, a procedure which was adhered to at all the subsequent base-lines. On all these three occasions of comparisons, the comparing piers were set up parallel to and within a few feet of the line, but before the measurement near the South-West-End, the ends of the bars were reversed to obtain a more favorable light, so that the bar-tongues pointed South-East during these comparisons. After set No. 291 the comparing piers stood in the vicinity of Section Station B, and after the measurement they were placed near the North-East-End: on both these occasions of comparisons the bar-tongues pointed North-West as they did during the measurement. 53 comparisons were made before the measurement, 60 after set No. 291 at B and 80 after the measurement had been completed.

One of the comparing microscopes employed in the preceding bar comparisons was fitted with a micrometer, while the other had its wires (or lines) fixed.

The compensated microscopes were compared with their scales on 6 occasions, including the comparisons taken prior and subsequent to the measurement.

In respect to time, the first set of bar comparisons was made on the 27th November 1847, the last on the 21st of the following January.

The stations of the verificatory triangulation were 9 in number, forming a single series of triangles. Of these stations, 5 were in the alignment, viz. South-West-End, A, B, C and North-East-End, while the auxiliary stations α , β , γ and δ were placed on suitable sites North-West of the line. The angles were observed by Mr. C. Lane with Troughton's 3-foot theodolite at 8 equidistant zeros; three measures were taken on each zero so that 24 measures in all were made of each angle.

V___3

SONAKHODA BASE-LINE

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at Sonakhoda, or South-West-End of the base-line, before the measurement.

	beerving A	E OR	۸ir	rature of A		MICE 1 Div	OMETEI rision == <u>916</u>	E BEAD 1 103-4 Cary's	ING 8 I1 Inch [7.8],=	r DIVI(=1.2851 m.y	SIONS of A		
1847 Novr.	Mean of the times of o	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	Н	Mean of the compensated bars	BENABES
27th	<i>h m</i> 7 45 A.M. 8 39 9 19 9 54 10 25 1 31 P.M. 2 1 2 31 3 0 3 30 3 59 4 28	1 2 3 4 5 6 7 8 9 10 11 12 13	63.5 65.7 68.7 71.2 73.3 74.8 79.2 79.1 78.8 79.2 79.1 78.8 78.3 77.6 76.8 75.2	60.85 61.60 63.20 65.15 67.10 68.85 77.30 78.18 78.78 79.03 79.15 79.13 79.13 78.30	+ 101'0 115'5 144'5 178'5 211'1 238'5 370'2 384'3 394'0 399'0 399'1 395'7 389'1	+ 268.5 266.0 269.1 267.2 269.8 269.0 241.5 239.1 246.1 251.0 256.0 260.7 260.1	+ 247'I 250'0 247'5 247'1 249'I 249'I 249'I 240'3 240'2 241'0 243'7 244'0 247'I	+ 264.9 269.9 270.7 270.8 273.1 273.1 273.9 275.0 272.0 272.0 267.1 269.5 270.3	+ 291.0 294.5 292.8 295.0 296.0 296.2 304.9 300.1 297.3 295.9 291.7 294.0 295.0	+ 260.5 266.0 265.0 265.9 269.0 272.1 269.3 266.2 264.9 262.8 263.1 260.0	+ 263.9 264.0 264.4 266.2 267.2 266.0 257.9 253.5 253.2 253.0 249.1 251.0 251.0	+ 266°0 268°4 268°7 268°8 270°4 270°6 266°3 262°9 262°5 263°0 261°7 263°7 263°9	Foggy morning. No clouds. Capt. Waugh at the micrometer micros : Capt. Renny at the plain micros. Sky cloudy.
29th	6 56 A.M. 7 33 8 5 8 37 9 6 9 32 9 59 10 26 10 26 1 23 P.M. 1 46 2 12 2 38 3 1 3 25 3 50 4 11 4 34	14 15 10 17 18 19 20 21 22 24 25 27 28 29 31	60°3 62°7 65°7 68°5 72°4 73°7 75°9 78°1 78°3 78°1 77°3 75°5 73°5 73°5 73°5 73°5	60·20 60·38 61·15 62·33 63·78 65·43 67·23 68·98 70·43 70·43 70·15 70·80 77·35 77·73 77·93 77·93 77·95 77·88 77·65	73'1 75'2 91'7 114'2 139'3 168'4 197'2 224'8 249'5 329'8 339'4 359'1 359'1 364'7 365'9 364'4 352'2 355'3	249.8 253.6 255.0 254.0 252.1 252.1 252.1 250.1 247.2 246.3 244.2 245.3 244.2 245.3 244.0 247.2 246.1	230.6 235.4 235.2 233.4 233.0 231.8 230.0 231.2 234.8 233.0 233.2 234.8 233.0 233.2 232.0 230.6 228.3 226.8 228.1 231.3	249.8 256.3 255.1 256.8 258.2 258.8 259.0 258.8 259.0 258.8 259.0 266.0 264.0 261.0 261.0 261.3 260.5 258.2 257.8 257.8 257.3 258.0	275° 278°2 279°2 279°8 282°3 280°3 280°4 280°5 280°4 280°5 280°4 280°5 280°4 280°5 280°4 280°5 280°4 280°5 283°1 278°4 278°7 279°8 281°1	240.0 244.6 248.0 246.1 252.5 251.1 249.8 254.5 254.8 255.8 255.8 255.8 255.8 255.8 255.8 255.8 255.8 249.6 248.4 248.0 248.0 245.8 245.4	246.2 249.0 250.0 249.3 250.1 250.0 248.8 249.0 248.2 248.2 248.2 242.8 245.1 242.0 239.5 239.7 230.7 237.5 237.0 235.4	248.7 252.9 253.8 253.2 253.6 254.4 253.6 253.4 255.7 255.0 253.1 255.7 255.0 253.1 252.1 252.1 252.1 252.9 248.8 249.0 249.2 249.6	Capt. Renny at the micrometer microscope; Mr. Logan at the plain micros- cope.
30th	7 3 A.M. 7 28 7 51 8 13 8 33 8 55 9 17 9 40 10 2 10 22 10 41	32 33 34 35 30 37 38 39 40 41 42	58.0 59.2 61.2 62.8 64.0 65.6 67.6 69.1 70.5 71.9 72.7	58.08 58.10 58.45 59.03 59.65 60.60 61.75 63.05 64.45 65.68 66.80	29'3 30'2 37'9 48'8 59'7 76'0 98'1 121'0 143'4 164'6 184'7	241.8 248.2 248.4 249.0 247.3 248.7 248.0 246.4 246.3 248.5 248.5 242.8	222°5 225°4 222°0 228°2 224°5 225°0 228°5 223°3 224°5 222°7 220°5	245.8 247.2 248.8 247.3 244.9 248.0 249.2 245.8 252.8 252.8 251.8 254.9	264*8 262*3 269*8 267*5 267*3 268*0 270*0 270*8 272*9 276*4 274*2	230°6 230°8 238°2 236°7 234°7 237°8 242°2 240°3 244°0 243°5 248°2	236.0 237.3 240.2 242.5 238.3 241.3 242.8 243.8 243.8 243.8 243.1 242.2	240°3 241°9 244°6 245°2 245°2 245°8 244°8 246°8 245°0 247°4 247°6 248°1	Mr. Logan at the micrometer microscope ; Mr. Keelan at the plain micros- cope.

Digitized by Google

V___4

BAR COMPARISONS

Before the measurement—(Continued.)

	obeerving A	noa	Air	rature of A		MICE 1 Divi	ROMBTE	E BEAD <u>1</u> 1603.4 Carr	INGS I1 7's Inch [7.8]	n Divis , == 1.2851	BIONS m.y of A		
1847 Novr.	Mean of the times of	No. of compari	Temperature of	Corrected mean tem	Mcan A	A	В	С	D	E	н	Mean of the compensated bars	BBWABK 5
30th	<i>h m</i> 1 19 P.M. 1 40 1 58 2 15 2 35 2 57 3 19 3 38 3 55 4 13 4 31	43 44 45 40 47 48 49 50 51 52 53	75.7 76.3 76.3 76.3 75.6 75.6 75.6 75.6 75.6 75.6 74.0	73·40 74·00 74·43 74·90 75·30 75·55 75·73 75·83 75·83 75·83 75·88 75·88	+ 286.8 295.4 300.6 306.2 311.3 314.9 317.2 318.5 320.3 322.2 320.6	+ 235.2 232.3 230.3 234.0 235.3 236.7 238.3 237.3 240.0 235.5 238.2	+ 223'3 223'3 218'2 220'8 222'0 219'9 220'0 222'2 218'3 218'5 218'5	+ 254.0 254.7 251.2 251.8 252.0 250.2 245.7 248.3 248.7 244.3 244.6	+ 273.5 272.0 270.0 271.8 269.0 271.3 270.8 268.5 267.1	+ 241.8 230.5 238.3 240.0 239.3 239.8 236.8 237.0 235.7 235.3 234.0	+ 233'2 231'0 230'2 231'8 229'0 230'0 229'3 228'8 220'1 227'7 223'3	+ 243'5 242'1 239'7 241'7 241'6 240'2 240'2 240'2 240'8 239'9 238'3 237'6	
		Me	ans	70.02	238.74	248.13	231.27	257.88	280.00	248.69	243.93	251.62	

v__5

SONAKHODA BASE-LINE

Before the measurement—(Continued.)

Let the mean length of the compensated bars minus the Standard A at 62° F. be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$\boldsymbol{x} - (t^{\circ} - 62^{\circ}) (\boldsymbol{E}_{a} - d\boldsymbol{E}_{a}) - \delta = 0$$

Treating the preceding bar comparisons as shewn in this equation, we obtain the following series of results :---

			đ				đ	
x +	1.12	$(E_a - dE_a)$	- 165.0 =	: 0	x -15.93	$(E_a - dE_a)$	+117.1 = 0	
x +	•40	22	-152.9 =	• 0	x —15.95	"	+115.4 = 0	
z —	1.30	"	-124.5 =	: 0	x -15.88	"	+113.0 = 0	1
z —	3.12	"	- 90.3 =	: 0	x -15.65	"	+ 105.7 = 0	
z —	5.10	"	- 59.3 =	: 0	x+ 3.92	"	-211.0 = 0	
# —	6.85	"	- 32.1 =	: 0	x + 3.90	>>	-211.7 = 0	
z – :	15.30	"	+ 103.9 =	: 0	#+ 3 .55	"	-206.7 = 0	
# —:	16.18	"	+121.4 =	: O	x + 2.97	"	-196.4 = 0	
# —:	16 •78	"	+132.1 =	: 0	# + 2.35	"	-183·1 = 0	
# —	17.03	"	+136.0 =	: 0	# + 1.40	"	-168.8 = 0	
x -	17.15	"	+137.4 =	: 0	# + ·25	,,	-148.7 = 0	
z —	17.13	"	+132.0 =	: 0	x - 1.05	>>	-124.0 = 0	
#	16.30	"	+ 125.2 =	: 0	x - 2.45	"	-104.0 = 0	
#+	1.80	"	-175.6 =	: 0	x - 3.68	"	- 83.0 = 0	
x +	1.63	"	-177 ' 7 =	: 0	# 4 .80	"	- 63·4 = 0	
#+	•85	>>	-162.1 =	: 0	x —11.40	"	+ 43.3 = 0	
# —	•33	>>	-139.0 =	: 0	x -12.00	"	+ 53.3 = 0	
z —	1.78	"	-114·3 =	: 0	a -12.43	,,	+ 60.9 = 0	
z -	3'43	"	- 86·o =	: 0	x -12.90	"	+ 64.5 = 0	
# —	5.33	>>	- 56.6 =	= 0	z -13.30))	+ 69.7 = 0	
# —	6.98	>>	- 28.3 =	: 0	z —13.55	>>	+ 74'0 = 0	
z —	8.43	"	- 3.9 =	= 0	# -13.73	3 2	+ 77.0 = 0	
z	13.23	"	+ 74'I =	= 0	a -13.83	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+ 77.7 = 0	
x -	14.12	>>	+ 84.4 =	= 0	z —13.85	3 2	+ 80.4 = 0	
x —	14.80	>>	+ 97.2 =	: 0	z —13.88	33	+ 83.9 = 0	
x -	15.35	>>	+107.0 =	= 0	z —13.83	3 3	+ 83.0 = 0	
x —	15.73	22	+113.8 =	= 0				

Digitized by Google

V__6

BAR COMPARISONS

Before the measurement—(Continued.)

And from the mean of these results,

$$x = 12.91 + 8.07 (E_a - dE_a)$$
:

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.641,$$

and $x = 155.27 - 8.07 dE_a = 199.54 - 8.07 dE_a = L - A;$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading 251.65, page V_{-5} .

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	A - L	B – L	C – L	D – L	E – L	H – L
Micrometer divisions.	-3·52	- 20·38	+ 6·23	+ 28·35	-2.96	-7 ^{.72}
Millionths of a yard.	-4·52	- 26·19	+ 8·01	+ 36·43	-3.80	

Also combining the values in this table with the equivalent of L-A above determined, there result,

$$A - A = 151.75 - 8.07 \ dE_a = 195.02 - 8.07 \ dE_a$$

$$B - A = 134.89 - 3.0 = 173.35 - 3.0 = 173.35 - 3.0 = 173.35 - 3.0 = 101.50 - 3.0 = 207.55 - 3.0 = 2$$

v__7

SONAKHODA BASE-LINE

,

Comparisons made	on a	oeen site	the sel	Stan ected	dard abou	Bar t the	A m	and iddle	the of	Co the	mpensated base-line,	Bars after	A, set	B, (<i>No</i> .	C, D, 291.	Е,	н,
							_		_								

	beerving A	eon	Air	rature of A			B ^I OMETE islon — 216	E REAI <u>1</u> 542.0 Cary's) IN G 8 I Inch [7.8], 4	N DIVI = 1.2828 m.	BIONB y of A		
1847 Decr	Mean of the times of c	No. of compar-	Temperature of	Corrected mean tempe	Mean A	Â	В	С	D	E	н	Mean of the compensated bars	BBWABKS
29th	<i>h</i> m 1 44 P.M. 2 10 2 30 2 50 3 10 3 47 4 9 4 33	1 2 3 4 50 7 8	o 73 ^{.7} 73 ^{.7} 73 ^{.7} 73 ^{.7} 73 ^{.5} 72 ^{.9} 72 ^{.3} 71 ^{.8}	68°55 69'38 69'38 70'50 70'95 71'90 72'03	+ 301.6 317.0 326.9 334.9 343.9 362.6 365.5 366.8	+ 298·3 309·7 314·5 320·0 324·3 335·0 341·0 339·6	+ 288.6 293.5 292.3 297.8 303.2 315.0 318.0 321.0	+ 317'3 325'1 328'6 328'6 329'6 344'0 346'1 349'6	+ 346'0 351'3 354'8 351'8 358'6 369'0 371'4 370'0	+ 324.5 327.8 328.6 328.8 331.8 341.8 346.2 345.0	+ 307*2 317*0 320*0 323*8 323*8 334*0 334*3 336*8	+ 313'7 320'7 323'1 325'1 328'6 339'8 342'8 343'7	Capt. Renny at the micrometer microscope; Mr. Keelan at the plain microscope. Very foggy.
30th	7 51 A.M. 8 29 9 24 9 47 10 6 10 25 10 25 10 40 1 23 P.M. 1 44 2 4 2 4 2 45 3 5 3 27 3 48 4 6 4 26	9 10 11 12 13 14 15 17 18 19 20 21 22 24 25 20	53.0 54.4 56.2 58.2 66.6 63.3 71.7 72.4 71.7 72.4 71.8 71.5 71.4 70.8	54 ²⁰ 54 ²⁵ 54 ²⁵ 55 ³⁵ 55	89.5 89.4 94.9 10.4.4 11.5.7 128.5 142.7 160.0 310.6 328.2 344.4 359.3 371.4 380.2 386.5 390.9 393.8 394.3	361.7 365.0 357.0 355.0 355.0 355.0 351.7 347.5 339.8 372.5 367.4 369.0 368.0 375.5 379.6 380.1 385.1 388.8 389.8	341'1 338'2 341'5 329'0 328'3 328'3 314'8 352'0 350'8 355'1 356'2 360'0 363'4 362'8 361'5 367'0	369.1 364.2 363.1 359.0 353.0 352.6 346.2 383.1 382.5 388.1 389.0 389.6 392.4 393.8 396.2 394.2	385.0 383.2 385.6 381.0 376.2 375.3 372.8 367.3 411.3 410.1 413.7 413.8 412.8 412.8 413.8 416.0 419.2 417.0 418.3	352.8 355.6 354.8 351.0 349.2 347.0 382.7 386.1 387.1 389.6 392.1 389.6 392.1 389.6 392.1 389.6 390.1 389.2	358.7 359.8 358.6 354.2 350.8 347.0 342.0 370.6 370.6 370.6 370.6 376.8 379.3 381.2 381.0 381.0 381.3 381.0 381.3 381.0	361.4 361.0 352.0 355.2 353.3 349.6 347.1 342.4 378.4 377.9 381.9 382.3 383.8 386.5 387.2 389.4 388.6 389.3	, Cloudy.
31st	7 10 A.M. 7 33 7 55 8 15 8 35 8 53 9 12 9 38 10 0 10 21 10 42	27 28 29 30 31 32 33 34 35 30 37	52.8 52.9 54.3 55.9 57.2 58.6 59.8 61.4 63.8 65.0	55.63 55.28 55.03 54.98 55.10 55.38 55.75 56.55 57.35 58.20 59.10	143.8 139.0 138.9 139.7 143.7 148.8 156.2 170.2 183.7 195.3 207.9	393°0 398°3 402°5 397°8 400°2 400°2 400°0 397°4 395°7 389°2 380°5	370°8 373°0 376°5 373°0 378°0 376°0 372°0 372°0 372°8 366°0 363°2 355°7	394'1 396'5 399'5 396'7 401'0 401'2 397'9 400'3 393'8 393'8 393'8 392'0 385'7	413°2 417°1 416°8 417°5 420°9 421°0 421°5 415°7 412°3 407°7	382.9 384.0 389.3 393.0 393.7 390.3 392.5 389.5 384.5 383.3	394'1 392'5 393'2 395'5 394'8 395'2 391'1 390'9 388'8 382'2 375'9	391'4 393'6 396'3 395'0 398'7 398'0 395'4 395'4 391'6 387'2 381'5	Mr. Logan at the micrometer microscope: Mr. Keelan at the plain microscope.

V__8

.

BAR COMPARISONS

After set No. 291-(Continued.)

1847-49	beerving A	noa	Air	srature of A		MICE(1 Divisio	$DMBTBBn = \frac{1}{3164}$	EEAD	ING 8 I Inch [7-8],	и Divi = 1.2833 ж	BIONS.		
Dec. & Jan.	Mean of the times of a	No. of compar-	Temperature of	Corrected mean temp	Mean A	A	В	С	D	E	н	Mean of the compensated bars	Remarks
3Ist İst	h. m. 1 10 P.M. 1 26 1 42 2 1 2 20 2 38 3 20 3 38 3 55 4 12 4 29 6 57 A.M. 7 20 7 43 8 3 8 22 8 40 8 59 9 18 9 41 10 35	38 90 1 2 3 4 4 5 6 7 8 9 0 1 2 3 4 4 5 6 7 8 9 0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 71°0 777777777777777777777777777777777777	64.73 6538 66.03 66.75 68.30 69.65 70.13 70.75 70.98 56.68 55.98 55.98 55.98 55.58 55.98 55.59 55.59 5	+ 297.7 309.0 320.6 332.4 344.9 356.4 367.9 383.0 391.4 395.3 160.1 154.8 154.1 156.2 157.6 168.7 176.5 189.6 205.8 220.2	+ 376'1 371'3 370'3 378'3 378'3 378'3 381'2 379'1 382'7 380'0 384'7 387'0 399'9 400'8 403'8 403'8 403'8 403'8 403'8 403'8 403'8 405'1 400'9 392'0 391'3	+ 356'3 351'5 350'3 348'3 350'8 357'0 354'2 361'5 350'3 361'2 368'0 372'0 375'8 375'8 375'8 375'4 375'5 376'4 374'2 368'7 375'4 376'8 375'4 376'8 375'4 376'8 376'	+ 3872 3864 3794 3830 3877 3895 3943 3953 3953 3953 3953 3952 3962 3928 4009 4028 4028 4028 4028 4028 4028 4028 3948 3948 3948 3948	+ 404'2 405'2 404'5 407'5 407'5 414'2 413'3 413'	+ 3842 38350 3843 3810 3843 3875 3843 3875 3940 3930 3947 3920 3947 3920 3947 3947 3947 3947 3947 3947 3947 3947	+ 3659 3693 3664 3693 3734 3765 3755 3775 3799 3797 3904 3947 3947 3947 3954 3947 3954 3947 3954 3954 3954 3954 3954 3957 3954 3957 3954 3957 3954 3957 39777 39777 39777 39777 39777 39777 39777 39777 39777 397777 397777 397777 39777777 397777777777	+ 379'0 377'9 375'4 376'5 379'5 383'6 387'6 387'6 387'6 387'7 387'7 387'7 387'7 387'7 387'7 387'7 387'7 396'5 398'8 400'9 398'7	
		Mea	n s	62.70	2 54 .00	375.23	351.23	381.39	403°20	376.72	371.66	376.62	

V__9

SONAKHODA BASE-LINE

After set No. 291-(Continued.)

As on page V_{-6} we have

$$x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = o;$$

and from the preceding bar comparisons, we obtain the following series of results :---

			d							đ	
x —	6.22	$(E_a - dE_a)$)— 12.1	= 0	D	<i>x</i> —	6·90 (E _a –	$-dE_a)$	-2	55 [°] 0 =	= 0
<i>x</i> —	7:38	,,	- 3.7	= 0	D	<i>x</i> –	6.62	,,	- 24	49.2 =	= 0
<i>x</i> —	7 [.] 98	,,	+ 3.8	= (C	<i>x</i> —	6-25	,,	-2	39.2 =	= 0
x —	8.20	"	+ 9.8	= 0	0	<i>x</i> —	5.45	,,	-2:	25.7 =	= 0
<i>x</i> —	8.92	,,	+ 15.3	= 0	D C	<i>x</i>	4.62	,,	- 20	o <mark>7:9 =</mark>	= O
x —	9.68	"	+ 22.8	= 0)	<i>x</i> –	3.80	,,,	-19	91.9 =	= o
x —	9.90	"	+ 22.7	= 0)	<i>x</i>	2.90	,,	— 1	73.6 =	= 0
x — 1	10.03	,,	+ 23.1	= (D	<i>x</i> —	2.73	"	- 1	81.3 =	= 0
<i>x</i> +	7.80	"	-271.9	= (C	<i>x</i> –	3.38	,,	-	68.9 =	= 0
x +	7'95	"	- 271.6	= 0	C	<i>x</i> -	4.03	,,		54.8 =	= 0
x +	7.75	"	- 267.1	= (C	<i>x</i> —	4.75	,,		44'I =	= 0
x +	7:30	"	-251.8	= 0	>	x-	5.55	,,	- :	34.6 =	= 0
x +	6.62	"	-237.6	= 0)	<i>x</i> —	6.30 .	"	-	27.4 =	= 0
x +	5 ^{.8} 7	,,	-221.1	= 0	b	x-	7.05	,,	- :	16.1 =	= 0
x +	5.02	,,	- 204.4	= 0	C	<i>x</i> –	7.68	,,	-	9.7 =	= 0
x +	3 '97	"	- 182.4	= 0	C	<i>x</i> —	8.13	,,	-	4'4 =	= 0
x —	3.48	"	- 67.8	= 0	C	x-	8·48 ·	,,	+	3.3 =	= 0
x —	4 '48	"	- 49'7	= 0	D C	<i>x</i> –	8.75	,,	+	3.7 =	= 0
x —	5.40	"	- 37.5	= (C	<i>x</i> —	8•98	,,	+	6.9 =	= 0.
<i>x</i> —	6.52	,,	- 23.0	= 0	0	<i>x</i> +	5.32	,,	-2	32.6 =	= 0
<i>x</i> —	7.10	,,	- 12.4	= 0	0	<i>x</i> +	5.65	,,	-2	41.2 =	= 0
x-	7.70	"	- 6.3	= (C	<i>x</i> +	5.92	,,	- 2.	44'7 =	= 0
<i>x</i> –	8.18	"	— °'7	= (C	<i>x</i> +	6.03	,,	- 2.	45'4 =	= 0
<i>x</i> –	8.28	,,	+ 1.2	= (C	<i>x</i> +	6.00	,,	-2	42.2 =	= 0
<i>x</i> –	8.80	"	+ 5.3	= 0	D C	x+	5.95	,,	-23	39.5 =	= 0
<i>x</i> –	8.93	"	+ 4.0	= 0	C	<i>x</i> +	5.62	,,	-2	31.8 =	= o
<i>x</i> +	6.37	,,	- 247.6	= (C	<i>x</i> +	5.20	,,	-2	22.4 =	= 0
<i>x</i> +	6.72	"	- 254.6	= 0	C	<i>x</i> +	4`47	,,	- 20		= o
<i>x</i> +	6 · 97	"	- 257.4	= 0	>	<i>x</i> +	3.40	"	- 1	84.8 =	= 0
<i>x</i> +	7.02	"	- 255.3	= (o c	x +	2.42	,,	- 10	68:5 =	= 0

V__10

BAR COMPARISONS

And from the mean of these results,

$$x = 122.62 + 0.70 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.672,$$

and $x = 134.99 - 0.70 \ dE_a = 173.17 - 0.70 \ dE_a = L - A;$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading 376.62, page V_9.

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	A - L	B – L	C – L	D – L	E - L	H - L
Micrometer divisions.	— 1·39	- 25 [.] 09	+4 ^{.77}	+ 26·58	+ 0.13	- 4·96
Millionths of a yard.	— 1·78	- 32 [.] 19	+6 ^{.12}	+ 34·10	+ 0.10	- 6·36

Also combining the values in this table with the equivalent of L-A above determined, there result,

$$A - A = 133.60 - 0.70 \ dE_a = 171.39 - 0.70 \ dE_a$$

$$B - A = 109.90 - ,, = 140.98 - ,,$$

$$C - A = 139.76 - ,, = 179.29 - ,,$$

$$D - A = 161.57 - ,, = 207.27 - ,,$$

$$E - A = 135.09 - ,, = 173.30 - ,,$$

$$H - A = 130.03 - ,, = 166.81 - ,,$$

and
$$6 \ x = 1039.0 - 4.2 \ dE_a.$$

SONAKHODA BASE-LINE

Comparisons l	between the	Standard Bar	A and	the	Compensated	Bars	A, B,	C, D,	E,	H.
made at	Ramganj,	or North-East	end of	' the	base-line, aft	er the	meast	uremen	t.	

	beerving A	eon	Air	rature of A	MIGEOMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{21602\cdot 8}$ Cary's Inch [7.8], = 1.2853 m.y of A						MIGROMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{21602^{\circ}8}$ Cary's Inch [7.8], = 1.2853 m.y of A				
1848 Jany.	Mean of the times of o	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	B	С	D	E	H	Mean of the compensated bars	BBNABES		
18 th	h. m. 1 15 P.M. 1 34 1 51 2 7 2 23 2 40 2 56 3 12 3 28 3 46 4 4 4 21 4 36 4 50	1 2 3 4 5 6 7 8 9 10 11 12 13 14	0 71.68 72.6 72.7 72.7 72.7 72.7 72.7 72.7 72.7	64.30 65.15 65.83 66.48 67.58 68.03 68.48 69.18 69.45 69.45 69.78 69.78 69.78 69.83	+ 317.7 330.0 341.9 352.0 362.5 370.7 382.8 384.6 389.3 396.4 398.1 399.4 401.6	+ 388:2 393:1 391:3 394:2 396:2 403:0 401:7 404:5 407:9 407:2 411:2 412:0 413:3 414:3	+ 393 ^{.3} 395 ^{.2} 390 ^{.0} 390 ^{.0} 390 ^{.0} 388 ^{.0} 388 ^{.7} 388 ^{.7} 387 ^{.3} 388 ^{.2} 388 ^{.3} 388 ^{.3} 388 ^{.3} 385 ^{.0}	+ 422.9 427.8 427.0 425.5 425.5 425.1 423.5 419.8 419.5 421.8 419.0 420.2 424.7 423.3	+ 427.5 431.6 433.0 435.0 435.0 437.7 438.3 435.0 437.7 437.0 437.7 437.0 441.2 439.0 439.3 444.0 441.0	+ 400'0 409'3 409'3 409'8 410'2 410'2 410'2 410'1 411'0 409'5 412'0 413'0 415'8 411'5	+ 396.0 400.3 400.0 399.3 401.3 402.2 402.0 402.1 405.2 405.2 405.2 405.2 405.2 405.2 405.2 405.2 405.2 405.0 416.0 408.2 407.0	+ 405.7 409.6 408.4 409.0 410.2 411.0 408.8 410.6 411.6 412.5 412.7 415.5 415.7 413.7	Mr. Logan at the micrometer microscope ; Mr. Keelan at the plain microscope.		
19th	7 12 A.M. 7 40 8 0 8 17 8 35 8 54 9 13 9 32 9 48 10 2 10 18 10 52 1 4 P.M. 1 19 2 25 2 42 2 57 3 17 3 39 4 24 4 42 4 59	1507890122222222333333333344 15078901222222223333333333344	5510007775555555555566556666666666666666	52·23 51·78 51·60 51·65 51·80 52·03 52·40 52·88 53·40 53·93 54·53 55·53 56·33 63·78 64·50 65·20 65·73 66·30 67·43 67·98 68·68 68·75 68·80	114'9 113'7 110'4 120'4 120'4 134'1 142'2 153'3 164'8 176'9 191'2 208'1 308'5 320'3 331'5 342'3 354'7 363'5 369'6 377'2 383'8 389'0 391'8 394'0 395'6	421.8 425.4 425.8 426.2 428.3 428.3 428.5 427.0 423.2 421.1 421.5 415.0 407.2 407.8 409.2 407.3 411.7 412.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 407.3 415.0 415.0 415.0 415.0 407.3 415.0 415.0 415.0 415.0 407.3 415.0	394°0 ·394·3 394·2 393·2 395·2 397·1 394·9 392·3 391·2 389·5 381·7 393·8 392·9 391·2 389·0 391·2 389·0 391·2 393·6 393·5 393·5 393·5 395·2 395·2 397·1 394·9 391·2 393·5 391·2 393·5 393·5 393·5 393·5 395·2 395·2 397·1 394·9 391·2 397·1 394·9 391·2 397·1 393·5 397·1 393·5 393·5 393·5 393·5 393·5 393·5 393·5 393·5 393·5 393·5 393·5 395·2 395·5 393·5 393·5 393·5 393·5 395·5 393·5 395·5 3	420'4 427'3 427'3 427'3 425'0 425'5 425'7 425'7 425'7 425'7 425'7 425'7 426'8 426'8 426'8 426'8 422'4 426'2 422'7 427'2 427'2 427'2 427'2 427'2 427'2 427'2 427'2 427'2 427'3	463.3 450.2 449.8 450.7 449.8 450.7 449.5 449.5 449.5 449.5 447.0 443.5 447.0 443.5 447.0 443.5 440.0 443.5 440.0 443.5 450.0 448.8 449.6 445.8 449.4 445.8 449.2 0 453.	409.7 418.3 421.8 421.2 419.2 421.0 420.7 418.5 419.3 420.0 422.0 419.3 420.0 422.0 419.3 420.0 422.5 422.0 422.5 422.0 422.5 422.5 422.0 422.5 42.5 42.5 42.5 42.5 42.5 42.5 42.5 42	419 ² 420 ⁷ 422 ⁸ 423 ⁰ 422 ⁵ 419 ⁵ 421 ² 422 ² 422 ² 422 ² 422 ² 422 ² 417 ⁷ 414 ³ 415 ³ 405 ⁴ 416 ³ 416 ³ 416 ³ 417 ² 416 ³ 417 ⁹ 418 ³ 417 ⁹	421.4 423.8 423.6 423.9 423.7 423.9 423.7 423.9 422.0 421.5 421.5 417.3 419.3 419.0 419.2 417.4 419.0 419.8 419.3 419.3 419.3 421.5 422.3 424.7 423.9			

V____12

•

BAR COMPARISONS

After the measurement—(Continued.)

	observing A	109	Air	rature of A		MICROMETER BRADINGS IN DIVISIONS 1 Division = $\frac{1}{21602\cdot 8}$ Cary's Inch [7.8], = 1.2852 m.y of A								
1848 Jany.	Mean of the times of	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	н	Mean of the compensated bars	B B M A B K S	
20th 21st	h. 7 i 4 Λ . M. 7 5 9 2 4 9 5 9 2 4 9 5 10 2 4 10 5 10 2 4 10 5 10 2 4 10 5 10 2 4 10 5 1 i 4 P . M. i 33 i 49 2 5 2 2 2 2 5 3 1 3 2 9 5 4 5 4 5 4 5 4 5 4 5 4 5 7 7 A . M. 7 5 10 2 3 3 9 3 3 5 9 3 3 5 9 3 3 5 9 3 3 5 9 5 5 10 13 10 2 4 10 1 10 1	42 44 44 44 47 49 55 55 55 55 55 55 55 55 55 55 55 55 55	0.55125555555555555555555555555555555555	53.08 52.65 52.45 55.2.45 55.2.45 55.55.55 55.55.55 55.55.55 55.55.55 55.55.	+ $136 \cdot 1$ $134 \cdot 0$ $135 \cdot 6$ $148 \cdot 6$ $158 \cdot 5$ $243 \cdot 18$ $158 \cdot 5$ $243 \cdot 18$ $354 \cdot 28$ $354 \cdot 28$ $177 \cdot 29$ $245 \cdot 26$ $245 \cdot 26$	+ 4313 434.1 437.2 436.5 438.5 435.7 436.8 435.7 436.8 435.7 436.8 435.7 419.0 6 420.0 8 423.7 8 427.3 419.0 6 423.7 8 427.3 419.0 6 423.7 8 427.3 419.0 6 423.7 8 427.3 419.0 6 423.7 8 427.3 425.8 427.3 4	+ 403.1 403.1 405.8 410.8 409.8 409.8 407.2 406.3 404.8 401.7 401.1 399.4 398.0 399.5 398.0 399.5 398.0 399.5 398.0 399.5 401.2 405.5 407.1 405.5 407.1 405.5 407.2 405.5 407.	+ 425.6 433.45 436.8 437.6 437.7 77.8 437.6 437.6 437.7 77.8 437.6 437.7 77.8 437.6 437.7 77.8 437.6 437.7 77.8 437.6 437.7 77.8 437.6 437.7 77.8 437.6 437.7 77.8 437.6 437.7 77.8 437.6 437.7 77.8 77.8 77.8 77.7 77.8 77.8 77.7 77.8 77.7 77.8 77.7 7	+ 452 · 1 452 · 1 457 · 6 461 · 0 462 · 7 458 · 5 457 · 6 458 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 6 457 · 7 457 · 6 457 · 7 457 · 6 457 · 7 457 · 6 457 · 7 457 · 7 4	+ 422.70 428.8 430.54 432.70 433.70 432.70 433.70	$\begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$+ 426.77 \\ 433.53 \\ 433.53 \\ 433.53 \\ 436.8 \\ 433.53 \\ 436.8 \\ 433.53 \\ 436.8 \\ 433.53 \\ 436.8 \\ 433.53 \\ 436.8 \\ 432.53 \\ 432.5 \\ 432.53 \\ 433.55 \\ 433.5$	Capt. Renny at the micrometer microscope; Mr. Keelan at the plain mi- croscope.	
		Mea	ns	61.12	277.57	421'51	398.08	430.23	451'74	423.86	419.65	424.18		

-

v_₁₃

SONAKHODA BASE-LINE

After the measurement-(Continued.)

As on page V_{-6} we have

 $\boldsymbol{x} - (t^{\circ} - 62^{\circ}) (\boldsymbol{E}_{a} - d\boldsymbol{E}_{a}) - \delta = \boldsymbol{0}$

and from the preceding bar comparisons we obtain the following series of results :---

	JT	d	··· 6.9~ / F	л	d N Sha
x - 2.30 (E)	2 – aL	(a) - 880 = 0	$x - 0.90 (E_a)$	- ar	(a) - 28.3 = 0
x - 3.12	**	-79.6 = 0	x + 8.92	"	-290.6 = 0
z - 3 ^{.8} 3	"	-66.5 = 0	x + 9.35	"	-296.7 = 0
z - 4.48	,,	-57.0 = 0	x + 9.55	22	-297 · 4 = 0
z - 5 [.] 08	"	- 47.7 = 0	#+ 9 [.] 55	"	-294.8 = 0
x - 5 [.] 58	"	- 4º:3 = 0	x + 9 ·3 5	"	-287.7 = 0
z – 6.03	,,	-32.1 = 0	# + 8·92	,,	-278.7 = 0
z - 6·48	"	-27.8 = 0	x + 8.35	"	-266.1 = 0
x - 6·85	"	-270 = 0	x + 7.65	,,	-251.8 = 0
x - 7.18	"	-23.5 = 0	x+ 6·82	,,,	-234.5 = 0
z - 7:45	"	- 16·3 = 0	x + 5·85	,,	-2160 = 0
z - 7.65	,,	- 17.4 = 0	x + 4.97	,,,	-199 ^{.0} = 0
z - 7.78	,,,	- 16·3 = 0	x + 4°20	"	-184.8 = 0
z - 7.83	"	-12.1 = 0	x — 1.68	,,	— 94 [.] 6 = 0
# + 9.77	"	-306.5 = 0	x - 2.50	,,,	-82.5 = 0
x +10.33	"	-309.8 = 0	x- 3 ² 3	,,,	-71.0 = 0
# + 10 ·40	,,	-310.1 = 0	x— 3.83	"	-62.6 = 0
<i>x</i> + 10.35	"	-307.2 = 0	x- 4 .50	"	-52.5 = 0
x +10.30	,,	-303.5 = 0	x— 5·20	"	- 44:4 = 0
x + 9.97	,,	-297.3 = 0	x — 5 [.] 68	"	- 37 [.] 4 = 0
#+ 9.60	"	-289.8 = 0	x— 6·13	"	-29.9 = 0
x+ 9.13	"	-280.4 = 0	x - 6.65	"	-26.1 = 0
#+ 8.60	"	$-268 \cdot 2 = 0$	x— 7.05	"	-21.9 = 0
# + 8·07	,,	-256.4 = 0	<i>x</i> — 7.40	"	- 17.5 = 0
x + 7:37	,,	-242.4 = 0	x— 7.68	"	- 15·5 = 0
#+ 6·47	"	-225.2 = 0	x - 7.83	"	-14.0 = 0
x + 5 [.] 67	"	-209.5 = 0	x — 7.90	"	- 15.0 = 0
x - 0.45	"	-117.5 = 0	x + 6·47	,,	-249.8 = 0
x- 1.13	"	-110.3 = 0	x + 6.87	"	-256.3 = 0
<i>x</i> - 1.78	"	-97.2 = 0	\$\$\$ 7°10	"	-259.6 = 0
x— 2. 50	"	-85.8 = 0	x+ 7.20	"	-262.2 = 0

V_14
BAR COMPARISONS

After the measurement-(Continued.)

$x - 3.20 (E_a)$	– dE _a	,) — 76·7 = 0	x+ 7·22 (E _a	— dE	a) - 259.9 = 0
x- 3.73	"	- 64.5 = 0	x+ 7.05	"	-256.7 = 0
# - 4.30	"	-53.9 = 0	x + 6·77	"	-251.5 = 0
<i>x</i> 4 ^{.80}	"	- 49 [.] 4 = 0	x + 6·42	"	-240.5 = 0
x - 5.43	"	-42.6 = 0	x+ 5.92	"	-228.3 = 0
x - 5 [.] 98	"	- 35 [.] 5 = 0	x+ 5·32	"	-217.4 = 0
x - 6·38	3 2	-32.5 = 0	#+ 4·62	"	-201.4 = 0
x — 6·68	,,	-30.5 = 0	x+ 3.77	,,	-183.8 = 0
x - 6.75	"	-30.7 = 0	x + 2.75	"	-166.6 = 0

And from the mean of these results,

$$x = 146.61 - 0.85 (E_a - dE_a)$$
:

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.639,$$

and
$$x = 131.62 + 0.85 dE_a = 169.16 + 0.85 dE_a = L - A_a$$

In terms of	A - L	B – L	C - L	D — L	$\mathbf{E} - \mathbf{L}$	H - L
Micrometer divisions.	— 2·67	- 26·10	+ 6·05	+ 27·56	-0.32	-4 [.] 53
Millionths of a yard.	— 3·43	- 33·54	+ 7·78	+ 35·42	-0.41	-5 ^{.82}

Also the following;

 $\mathbf{A} - \mathbf{A} = 128.95 + 0.85 \ dE_a = 165.73 + 0.85 \ dE_a$ B - A = 105.52 += 135.62 + " ,, C - A = 137.67 += 176.94 + ,, ,, D - A = 159.18 += 204.28 + " " $^{-}E - A = 131.30 +$ = 1.68.75 + ,, " H - A = 127.09 += 163.34 + ,, ,, and $6 x = 10150 + 51 dE_a$.

1

Final deduction of the total length measured with the compensated bars.

There was 37	· • • • • • • • • •	+ -		h		<i>u</i> n	<i></i>	
rrom page v	-7 the exce	88 OI 116	e o compensated b	ars abov	e o times A <i>befor</i> measure	$\left. \begin{array}{c} e & the \\ ment \end{array} \right\} =$	1197.2 -	48 ·4 <i>dE</i> _a
" V	— ₁₁	,,	**	,,	after set No.	. 291 =	1039.0 —	4.2 dEa
,, V	— ₁₅	"	>>) (after the measure or set No.	$\left\{\begin{array}{c} \text{ment} \\ . 583 \end{array}\right\} =$	1015.0 +	5°1 d E a
Therefore the	e mean excess	of	8 رز	pplicable	e to sets Nos. 1 to	291 =	1118.1 -	26·3 dEa
and	,,,		33		" 292 to	$55^{2} =$	1027.0 +	$0.5 dE_a$
Also the mean	n length of a	set of 6	compensated bars applica	3 in feet ble to se	of the standard, ts Nos. 1 to 291	=60.003	33543 A -	26·3 dEa
and	,,		a pplicable	e to sets	Nos. 292 to 582	=60.005	30810 A 10 +	0.5 dE _a

Similarly from pages V_{-11} and V_{-15} the mean excess of the two compensated bars A and H above twice A = $333^{\circ}6$ + $0^{\circ}2 dE_a$ and the mean length of the set of compensated bars A and H in feet of the standard = $20^{\circ}00008 \frac{A}{10} + 0^{\circ}2 dE_a$

Hence the total lengths measured with the compensated bars

in sets Nos	1. I to 145		feet of \mathbf{A} = 8700.4864 -	2811 dE
	146 to 291	••••••••	= 8760.4897 -	$3840 dE_a$
))	292 to 445	•••••	= 9240.4745 +	77 dE _a
"	446 to 582	• • • • • • • • • • • • • • • • • • • •	= 8220.4221 +	69 dEa
in set No.	583	••••••	= 20.0010 +	$o dE_a$
in sets No	s. 1 to 583	•••••	=34941.8737 -	7508 dE _a

Now the mean temperature of A during the bar comparisons before the measurement and after set No. 291 was $62^{\circ} + \frac{26^{\circ} \cdot 3}{6} = 66^{\circ} \cdot 4$, for which temperature the corresponding expansion of A from page (19) is 21.675 m.y. Also the mean temperature of A during the bar comparisons after set No. 291 and after the measurement was $62^{\circ} - \frac{0^{\circ} \cdot 5}{6} = 61^{\circ} \cdot 9$, for which temperature the corresponding expansion of A from page (19) is 21.647 m.y. Comparing these values of expansion with the original value = 22.67 m.y, used in the foregoing; it is found that $dE_a = + 0.995 m.y$, for sets Nos. 1 to 291, and = + 1.023 m.y, for sets Nos. 292 to 583. Substituting for dE_a respectively these numerical values, there result,

Total lengths measured with the compensated bars

			Jeet	of	A
in sets Nos.	1 to 145 or S.W. End,	to Stn. A	= (8700.4864 -	- ·oi14) =	8700.4750
"	146 to 291 or Stn. A,	to Stn. B	= (8760.4897 -	0112) =	8760.4782
33	292 to 445 or Stn. B,	to Stn. C	= (9240.4745 -	+ •0002) =	9240.4747
"	446 to 583 or Stn. C,	to N.E. End	= (8240.4231 -	+ .0002) =	8240.4233
,,	1 to 583 or S.W. End,	to N.E. End	= (34941.8737 -	0225) =	34941.8512

V____16

Comparisons between the Compensated Microscopes and their 6-inch brass scales during the measurement, and provisional determination of Microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m.i.)

w	je.	ared with.	ipera-	2° Fah. 3″ scale 15 m.i.	Micro Microsco	pe Scale.	ь – Д , h.	Micros : - Scale A, at 62° Fah.		
		licroscol	compare	cted ten ture.	ion to 6 sion of (= E = 62	Ubserved term	value in s of	s : Scale t 62° Fa		nce er.
	1847-48	A	Scale o	Corre	Reduct Expans for 1°.	Divisions 10000 = 1".	m.i.	Micro	<i>m.</i> ī.	Refere numb
December 31	d Before the measure- ment.	U S P M N O T	U S M N R T	73 ^{.55} 74 [.] 77 75 [.] 26 76 [.] 92 76 ^{.01} 72 ^{.45}	+ 722 798 856 829 933 876 653	- 4°0 5°6 2°8 0°0 4°0 9°0 1°9	- 400 560 280 000 400 900 190	$ \begin{array}{r} + 283 \\ - 75 \\ + 350 \\ - 21 \\ + 363 \\ - 93 \\ - 97 \\ \end{array} $	+ 605 163 926 808 896 69 366	1 2 3 4 5 6 7
" 10t	h Between sets No. 66 and 67.	U S P M N O T	U S P M N R T	69.75 70.47 73.72 70.96 72.92 69.71 70.05	+ 484 529 733 560 683 482 503	$ \begin{array}{r} - 3^{\cdot 3} \\ 4^{\cdot 7} \\ 1^{\cdot 4} \\ + 3^{\cdot 1} \\ - 1^{\cdot 9} \\ 5^{\cdot 3} \\ + 1^{\cdot 0} \\ \end{array} $	$ \begin{array}{r} - 330 \\ 470 \\ 140 \\ + 310 \\ - 190 \\ 530 \\ + 100 \\ \end{array} $	+ 283 - 75 + 350 - 21 + 363 - 93 - 97	$ \begin{array}{r} + 437 \\ - 16 \\ + 943 \\ 849 \\ 856 \\ 45 \\ 500 \end{array} $	8 9 10 11 12 13 14
" 161	h Between sets No. 145 and 146.	U U* S P M N O T	U U S S P M N R T	60.55 64.35 63.37 66.97 64.12 64.46 67.12 61.41 63.35	$ \begin{array}{r} - & 91 \\ + & 147 \\ & 86 \\ & 311 \\ & 133 \\ & 154 \\ & 320 \\ - & 37 \\ + & 84 \\ \end{array} $	$ \begin{array}{r} + & 1.6 \\ & 0.2 \\ - & 1.1 \\ & 2.8 \\ + & 2.8 \\ & 8.6 \\ & 1.1 \\ - & 1.1 \\ + & 4.3 \\ \end{array} $	+ 160 20 - 110 280 + 280 860 110 - 110 + 430	$ \begin{array}{r} + 283 \\ 283 \\ - 75 \\ 75 \\ + 350 \\ - 21 \\ + 363 \\ - 97 \end{array} $	$ \begin{array}{r} + 35^{2} \\ + 35^{0} \\ - 99 \\ + 763 \\ 993 \\ 793 \\ - 54 \\ + 417 \\ \end{array} $	15 16 17 18 19 20 21 22 23
January 1	st Between sets No. 291 and 292.	S U P M N O T	S U P M N R T	73 ² 7 74 ¹⁵ 7672 7006 7512 7521 7275	+ 704 7.59 920 879 820 820 672	$ \begin{array}{r} - & 6 \cdot 0 \\ & 4 \cdot 6 \\ & 3 \cdot 0 \\ + & 2 \cdot 2 \\ - & 4 \cdot 2 \\ & 9 \cdot 0 \\ & 0 \cdot 0 \end{array} $	$ \begin{array}{c} - & 600 \\ & 460 \\ & 300 \\ + & 220 \\ - & 420 \\ & 900 \\ & 000 \end{array} $	$ \begin{array}{r} - & 75 \\ + & 283 \\ & 350 \\ - & 21 \\ + & 363 \\ - & 93 \\ - & 97 \end{array} $	+ 29 582 970 1078 763 19 575	24 25 26 27 28 29 30
, , 11	, 11th Between sets No. 445 and 446.		S U P P M N R T	71.77 71.25 74.92 75.42 73.96 74.52 73.01 71.85	+ 611 578 808 839 748 783 688 616	$\begin{vmatrix} - & 5 \cdot 0 \\ & 2 \cdot 5 \\ & 3 \cdot 2 \\ & 5 \cdot 5 \\ + & 1 \cdot 2 \\ - & 3 \cdot 3 \\ & 8 \cdot 9 \\ & 0 \cdot 0 \end{vmatrix}$	$ \begin{array}{r} - 500 \\ 250 \\ 320 \\ 550 \\ + 120 \\ - 330 \\ 890 \\ 000 \\ \end{array} $	$ \begin{array}{r} - & 75 \\ + & 283 \\ & 350 \\ - & 21 \\ + & 363 \\ - & 93 \\ - & 97 \end{array} $	+ 36 611 838 639 847 816 - 109 + 519	31 32 33 34 35 36 37 38

* These microscopes were compared a second time, because they were adjusted after the first comparison.

.

V_17

Whe	n compared	pe.	ed with.	mpera-	62° Fah. 6′ scale 32·5 m.i.	Micro Microsco	pe Scale.	le — <i>A</i> , ah.	Micros : at 62°	- Scale $\boldsymbol{\varDelta}$, 'Fah.
	-	icrosco	ompar	cted te ture.	ion to ion of E = E	Observed tern	value in ns of	s: Sca 62° H		nce er.
	1848	M	Scale c	Corre	Reduct Expans for 1°=	Divisions 10000 = 1"	<i>m.i.</i>	Micro	m.i.	Refere numb
January 18th	After the measure- ment.	S U P M N O T	S U P M N R T	° 70`37 66`25 74`02 66`76 65`62 65`11 71`25	+ 523 266 751 298 226 194 578	$ \begin{vmatrix} - & 3.0 \\ & 0.9 \\ & 1.2 \\ + & 6.0 \\ & 1.6 \\ - & 4.2 \\ + & 0.9 \end{vmatrix} $	$ \begin{array}{r} - 300 \\ 90 \\ 120 \\ + 600 \\ 160 \\ - 420 \\ + 90 \end{array} $	$ \begin{array}{r} - & 75 \\ + & 283 \\ & 350 \\ - & 21 \\ + & 363 \\ - & 93 \\ - & 97 \end{array} $	$ \begin{array}{c} + & 148 \\ & 459 \\ & 981 \\ & 877 \\ & 749 \\ - & 133 \\ + & 571 \end{array} $	39 40 41 42 43 44 45

Microscope Comparisons-(Continued.)

The required combinations of individual microscope errors taken from pages V_{17} and V_{18} , are expressed as follows;

					Ref	erenc	e n	umbe	rs.						m.i.		me	an t	emp :			
<i>e</i> 1	=	2	+	3	+	4	+	5	+	6	+	$\frac{1+7}{2}$	=	+	3348	at	(6°2	+	13 [°] 28)		before the me	easurement.
ez	=	9	+	10	+	11	+	12	' +	13	+	$\frac{8+14}{2}$	=	+	3149	at	(62	+	9.28)		between sets	66 & 67
e ₃	=	17	+	19	+	20	+	2 I	+	22	+	$\frac{15+23}{2}$	=	+	2781	at	(62	+	1.74)		"	145 & 146
e4	=	18	+	19	+	20	+	2 I	+	22	+	$\frac{16+23}{2}$	=	+	2885	at	(62	+	2 [.] 66)	made	"	do.
e ₅	=	25	+	26	+	27	+	28	+	29	+	$\frac{24+30}{2}$	=	+	3714	at	(62	+	12.05)	risons	>>	291 & 292
e ₈	=	32	+	33	+	35	+	36	+	37	+	$\frac{31+38}{2}$	=	+	3281	at	(62	+	11.52)	ımpaı	"	445 & 446
e7	=	32	+	34	+	35	+	36	+	37	+	$\frac{31+38}{2}$	=	+	3082	at	(62	+	11.33)	om	"	do.
e ₈	=	32									+	$\frac{31+38}{2}$	=	+	889	at	(62	+	9.53)	Hr.	,,	do.
e ₉	=	40	+	41	+	42	+	43	+	44	+	$\frac{39+4.5}{2}$	=	+	3293	at	(62	+	6.10)		after the me	asurement.
<i>e</i> 10	=	40									+	$\frac{39+45}{2}$	=	+	819	at	(62	+	6 [.] 53)		"	do.

V_18

Microscope Comparisons—(Continued.)

And from the foregoing, we obtain the following equations for the microscope errors per set (or m.e.); where dE expresses the error in the adopted value of the expansion for the 6-inch scales.

(m.e.) ₁	=	$\frac{e_1+e_3}{2}=+$	^{т.з.} 3249 — б х	11°28 dE	applicable to	o sets Nos.	ıto 66
(m.e.) ₃	=	$\frac{e_2+e_3}{2}=+$	2965 — 6 X	5.51 dE	> >	"	67 to 145
(m.e.) ₃	=	$\frac{e_4 + e_5}{2} = +$	3300 — 6 x	7·36 dE	"	"	146 to 291
(m.e.) ₄	=	$\frac{e_5 + e_6}{2} = +$	3498 — 6 ×	11.65 dE	÷	"	292 to 445
(m.e.) ₅	=	$\frac{e_7+e_9}{2}=+$	3188 — 6 ×	8'72 <i>dE</i>	"	"	446 to 582
(m.e.) ₆	=	$\frac{e_8 + e_{10}}{2} = +$	854 — 2 X	8.03 <i>dE</i>	"	set No.	583

Hence the total microscope errors are as follows,

In sets Nos.	1 to	145 =	<pre>66 79</pre>	$(m.e)_1$ $(m.e)_2$	= + = +	m.i 214434 234235	_	4467 dE 2612 dE	=	feet +	of A 0179 - 0195 -	• 4467 • 2612	dE dE
								sum	= •	+ .	-374 -	- 7079	, dE
In sets Nos.	146 to	291 =	146	(m.e) ₃	= +	481800	-	6447 dE	= .	+ .c	0402 -	6447	dE
In sets Nos.	292 to	445 =	154	$(m.e)_{4}$	= +	538692	- 1	10765 dE	=	+ '	0449 -	- 10765	; dE
In sets Nos.	446 to	583 =	{ ¹³⁷	${(m.e)}_{5}$ ${(m.e)}_{6}$	= + = +	436756 854	_	7168 dE 16 dE	=	+	0364 - 0001 -	- 7168 - 16	3 dE 5 dE
								sum	=	+ '(0365 -	- 7184	↓ <i>dE</i>

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally; *i.e* in terms of the 6-inch brass scale A. But from page (31), we have $2A = 1.0000192 \frac{A}{10}$, value in 1835. Also the coefficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that .000,000,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (*m.e*), we have,

Microscope Comparisons-(Continued.)

Total lengths measured with the compensated microscopes

In sets Nos. 1 to 145 or S.W. End, to Stn. A	$\left. \begin{array}{c} \text{feet of } A \\ 145 \times 3 + 0.074 \end{array} \right\} - 7079 \ dE = ($	<i>feet</i> 435°0458—	of •0020)=	A 435 [.] 0438
,, 146 to 291 or Stn. A, to Stn. B	$\left.\right\} \ \ldots \ \ldots \ = \left\{ 146 \times 3 + 0402 \right\} - 6447 \ dE = ($	438.0486—	=(8100	438.0468
or Stn. B, to Stn. C	$\left.\right\} \ \ldots \ = \left\{154 \times 3 + 0449\right\} - 10765 \ dE = ($	462.0538—	•0030)= •	462.0508
or Stn. C to N.E. End	$\left. \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	412.0444—	·0020)=	412.0424
r to 583 or S.W. End, to N.E. End	} [(1747.1926—	·oo88)=1	747'1838

The following typical illustrations shew the permutations and combinations of the bars and microscopes during the measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set, and the numbers assigned to the illustrations, will be found employed in the tables of "Extracts from the Field Book &c."

Digitized by Google

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin.

Adopted heights above mean sea level.

South-West-End (origin) = 222.5 feet.

North-East-End (terminus) = 246.9 feet.

1947	the Set.	ture of Air	Mean time of	bars used f Set above igin	Nur she arra mer	meral wing mge- nt of		the Set.	ure of Air	Mean time of	ars used	set above gin	Nur she arra me	neral wing inge- nt of
	No. of	Tempera	enung	No. of Height of or	Bars.	Micros :	1847	No. of	Temperat	ending	No. of b	Latergate of ori	Bars.	N'ic 03 :
4th Dec. 6th " 7th "	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3	667777775666777777777756667777777777566666777777	h. m. 8 31 A.M. 9 46 10 54 2 49 3 29 4 18 7 27 A.M. 8 14 9 9 9 55 10 45 1 29 P.M. 2 9 2 47 3 32 4 22 5 2 7 35 A.M. 8 19 9 3 9 43 10 15 1 54 1 41 P.M. 2 20 2 52 3 26 4 5 4 39 7 15 A.M. 7 55 8 27 8 59 9 43 10 15 1 41 P.M. 2 20 2 57 3 26 4 5 4 39 7 15 A.M. 7 55 8 27 8 59 9 43 10 15 1 4 1 P.M. 2 20 2 52 3 26 4 5 4 39 7 15 A.M. 7 55 8 27 8 59 9 43 10 15 1 4 7 P.M. 2 20 2 54 3 31 4 5 4 5 4 5 3 31 4 5 4 5 3 31 4 5 4 5 4 5 3 31 4 5 4 5 4 5 3 31 4 31	feet. +			8th Dec. 9th "	4444444445055555555555566666666666667777777777	079520591300266280215522777777777555666677777755566677777777	h. m. 4 40 P.M. 7 0 A.M. 7 33 8 5 8 34 9 0 9 34 10 7 10 36 11 10 1 42 P.M. 2 12 2 44 3 11 3 47 4 18 4 57 6 59 A.M. 7 36 8 8 8 43 9 18 9 44 10 15 2 33 P.M. 3 3 3 3 4 1 4 31 5 0 A.M. 7 22 7 55 8 25 8 53 9 25 10 5 10 29 11 1 2 20 11 1 1 20 10 20 1	<pre> aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</pre>	feet. 21 01 12 3.52 1 4 1 1 1 4 7 28 97 0 0 0 98 4 53 4 4 4 3 5 5 3 4 2 0 3 4 4 3		

Note.—The rear-end of set No. 1 stood exactly over the dot at South-West-End. December 4th. (3) Cloudy. December 6th and 7th. Foggy morning.

V____1

Extracts from the Field Book-(Continued.)

٠

		the Set	ure of Air	Mean time of	oars used	Set above igin	Nur she arra men	neral wing nge- nt of	1047	the Set	ture of Air	Mcan time of	bars used ? Set above igin	Nun shev arra mer	me ral wing mgo- nt of
184	w	No. of	Temperat	enaing	No. of 1	Height of	Bars.	Micros:	1847	No. of	Temperat	enaing	No. of Height of or	Bars.	Micros:
11th]	Dec.	85 86 87 88 89	77.9 77.3 76.8 75.8 74.1	h. m. 2 46 P.M. 3 15 3 43 4 24 4 53	6 - 6 6 6 6	feet. .3 .6 .2 .1 .1	I I I I I	I I I I I	14th De	ec. 117 118 119 120 121	, 75.7 76.0 76.8 77.3 77.2	<i>h. m.</i> 1 23 Р.М. 1 50 2 20 2 46 3 18	$ \begin{array}{c} $	I I I I	I I I I I
13th	"	90 91 92 93 94 95 96 97 98 99	54.8 55.7 57.4 59.4 61.9 64.6 67.9 70.2 72.3 74.4	o 55 A.M. 7 23 7 50 8 14 8 46 9 12 9 42 10 8 10 37 11 8	00000000000	·1 ·2 ·4 ·5 ·6 ·7 ·8 ·9 1·2 1·0	1 1 1 1 1 1 1 1 1 1 1 1		15th "	122 123 124 125 126 127 128 129 130 131	70·3 75·7 74·0 52·8 53·9 56·3 59·2 65·0 68·0	3 44 4 17 4 45 7 2 A.M. 7 35 8 8 8 41 9 13 9 42 10 17	0 3'8 6 4'1 6 4'4 6 4'6 6 4'8 6 5'3 6 6'3 6 6'7 6 6'6		
14th .	;;	100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	70°4 76°8 77°0 75°7 75°7 75°7 75°7 75°7 55°0 57°0 55°0 55	1 35 P. m . 2 5 2 35 3 3 3 31 4 0 4 34 5 8 ▲. M . 7 30 8 1 8 30 8 58 9 26 9 54 10 18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·9 ·7 ·6 ·5 ·7 ·0 ·3 ·3 ·7 ·9 ·1 ·4 ·9 ·1 ·2 ·2 ·2 ·4			16th "	132 133 134 135 136 137 138 139 140 141 142 143 144 145	71.2 75.8 76.0 75.6 74.7 74.0 51.3 52.7 53.5 57.3	10 41 11 14 1 45 P.M. 2 15 2 41 3 4 3 30 3 56 4 26 4 57 6 56 A.M. 7 28 8 0 8 52 Total	$\begin{array}{c} 0 & 0^{\circ}3 \\ 6 & 5^{\circ}9 \\ 6 & 6^{\circ}1 \\ 6 & 6^{\circ}0 \\ 6 & 5^{\circ}7 \\ 6 & 5^{\circ}4 \\ 6 & 5^{\circ}4 \\ 6 & 4^{\circ}9 \\ 6 & 5^{\circ}5 \\ 6 & 6^{\circ}3 \\ 6 & 6^{\circ}3 \\ 6 & 6^{\circ}4 \\ 6 & 4^{\circ}4 \\ \end{array}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	The Hei The	dot ght o tern	70'0 denoti of set l ninal p	10 47 ng Station A No. 145 above point of set N	б was fi e Stati o. 145	2 ^{.8} xed exa on A = was tl	$\begin{bmatrix} \mathbf{I} \\ \mathbf{I} \end{bmatrix}$ $= \mathbf{I} \cdot \mathbf{I}$ $= \mathbf{I} \cdot \mathbf{I}$ $= \mathbf{I} \cdot \mathbf{I}$	I n the feet. nt of o	normal a origin for	t the a	dvance o. 146.	d-end of set]	No. 145.		
16th ,	נ נ נ נ	146 147 148 149 150 151	72.4 72.3 72.4 72.3 72.0 72.0 72.0	I 52 P.M. 2 22 2 55 3 22 3 52 4 22 4 54	6 + 6 6 6 6 6 6 6	6.7 6.6 6.2 6.1 5.8 5.3		222222	17th "	159 160 161 162 163 164	64.0 66.3 68.0 74.0 74.1 73.5	9 58 A.M. 10 25 10 53 1 28 P.M. 1 56 2 23 2 51	$\begin{array}{c} 6 + 5.7 \\ 6 5.9 \\ 6 6.3 \\ 6 6.7 \\ 6 6.6 \\ 6 7.2 \\ 6 \end{array}$	I I I I I I	2 2 2 2 2 2 2 2
17th ,	, 1 1 1 1 1 1	153 154 155 155 156 157 158	579 54°0 55'9 57'7 59'5 61'8	4 54 7 5 J.M. 7 34 8 9 8 35 9 3 9 29	000000	5°4 5°1 5°0 5°2 5°0 5°5	I I I I I I I	* 2 2 2 2 2 2 2 2 2 2 2	18th "	166 167 168 169 170 171	733 734 733 720 700 514 530	2 51 3 20 3 49 4 18 4 47 7 2 A.M. 7 38	6 7.1 6 6.5 6 6.2 6 5.9 6 6.0 6 6.1		3 2 2 2 2 2 2 2 2 2

December 14th. (108) Cloudy morning.

Ý____22

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	bars used Set above	Nu sh arr mo	meral ewing ange- ent of	10.17	the Set	ure of Air	Mean time of	ars used	' Set above igin	Num shev arra men	neral wing nge- at of
1847	No. of	Temporat	ending	No. of 1 Height of	Bars.	Micros :	1847	No. of	Temperat	enaing	No. of 1	Height of or	Bars	Micros:
18th Dec	2. 172 173 174 175 176 177	55.7 57.9 61.4 64.2 67.3 69.5	h. m. 8 11 A.M. 8 40 9 9 9 34 10 4 10 29	$ \begin{array}{c} fee \\ 6 + 6 \\ 6 & 6 \\ 6 & 6 \\ 6 & 6 \\ 6 & 7 \\ $	t. ¹ 2 I ¹ 3 I ¹ 5 I ¹ 5 I ¹ 0 I ¹ 2 I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22nd Dec	223 224 225 226 227 228	60°5 63°1 65°2 66°8 72°7 72°7	h. m. 9 38 а.м. 10 9 10 36 11 2 2 8 р.м. 2 35	6 6 6 6 6 6 6 6 6 6	feet. + 9'4 9'6 9'3 9'1 9'0 9'1	T I I I I T	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20th "	178 179 180 181 182 183 184 185 186 187 188 189	70.8 75.3 75.3 76.5 75.7 75.0 74.3 73.4 71.5 53.1 55.3 58.3	10 59 1 45 P.M. 2 13 2 46 3 17 3 44 4 10 4 34 4 59 7 14 A.M. 7 45 8 12	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 1 3 1 5 <t< td=""><td></td><td>23rd "</td><td>229 230 231 232 233 234 235 236 237 238 239 240</td><td>730 73°1 72°3 71°8 70°2 53°0 54°7 57°1 59°6 61°7 63°5 66°6</td><td>3 10 3 35 4 7 4 33 5 1 7 22 A.M. 7 46 8 16 8 41 9 7 9 30 9 54</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>9.5 9.3 9.2 9.3 9.6 10.1 10.0 10.5 10.0 10.0</td><td></td><td>222222222222222222222222222222222222222</td></t<>		23rd "	229 230 231 232 233 234 235 236 237 238 239 240	730 73°1 72°3 71°8 70°2 53°0 54°7 57°1 59°6 61°7 63°5 66°6	3 10 3 35 4 7 4 33 5 1 7 22 A.M. 7 46 8 16 8 41 9 7 9 30 9 54	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.5 9.3 9.2 9.3 9.6 10.1 10.0 10.5 10.0 10.0		222222222222222222222222222222222222222
	190 191 192 193 194 195 196 197 198 199	00°0 62°8 64°9 67°4 69°5 70°3 74°2 74°3 73°9 74°2	8 33 8 58 9 26 9 56 10 22 10 48 1 46 P.M. 2 10 2 37 3 1	6 7 6 7 6 7 6 7 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 8 8 6 6 8 8 6 6 8 8 6 6 8 8 6 6 8 8 6 6 8 8 6 6 6 8 8 6 6 8 8 6 6 8 8 8 8	7 I 6 I 1 1 8 I 9 I 1 1 1 1 1 1 1 3 1 1 3 I 1 3 1 1 6 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27.1	241 242 243 244 245 246 247 248 249 250 251	70°2 73°2 74°0 74°9 75°1 74°9 74°7 74°0 72°7	IO 19 IO 54 I 43 P.V. 2 9 2 38 3 4 3 30 3 52 4 18 4 49 7 27 A.M.	000000000000000000000000000000000000000	10 y 11 · 1 10 · 8 10 · 2 10 · 3 10 · 0 9 · 8 9 · 2 9 · 0 8 · 6		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21st "	200 201 202 203 204 205 206 207 208 209 210	737 735 729 718 522 520 594 615 645 672 723	5 27 3 49 4 13 4 41 7 12 A.M. 7 41 9 30 9 58 10 27 10 54 1 41 P.M.		+ + I I I I I I I I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27tn "	252 253 254 255 256 257 258 259 260 261	54'5 58'1 61'1 63'5 68'4 70'2 75'3 74'7 74'7	7 57 8 33 9 4 9 33 10 0 10 29 10 57 1 48 P.M. 2 18 2 45		8.8 8.8 9.1 8.7 8.6 8.6 8.9 9.1 9.8 9.7 9.7	1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
22nd "	211 212 213 214 215 216 217 218 219 220 221 222	72'4 72'3 72'2 72'0 71'5 70'9 51'5 52'1 53'4 55'4 57'8	2 7 2 36 2 59 3 25 3 51 4 16 4 43 7 16 A.M. 7 44 8 14 8 14 8 42 9 10	6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		28th ", .	263 264 265 266 269 270 271 272 273	74-3 74-3 74-0 73-0 71-7 50-5 52-1 55-4 57-9 60-4 63-0 65-1	3 39 4 5 4 30 4 57 7 22 A.M. 7 53 8 24 8 53 9 28 9 59 10 24	, , , , , , , , , , , , , , , , , , ,	9.4 9.6 9.7 10.3 10.3 10.3 10.4 10.2 9.6 9.7 9.6		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

December 21st, 22nd and 28th. Foggy morning.

V____3

Digitized by Google

.

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	ars used	Set abore gin	Num shev arrai men	neral ving nge- t of	10/7 /6	the Set	ure of Air	Mean time of	bars used	Set above igin	Num shew arran men	eral ving nge- t of
1847-48	No. of	Temperat	ending	No. of t	Height of ori	Bars	Micros :	1847-48	No. of	Temperat	ending	No. of	Height of ori	Bars.	Micros:
28th Dec. 29th " Th	274 275 276 277 280 281 282 283 e dot	o 77.5 73.1 74.8 75.0 74.3 74.2 73.2 71.8 51.3 denot	h. m. 10 55 A.M. 1 36 P.M. 2 7 2 36 3 1 3 27 3 48 4 22 4 55 7 10 A.M. ing Station B	6 6 6 6 6 6 6 6 6 8 8 8	<i>feet.</i> + 9.9 10.0 9.9 9.9 10.3 10.1 10.1 10.2 10.4 10.8	I I J I I I I I I I I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29th Dec.	284 285 286 287 288 289 290 291 the a	52.9 55.0 57.1 59.9 61.7 64.4 66.3 70.9	h. m. 7 37 A.M. 8 3 8 27 8 54 9 23 9 52 10 17 11 31 Tot	6 6 6 6 6 8 1 + No. 2	feet. + 11'3 11'5 12'0 12'2 12'6 12'9 13'2 13'1 1274'0 291.		2 2 2 2 2 2 2 2 2 2
3rd Jan. 4th "	- 292 293 294 295 296 297 298 300 301 302 303 304 305 307 309 311 312 313 314 315 317 318 321 312 312 312 312 312 322 324	$5^{1}5^{0}5^{0}5^{0}5^{0}5^{0}5^{0}5^{0}5^{0$	7 12 A.M. 7 43 8 9 8 37 9 6 9 37 10 6 10 31 11 2 1 30 P.M. 1 54 2 23 2 51 3 13 3 39 4 55 7 17 A.M. 7 49 8 17 8 46 9 26 10 54 1 11 P.M. 1 36 1 59 2 21 2 42 3 23 2 31 1 33 3 39 4 55 7 17 A.M. 7 49 8 17 8 46 9 26 10 54 1 11 P.M. 1 36 1 59 2 21 2 42 3 59 2 21 2 42 3 59 2 21 2 42 3 59 2 21 2 42 3 59 2 21 2 42 3 59 2 21 2 42 3 59 2 21 2 42 3 59 3 28	00000000000000000000000000000000000000	+ $13^{\circ}1$ $12^{\circ}9$ $13^{\circ}0$ $13^{\circ}1$ $13^{\circ}4$ $13^{\circ}5$ $14^{\circ}0$ $14^{\circ}2$ $14^{\circ}3$ $14^{\circ}0$ $14^{\circ}2$ $14^{\circ}3$ $15^{\circ}3$ $15^{\circ}3$ $15^{\circ}3$ $15^{\circ}3$ $15^{\circ}5$ $15^{\circ}3$ $15^{\circ}5$			4th Jan 5th "	- 228 90 12 33456 78 90 12 33 33 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3	7092 5172 5349 5580 6300 7227 7288 807 7277 7288 807 7277 7288 807 7277 7288 807 7277 7288 807 7277 7288 807 7277 7288 807 7277 7288 807 7277 7288 807 7277 7288 807 7277 7278 7277 7277 7278 7277 7277 7277 7278 7277 7277 7278 7277 7277 7278 7277 7577 7577 7575	4 35 P.M. 5 I 7 4 A.M. 7 3^2 7 57 8 2^2 8 49 9 14 9 38 10 2^2 10 45 I 29 1 53 2 18 2 40 2 59 3 24 3 45 4 29 3 243 4 53 4 29 3 455 4 8 4 29 3 455 4 8 4 29 3 455 4 8 4 29 3 455 4 8 4 29 4 53 7 4 A.M. 7 33 8 155 9 17 9 40 10 255 10 255	00000000000000000000000000000000000000	+ 160 157 161 163 161 162 162 165 165 165 165 165 165 165 165 167 173 175 175 177 184 185 187 193 193 185 187 185 187 193 185 185 185 1857 193 1857 1857 1857 193 1857 1857 1857 1857 1930 1857 1857 1857 1857 1953 1857 1857 1857 1857 1857 1953 1857		

_

January 4th. Foggy morning.

V____24

Extracts from the Field Book-(Continued.)

1040	the Set	ure of Air	Mean time of	oars used	Set above igin	Num shew arran men	ieral ring nge- t of	1040	the Set	ure of Air	Mean time of	bars used	. Set above gin	Num shew arran men	neral ying nge- t of
1949	No. of	Temperat	ending	No. of 1	Height of	Bars.	Micros:	1040	No. of	Temperat	ending	No. of	Height of ori	Bars.	Micros:
6th Jan	, 362 363 364	0 71.3 72.0 72.0	h. т. 157 Р.М. 220 244	6 H 6 6	<i>feet.</i> - 19°0 19°0 18°8	I	2 2 2	Șth Jan	406 407 408	。 72.7 72.3 72.2	ћ. т. 2 16 р.м. 2 39 3 3	6 6 6	feet. + 17°4 17°6 17°7	I I I	2 2 . 2
	365 366 367 368 369	72.0 71.2 70.9 69.9 69.1	3 7 3 35 3 58 4 20 4 40	6 6 6 6	19'2 19'4 19'1 19'2 19'2	I I I I	2 2 2 2 2		409 410 411 412 413	72.1 71.9 71.5 71.2 70.5	3 23 3 47 4 4 4 24 4 45	6 6 6 6 6	17.5 17.4 17.4 17.2 17.5	I I I I	2 2 2 2 2
7th "	370 371 372 373 374	67 [.] 8 47 [.] 3 48 [.] 0 49 [.] 8 51 [.] 2	5 3 7 6 A.M. 7 36 8 1 8 24	6 6 6 6	18.9 19.0 19.3 19.3	I I I I	2 2 2 2 2	10th "	414 415 416 417 418	69 ^{.2} 50 ^{.1} 51 ^{.1} 52 ^{.8} 55 ^{.1}	5 6 7 19 л.м. 7 42 8 6 8 26	6 6 6 6 6	17 ^{.8} 17 ^{.8} 17 ^{.9} 18 ^{.0} 18 ^{.0}	I I I I	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	375 376 377 378 378	52.9 54.0 55.2 57.0 58.0	8 48 9 12 9 33 9 56	6666	19 [.] 5 19 [.] 2 19 [.] 3 19 [.] 4	1 I I I	2 2 2 2 2 2		419 420 421 422 423	57.0 59.0 61.4 63.3 65.2	8 52 9 14 9 40 10 3 10 24	6 6 6 6 6	18.3 18.8 18.8 18.7	I I I I	2 2 2 2 2 2 2
	380 381 382 383	60.4 62.9 68.2 69.1	IO 37 II I I 21 P.M. I 42	0 0 0 0 0 0 0	18 9 19 0 18 8	I I I I	2 2 2 2 2		424 425 426 427 427	66·2 67·3 72·5 72·7	IO 47 II 13 I 37 P.M. I 58	66666	18·4 18·5 18 9 18·5	I I I I	2 2 2 2 2 2
	385 386 387 388	70.0 70.2 70.2 70.1	2 26 2 48 3 9 3 36	0000	19 2 18.7 18.5 18.1 17.3	I J I I	2 2 2 2 2 2 2 2 2		429 430 431 432	73.2 73.5 73.2 73.0	2 44 3 8 3 31 3 55	6 6 6 6 6	18.4 18.4 18.9 19.3	1 1 1 1	2 2 2 2 2 2 2
8th "	389 390 391 392 393	09'7 69'0 68'7 67'5 47'5	3 58 4 19 4 39 5 1 7 7 ∧.	6 6 6 6 6 6 6	17'3 17'4 17'1 17'2 17'3	I I I I	2 2 2 2 2 2	llth "	433 434 435 436 437	72.5 71.8 71.1 50.4 50.0	4 15 4 38 5 2 7 9 A.M. 7 37	0 6 6 6	18·9 18·8 18·5 18·1 18·1	1 1 1 1 1	2 2 2 2 2 2 2 2
	394 395 396 397 308	48.7 49.5 50.9 53.3 55.7	7 36 8 0 8 24 8 50 0 14	6 6 6 6 6	17'1 17'6 18'0 17'8	I I I I	2 2 2 2 2		438 439 440 441 442	52°2 54°0 56°4 59°2 62°0	8 7 8 31 8 57 9 23 9 48	6 6 6 6 6 6	18.8 19.0 19.3 19.5	I I I I I	2 2 2 2 2 2
	399 400 401 402	58.1 61.2 63.9 65.5	9 39 10 1 10 27 10 48	0000	17'9 17'6 18'2 18'5	I I I I	2222		443 444 445	63·5 65·2 68·8	10 12 10 38 11 31	6 6 6	19.9 20.3 20.3	I I I	22
ר ד	403 404 405 The do Height	72.0 72.3 t deno of set	11 13 1 28 P.M. 1 52 ting Station (2 No. 445 abo	o 6 8 Was ve St	18.3 18.1 17.5 fixed exation C	$\begin{vmatrix} I \\ I \\ I \\ actly \\ = 0.3$	2 2 2 in the feet.	normal a	t the	advanc	ed-end of set	No.	445.	ļ	l
7	The te	rminal	point of set	No. 4	45 was	the p	oint of	origin for	set 1	No. 44	6.				

•

V__25

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	oars used	Set above gin	Nun shev arra men	neral wing nge- nt of		the Set	ure of Air	Mean time of	ars used	. Set above igin	Nur shev arra mer	neral wing .nge- nt of
1848	No. of	Temperat	ending	No. of 1	Height of	Bars.	Micros:	1848	No. of	Temperat	ending	No. of h	Height of ori	Barn	Micros :
11th Jan 12th "	4478 4553 4556 78 900 1 2 3 4 5 56 7 8 900 1 2 3 4 5 5 56 7 8 900 1 2 3 4 5 5 5 7 8 900 1 2 3 4 5 5 7 8 900 1 2 3 4 5 7 8 900 1 2 3 4 5 7 8 900 1 2 3 4 5 7 8 900 1 2 3 4 5 7 8 9	0722793097817055555555555555555555555555555555555	h. m. 3 13 F.M. 3 37 3 57 4 19 4 41 5 3 7 11 A.M. 7 36 7 56 8 15 8 37 8 50 9 20 9 40 10 3 10 22 10 45 11 6 1 15 F.M. 1 37 1 55 2 17 2 38 2 57 3 18 3 39 4 1 4 18 4 40 5 5 7 10 A.M. 7 38 8 4 8 52 9 15 9 30 9 57 10 20 10 40 11 6 1 17 F.M. 1 35 1 54 2 13 2 24	00000000000000000000000000000000000000	<i>feet.</i> + 20.4 20.5 20.7 20.8 20.3 20.2 20.3 20.2 20.3 20.2 20.4 20.5 20.5 20.5 20.5 20.6 20.5 20.7 20.6 20.5 20.7 20.6 20.7 20.6 20.7 20.6 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13th Jan 14th "	497899012345078900112345078901223450789012334507890012355555555555555555555555555555555555	0720079555555555555555555555555555555555	\hbar . m. 4 6 P.M. 4 30 4 48 5 8 7 6 A.M. 7 27 7 50 8 9 8 31 8 52 9 14 9 35 9 58 10 41 11 3 1 13 P.M. 1 38 2 3 2 42 3 0 3 39 3 59 4 15 4 34 4 55 7 11 A.M. 7 37 7 58 8 20 3 42 9 26 9 46 10 5 10 21 10 39 11 2 1 17 P.M. 1 38 2 5 2 32 2 42 3 5 9 5 8 20 3 5 9 4 15 4 34 4 55 7 11 A.M. 7 37 7 58 8 20 8 42 9 26 9 46 10 39 11 2 1 17 P.M. 1 38 2 5 2 5 3 5 3 5 3 5 3 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉ	feet. + 20.1 20.2 20.3 20.5 21.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 2
	491 492 493 494 495	73 ^{•2} 73 ^{•3} 73 ^{•2} 73 ^{•3} 72 ^{•8}	2 34 2 51 3 10 3 30 3 48	6 6 6 6	20·2 20·2 20·3 20·2	I I I I	2 2 2 2 2		541 542 543 544 545	72.5 72.1 71.9 71.5 71.3	2 51 3 13 3 30 3 50 4 8	6 6 6 6	21'4 21'1 21'1 21'1 21'2	I I I I I	2 2 2 2 2

•

DETAILS OF THE MEASUREMENT

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	ars used	Set above gin	Nun she arra me:	meral wing inge- nt of		the Set	ure of Air	Mean time of	ars used	Set above gin	Nur she arra me	meral wing inge- nt of
1848	No. of	Temperat	ending	No. of h	Height of ori	Barrs	Micros:	1848	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Mioros :
15th Jan. 17th "	546 547 548 559 553 553 555 555 555 555 555 555 555	71 3 70 9 51 3 52 2 54 0 55 7 58 0 61 2 64 0 64 0 67 1 68 0 68 0	h. $m.$ 4 26 P.M. 4 45 5 12 7 4 A.M. 7 27 7 49 8 11 8 32 8 51 9 9 9 27 9 49 10 6 10 25 10 43 1	00000000000000000000000000000000000000	feet. + 21.2 21.3 21.4 21.4 21.4 21.4 21.5 21.6 21.5 21.6 21.5 21.6 21.7 21.5 21.4 21.3 21.3 21.3			17th Jan. 18th "	56678901237555555555555555555555555555555555555	0 73'I 73'I 72'7 72'7 71'5 71'5 71'5 71'5 70'2 51'5 52'5 54'1 55'0 7	h. m. 2 49 P.M. 3 6 3 27 3 47 4 9 4 26 4 44 5 4 7 8 A.M. 7 31 7 51 8 9 8 31 8 50 9 12 2 22	66666666666666666666666666666666666666	feet. + 21'3 20'6 20'5 20'7 20'8 20'9 20'9 20'9 21'0 21'0 21'0 21'0 21'0 21'0 21'0 21'0 21'0 21'0 21'0 20'0	1 1 1 1 1 1 1 1 1 1 1 1 1 1	222222222222222222222222222222222222222
	562 563 564 565	73'7 73'7 73'4 73'1	1 27 P.M. 1 47 2 8 2 28	6 6 6 6 6	21.4 21.2 21.0 21.8 21.7	I I I I	2 2 2 2		582 583	507 61.4 66.0	9 33 10 5 10 37 Tota	6 2 1+3	20.8 21.7 2861.1	1 2	2 2 3

The advanced-erd of set No. 583 fell in excess (*i. e.* north-east) of the dot at North-East-End 2.8243 feet, as measured on Cary's brass scale with a beam compass.

Height of set No. 583 above North-East-End = 1.4 feet.

Reduction to Mean Sea Level.

Let the sections into which this base-line is divided be denoted as follows:

South-West-End to Station A by Section I; Station B to Station C by Section III; Station A to "B " II; " C to North-East-End " IV.

Then in the notation of (7) page I_{22} we have

$$H = 223$$
; $h = 24.4$; $\delta h = +4.1$; Log $R = 7.32010$, all in feet; and $n = 582$.

			[h] ^P	a	n	dh	F	λ	C_{2}	C_1	C
			+			+	+		_		
Section	I	•••	156	ο	145	1.0	229	9136	. 0007	•0975	. 0982
"	II	•••	1274	ο	146	1.0	1494	9199	·0045	·0982	•1027
,,	III	•••	2682	0	154	1.1	3075	9703	. 0093	•1035	•1128
"	IV	•••	2861 -	-14	137	1.0	3341	8650	1010	. 0923	• 1024

V.______

Digitized by Google

	M e	asured wi	t h			
Section	Compensated bars page V ₁₆	Compensated microscopes page V_20	Beam compass pages V_2 to V_27	Reduction to sea level page V ₂₇	Total Length	Log.
S. W. End to Stn. A	8700.4750	435.0438	•0000	0982	9135.4206	3.96072,8547
Stn. A to Stn. B	8760.4782	43 8 .0468	•0000	- '1027	9198.4223	3.96371,3344
Stn. B to Stn. C	9240'4747	462.0508	•0000	- '1128	9702'4127	3*98687,9744
Stn. C to N. E. End	8240.4233	412.0424	- 2.8243	- '1024	8649.5390	3.93699,2961
S. W. End to N. E. End	34941.8512	1747'1838	- 2 8243	- '4161	36685.7946	4`56449,7930

Final length of the Base-Line and of its parts in feet of Standard A.

SONAKHUDA

•

V____8

•

Verificatory Minor Triangulation.

of ^g le					Distance	in	of gle
No. Trian	Name of Station	Corrected Angle	Log. Sine	Log. Distance	Feet	Miles	Error Trian
1	South-West-End of Base, or Sonakhoda T.S. Station A, ,, a	6 , 27.115 60 1 54.189 72 24 38.709 180 0 0.013	9 [.] 868030072 9 [.] 937669349 9 [.] 979205624	3 [.] 849552995 3 [.] 919192272 3 [.] 960728547	9135'4206	1.730	+0.637
2	Station a ,, Α, ,, β	62 12 50°183 66 34 28°434 51 12 41°395 180 0 0°012	9'946793283 9'962643098 9'891795889	3·904550389 3·920400204 3·849552995			-0.672
3	Station A, ,, β ,, B,	53 23 33.021 71 0 21.242 55 36 5.751 180 0 0.014	9 [.] 904574618 9 [.] 975 ⁶⁸ 5459 9 [.] 916521976	3 [.] 892603031 3 [.] 963713872 3 [.] 904550389	9198 ·4 335	1.742	+0.230
4	Station β , B, , γ	68 35 6.116 60 55 10.383 50 29 43.516 180 0 0.015	9 [.] 968931234 9 [.] 941480679 9 ^{.88} 7377434	3·974156831 3·946706276 3·892603031			—0°405
5	Station B, "γ "C,	63 28 41.780 59 37 2.546 56 54 15.693 180 0 0.019	9 [.] 951709024 9 [.] 935843215 9 [.] 923119749	4'002746106 3'986880297 3'974156831	9702*4251	ı•838	-0.120
6	Station γ ,, C, ,, δ	53 59 41.470 57 37 49.207 68 22 29.341 180 0 0.018	9`907929287 9`926656983 9`968302929	3°942372464 3°961100160 4°002746106			—0 [.] 308
7	Station C, δ North-East-End of Base, or Ramganj T.S.	65 27 54.702 56 42 55.530 57 49 9.784	9:958902578 9:922182964 9:927562000	3.973713042 3.936993428 3.942372464	8649*5483	1.638	—o [.] 756
		180 0 0.010			36685.8275	6 [.] 948	

NOTE.-Each side of a triangle is given in the same horizontal line with the angle which it subtends.

The angles of the verificatory triangulation were measured with a 3-foot Theodolite by Troughton and Simms, read by 5 micrometer-microscopes. At all the stations 3 measures were made on each of 8 zeros. The stations on the line are South-West-End, A, B, C, and North-East-End.—The auxiliary stations are α , β and γ .

V____9

Comparison in feet between the values computed by means of the verificatory triangulation and the measured value.

Of the entire line.

South-West-End t	o North-East-End by the measurement page V_{28} 36685.7946	<i>Log.</i> 4 [.] 564 4979 30
93	$ \begin{array}{c} \text{computed in terms of South-West-End} \\ \text{to Station A page V}_{29} \end{array} $	4.564 4983 20
	Log. computed value — Log. measured value = $+$	0.000 0003 90

In terms of the entire line by measurement.

Computed	Computed — Measured*
9135.4124	0082
9198.4253	+.0030
9702:4164	+.0032
8649.5405	+.0012
	Computed 9135'4124 9198'4253 9702'4164 8649'5405

Of each section in terms of the others.

	South West-End to Station A	Station A to Station B	Computed Measured	Station B to Station C	Computed Measured	Station C to North East-End	Computed Measured
Measured lengths*	9135.4206	9198.4223		9702 . 4127	•• ••	8649.5390	•••••
Computed on base South- West-End to Station A	}	9198.4335	+.0115	9702:4251	+ 0124	8649.5483	+ •0093
Computed on base Station A to Station B	}		•• ••	9702 ·4 133	+ 0006	8649.5378	-'0012
Computed on base Station B to Station C	}					8649.5373	0012

Norg.—Since $\log_{\theta} (x + dx) = \log_{\theta} x + \frac{(dx)}{x} - \frac{(dx)^3}{2x^2} + \&c.$ $dx = \left\{ \log_{10} (x + dx) - \log_{10} x \right\} \frac{x}{\text{Modulus}} \text{ nearly, by which expression the required}$

variations in the foregoing natural numbers have been calculated.

V_____30

Description of Stations.

SOUTH-WEST-END OF SONAKHODA BASE, OR SONAKHODA TOWER STA-TION, lat. 26° 15′, long. 88° 15′ is situated in thána Kalíáganj of the Púrnea district, and stands at a distance of 200 yards to the N. of the village of Sonákhoda, and close to a cart road leading to Kishanganj. The village of Hátgaon is about 3 miles towards the S.W.; Páhárkáta, nearly 5 miles to the W. by S., and Gernábári, about 2½ miles nearly due west.

The tower at this station is entirely of masonry, 24 feet high and 14 feet square at top, and as it marks the extremity of a *base-line*, its construction is adapted to the requirements of the measurement by means of a vaulted passage running through it, on a level with the ground, in the direction of the line. In the centre of the tower, on the floor of the vaulted passage, there is a small plate of brass let into stone : the station mark is engraved on the brass and was transferred to the top of the tower through the hole in the vault. The pillar for the theodolite is built on the vault of the passage, and is separated by a small annular space from the rest of the building so as to be isolated from it. When all the observations had been taken at this station, the two openings of the vaulted passage were closed with masonry, and a cone of masonry 3 feet high was built on the top of the tower over the theodolite pillar. The distance between the upper mark on the top of the tower with a landing place at top, the portion which adjoins the tower being of masonry, but the lower part which projects beyond it was of mud, and was removed after the observations had been all taken, so as to prevent idle people gaining access to the top.

NORTH-EAST-END OF SONAKHODA BASE, OR RAMGANJ TOWER STA-TION, lat. 26° 19', long. 88° 20', is situated in thána Kalíáganj of the Púrnea district, and stands close to the S.W. side of the village of Rámganj. The village of Ghágra, is about 1¹/₄ miles towards the S.S.E., and that of Manikpúr about 1¹/₄ miles nearly due W.

The station is marked in the same manner as Sonákhoda Tower Station, with the difference that the height of the tower here is 20 feet above the surface of the ground, and the distance between the upper and lower marks is 18 feet.

STATION A. Is situated in thána Kalíáganj of the Púrnea district, on the straight line joining Sonákhoda and Rámganj Tower Stations and at about 14 miles from the former point. The nearest village to it is Balanja which is about a mile to the S.W.

The mark consists of a dot on a brass pin fixed in the head of a stout wooden picket, driven about 5 feet into the ground and projecting 14 inches above the surface. This picket is surrounded by 3 others of equal height for the support of the theodolite stand, and an isolated platform of earth of about 14 feet square was raised around these pickets which are also connected together with earth work.

STATION B. Is situated in thána Kalíáganj of the Púrnea district, nearly mid-way between the ends of the base-line. The village of Bhatgáon is distant about a mile to the S.E. The mark and platform at this station are similar to those at Station A.

STATION C. Is situated in thána Kalíáganj of the Púrnea district, on the straight line joining Sonákhoda and Rámganj Tower Stations and at about 14 miles from the latter point. The nearest village is Madárípúr, distant about half a mile to the N.E.

The mark and platform at this station are similar to those at Station A.

AUXILIARY STATION a OR MUNAPARA. Is situated in thána Kalíáganj of the Púrnea district, and stands on the south bank of a tank, about half a mile S.E. of the village of Munápára.

It is denoted by a platform of earth 18 inches high and 14 feet square at top, with a central masonry pillar, 4 feet in diameter and isolated from the rest of the platform by an annulus of masonry, 2 feet thick, built at a small interval around the pillar. There are markstones at top and bottom of pillar.

Digitized by Google

Description of Stations-(Continued.)

AUXILIARY STATION β on PANASI. Is situated in thána Kalíáganj of the Púrnea district, and stands on the S.E. bank of a tank adjoining the S.S.W. side of the village of Panási. A platform, similar to and of the same height as that at Auxiliary Station α, marks the station.

STATION γ or GAGNATI. Is situated in thana Kaláganj of the Púrnea district, and stands close to the western edge of a jheel, about 250 yards to the east of the village of Gagnati.

A platform, similar to that at Auxiliary Station a, but 7 feet 5 inches in height, marks the station.

STATION δ on MANIPUR. Is in thána Kalíágunj of the Púrnea district, and stands on a slight swell of ground about 200 yards S.E. of a long narrow jheel, $\frac{1}{2}$ of a mile N.E. of the village of Manipúr, and half a mile N. W. of Mánikpúr.

A platform, similar to that at Auxiliary Station a, but 7 feet 7 inches in height, marks the station.

J. B. N. HENNESSEY.

V_____32

The middle point of this base-line is in Latitude N. 33° 55', Longitude E. 72° 29'; the Azimuth of North-East-End at South-West-End is 234° 41', and the line is 7.83 Miles in length.

The measurement was effected under the directions of Lieut.-Colonel* A. S. Waugh, R.E., with the aid of the following:

Captain A. Strange Mr. G. Logan Lieut. J. T. Walker R.E. T. G. Montgomerie R.E. •• Mr. H. Keelan J. Mulheran ,, W. N. James " J. B. N. Hennessey ,, G. H. W. Shelverton ,, N. A. Belletty " W. H. Johnson " C. J. Carty ,,

• Now General Sir A. S. Waugh.

INTRODUCTION.

This base-line was measured on the plain of Chach, East of Attok in the province of the Punjaub, the West-End being East of the Attok fort about 8 Miles. The line was selected under the personal superintendence of Lieut. Colonel A. S. Waugh R.E., and the ground prepared by Mr. J. O. N. James.

The measurement was commenced at Kálu or South-West-End, bar-tongues pointing North-West, and carried on *continuously* to Agzar or North-East-End, so that every succeeding set originated at the point marking the terminus of its predecessor. The line was divided into 4 sections by the sub-dividing points A, B and C to admit of verification by minor triangulation.

Comparisons between the compensated bars and the standard **A** were made on three different occasions, *i.e.* before the measurement near the South-West-End, after set No. 341 at about the centre of the base and after the measurement near the North-East-End. The comparing piers were in all three cases set up parallel to the line and within a few feet of it; but on the first occasion, when 47 comparisons were made, the ends of the bars were reversed to obtain a more favorable light, so that the bar-tongues pointed South-East; in the second series of 83 comparisons the bar-tongues pointed as during the measurement to the North-West, and there are reasons for concluding that this latter direction for the bar-tongues was maintained in the third series consisting of 93 comparisons, taken on the conclusion of the measurement.

One of the two comparing microscopes employed in the preceding bar comparisons was provided with a micrometer, while the other had its wires (or lines) fixed.

The compensated microscopes were compared with their scales on 6 occasions, including the comparisons taken prior and subsequent to the measurement.

In respect to time, the first set of bar comparisons was made on the 6th December 1853, the last on the 22nd of the following February.

The stations of the verificatory triangulation were 9 in number, forming a single series of triangles. Of these stations, 5 were in the alignment, *viz*. South-West-End, A, B, C and North-East-End, while the auxiliary points α , β , γ and δ were placed on suitable sites South-East of the line. The angles were measured by Lieut. T. G. Montgomerie R.E., with Barrow's 3-foot theodolite on 10 equidistant zeros; three measures were taken on each zero, so that 30 measures in all were taken of each angle.

Digitized by Google

VI_

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at Kálu, or South-West-End of the base-line, before the measurement.

	MicBom MicBom								ETER READINGS IN DIVISIONS = $\frac{1}{21571.68}$ Cary's Inch [7.8], = 1.2870 m.y. of A					
185 De	Mean of the times of o	No. of compari	Temperature of	Corrected mean temper	Mean A	A	B	C	D	E	Н	Mean of the compensated bars	BBWARKS	
6t]	h.m. 1 7 48 A.M. 10 11 11 39 0 32 P.M. 1 26	1 2 3 4 5	36.4 52.3 58.6 60.3 61.9	33 [.] 73 40 [.] 58 48 [.] 83 52 [.] 80 56 [.] 00	+ 400 ^{.6} 532 ^{.0} 669 ^{.5} 735 ^{.0} 789 ^{.3}	+ 1028.9 1031.9 1026.9 1032.8 1030.0	+ 1002.2 999.0 1003.9 1005.0 1003.0	+ 1026·1 1033·0 1033·8 1040·0 1042·0	+ 1056°0 1058°2 1064°0 1063°8 1064°1	+ 1017.5 1024.0 1025.0 1020.9 1030.0	+ 1040'0 1034'9 1031'9 1028'8 1030'9	+ 1028.5 1030.2 1030.9 1032.9 1033.3	ItCol. Waugh at the microme- ter microscope : It. Montgome- rie at the plain microscope.	
7t]	2 39 3 45 1 7 21 A.M 8 19 9 10 9 54 10 30 11 4	7 . 8 9 10 11 12 13	61.8 35.9 40.9 46.3 52.5 57.7 60.1	35'23 35'73 37'85 40'95 44'30 47'88	429'4 446'7 485'8 536'9 590'1 645'4	1031.9 1017.9 1027.4 1030.0 1028.1 1026.8 1020.0	1005'8 990'8 1001'4 1000'5 998'2 991'1 995'2	1048.2 1020.6 1033.0 1031.1 1032.6 1031.0 1030.6	1065°0 1048°2 1054°6 1058°4 1059°9 1055°9 1055°8	1027'9 1011'6 1021'0 1022'2 1022'2 1021'8 1018'9	1027'5 1034'1 1045'4 1036'8 1035'2 1029'8 1022'2	1030'4 1030'5 1030'5 1030'4 1029'4 1026'8 1022'3	Lieut. Montgo- merie at the mi- crometer micro- scope : Mr. Kee- lan at the plain microscope.	
	0 2 P.M 0 33 1 7 1 42 2 14 2 48 3 31	. 14 15 16 17 18 19 20	61.8 63.2 64.4 64.9 65.3 65.6 65.1	53 [.] 20 55 [.] 33 57 [.] 53 59 [.] 48 60 [.] 85 62 [.] 08 63 [.] 13	73 ⁶ ·4 772·9 810·9 843·6 865·8 884·1 901·2	1023'1 1023'3 1022'4 1025'8 1028'5 1031'0 1025'8	993.1 991.8 997.3 999.6 1000.5 1003.5 1006.9	1037.1 1037.4 1038.9 1044.3 1048.1 1049.6 1048.8	1058.9 1061.7 1065.1 1070.1 1067.1 1072.8 1073.9	1021.9 1023.9 1025.4 1027.2 1027.3 1030.2 1030.7	1024'2 1025'4 1024'7 1024'9 1025'2 1027'0 1030'0	1026'4 1027'3 1029'0 1032'0 1032'8 1035'7 1036'0		
8th	8 7 A.M. 9 14 10 20 11 42 0 25 P.M. 1 10 1 56 2 40 3 28	. 21 22 23 24 25 26 27 28 29	42°4 49°6 55°0 60°4 62°7 64°6 66°1 66°5 65°4	38.98 41.18 45.75 51.73 54.78 57.73 60.20 62.10 63.50	478.0 518.3 597.6 703.3 754.3 799.9 839.1 868.7 888.5	1005.9 1012.8 1010.6 1007.2 1009.9 1014.9 1015.1 1012.3 1009.3	982.1 986.8 983.1 984.3 985.5 989.1 986.0 981.4 984.3	1014'0 1018'3 1021'8 1022'8 1038'0 1032'1 1030'4 1029'1	1051'2 1043'4 1050'4 1051'1 1050'0 1052'3 1057'0 1051'9 1056'6	1001'2 1004'1 1010'8 1008'3 1008'0 1013'7 1013'0 1010'1 1006'8	1026'7 1021'7 1015'6 1007'1 1010'0 1013'5 1010'8 1008'1 1006'9	1013'5 1014'5 1015'4 1013'5 1015'2 1019'3 1018'7 1015'5	Cloudy morning. Mr. Keelan at the micrometer microscope: Lt. Walker at the plain micros:	
9th	7 5 A.M. 7 37 8 5 8 33 9 2 9 26 9 49 10 11 10 33 10 57 11 45	30 31 32 33 34 35 36 37 38 39 40	36.4 38.2 40.7 43.5 40.7 49.2 51.5 53.9 50.6 59.3 63.9	38.33 37.70 37.65 38.23 39.55 40.98 42.53 44.28 46.23 44.28 46.23 48.25 52.48	442'1 435'5 438'5 449'1 473'3 500'3 529'2 559'5 591'0 624'5 697'3	986.8 989.2 997.1 1002.0 1002.2 1005.0 1017.0 1011.5 1013.8 1013.9 1008.0	965'1 970'9 973'2 978'0 982'0 981'6 983'9 985'0 985'0 985'7 986'1 978'0	991°0 993°9 999°1 1003°1 1006°0 1008°9 1014°9 1014°9 1012°0 1022°0 1012°0	1019'3 1023'9 1025'1 1031'0 1033'0 1037'3 1041'9 1045'1 1050'0 1050'1 1043'0	984.0 984.8 989.8 992.0 996.2 1001.0 1005.4 1006.2 1009.9 1009.9 1004.1	1005'0 1008'0 1010'0 1013'0 1014'0 1017'5 1017'9 1018'9 1018'4 1015'9 1004'9	991'9 995'1 999'1 1003'2 1005'7 1008'6 1013'5 1013'8 1017'3 1016'3 1009'5	ItCol. Wangh at the microme- ter microscope: Mr. Keelan at the plain mi- croscope.	

January 6th. At 2 h. 12 m. P.M., a violent earthquake occurred, apparently from W. to E. The stone pillars rocked to and fro, and the levels were all much disturbed.

VI_4

BAR COMPARISONS

Before the measurement—(Continued.)

	oberring A	mparison are of Air	erature of A		MICRO I Divisio	$\mathbf{n} = \frac{1}{2157}$	READ	INGS Inch [7-8],	IN DIV = 1.3870 a	1510175. m.y. of A			
1853. Dec.	Mean of the times of	No. of compar	Temperature of	Corrected mean temp	Mean A	A	В	С	D	E	H	Mean of the compensated bars	Remarks
9th	h. m. o 8 P.M. o 31 o 58 1 31 2 7 2 40 3 31	41 42 43 44 45 46 47	65°5 67°0 68°4 68°5 68°4 69°2 67°3	54.60 56.65 58.78 61.23 63.30 64.63 65.75	+ 729'2 762'0 796'9 837'2 868'0 890'2 914'3	+ 993'7 998'0 993'1 991'2 991'0 991'1 994'9	+ 972'3 969'9 963'8 962'9 962'9 967'8	+ 1013.9 1015.0 1008.0 1006.9 1004.1 1010.6 1007.0	+ 1040'0 1033'0 1029'2 1029'5 1025'3 1028'2 1033'9	+ 1002.9 998.9 996.0 993.2 992.9 993.0 991.9	+ 1000°0 995°9 990°1 988°0 988°5 988°5 988°4 986°1	+ 1003'8 1002'2 997'7 995'4 994'1 995'7 995'7	
		Mea	ns	50.49	675.87	1013.01	987.14	1024.32	1049.42	1010'94	. 1017*13	1017.09	

Let the mean length of the compensated bars minus the Standard A at 62° F be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = o;$$

Treating the preceding bar comparisons as shewn in this equation, we obtain the following series of results :---

		d			đ
$x + 28.27 (E_a$	$-dE_{a}$	(-621.9 = 0)	$x + 14.12 (E_a$, — <i>dE</i>	$E_a)-376.9=0$
<i>x</i> +21.43	"	-498.2 = 0	x + 8.80	,,	-290°0 = 0
# +13.17	,,	-361·4 = 0	x+ 6.67	,,	-254.4 = 0
x + 9.20	"	-297.9 = 0	<i>x</i> + 4.47	,,	-218.1 = 0
x + 6.00	"	-244.0 = 0	x + 2.52	"	-188.4 = 0
x + 2.30	"	-191.4 = 0	x + 1.12	"	- 167°0 = 0
x + 1.30	"	-178.4 = 0	x - 0.08	"	-151·6 = 0
x +26.77	"	-591.0 = 0	x- 1·13	"	-134.8 = 0
x +26·27	"	-583.8 = 0	x +23.02	,,	-535 [.] 5 = 0
x +24.12		-544 [.] 6 = 0	# +20.85	"	-496.2 = 0
x +21.02	"	-492.5 = 0	x+16·25	"	-417.8 = 0
\$ +17.70	"	-436.7 = 0	x +10.27	"	-310.3 = 0

VI__5

Before the measurement-(Continued)

			đ				đ
x +	7:22	$(E_a - dE_a)$	-260.9 =	0	x+17.72	$(E_a - dE_a)$)-454.3 = 0
x +	4.37	"	-219.4 =	0 4	r+15.77	"	-426.3 = 0
x +	1.80	>>	-179.6 =	•	r+13.75	"	-391.8 = 0
<i>x</i>	0.10	"	-146.8 =	•	r+ 9.52	"	-312.5 = 0
x —	1.20	22	-127.0 =	• •	r + 7 · 40	"	-274.6 = 0
# +:	23.67		÷549.8 =	•	r + 5.35	"	-240.2 = 0
x +2	24.30	"	-559.6 =	•	r+ 3.33	>>	-200.8 = 0
# +:	24:35	,,,	-560.6 =	o ' 4	r + 0.77	>>	-158.3 = 0
x +:	23.77	"	-554.1 =	o 4	r — 1.30	"	-126.1 = 0
x +2	22.42	>>	-532.4 =	•	r — 2.63	"	- 105·5 = 0
x +2	21.03	, <i>>></i>	-508.3 =	• •	r - 3 [.] 75	22	-82.6=0
x +:	19.47	"	-484.3 =	0			

And from the mean of these results,

$$x = 341^{\circ}22 - 11^{\circ}51 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.615,$$

and $x = 138.47 + 11.51 \ dE_a = 178.21 + 11.51 \ dE_a = L - A;$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading 101709, page VI_5.

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	A - L	B – L	C – L	D – L	$\mathbf{E} - \mathbf{L}$	H – Ľ
Micrometer divisions. Millionths of a yard.		- 29 [.] 95 - 3 ^{8.} 55	+ 7 [.] 23 + 9 [.] 31	+ 32·33 + 41·61	-6 ^{.15}	+0.04 +0.02

Also combining the values in this table with the equivalent of L-A above determined, there result,

VI_6

BAR COMPARISONS

	bserving A	on Air	ature of A			OMETEE sion = <u>51</u>	E B B ▲ D : 1 527.47 Cary's	INGS IN Inch [7.8], =	DIVI8 = 1.2837 m.j	10 N S.		
1854 Jan.	Mean of the times of a	No. of compari Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	н	Mean of the compensated bars	REMARKS
18th	h. m. 1 10 P.M. 2 10 3 7	1 61.0 2 64.2 3 66.1	54.08 58.00 61.05	+ 713 [.] 1 779 [.] 4 828 [.] 1	+ 993.9 988.1 992.1	+ 966:4 970:6 970:5	.+ 1013.0 1018.0	+ 1038.0 1039.6 1038.7	+ 993.9 996.0 993.0	+ 987*2 991*6 989*7	+ 998.9 1000.3 1000.3	Capt. Strange at the micro: micros: Mr. Mulheran at the plain microscope.
19th	8 I A.M. 8 46 9 35 10 41 0 25 P.M. 1 2 1 39 2 14 2 56 3 35 4 13	4 42.8 5 46.5 6 52.4 7 56.5 8 55.0 9 56.3 10 57.5 11 57.9 12 58.5 13 58.7 14 58.2	41'30 42'20 44'48 48'05 53'05 53'83 54'75 55'00 50'48 57'05 57'40	478.5 497.7 539.7 678.7 693.3 711.1 725.9 739.1 749.6 753.5	968.0 974.5 976.5 981.1 980.9 983.0 983.0 983.8 987.8 987.8 988.0 987.5 987.5 987.9	945'4 950'3 953'0 954'0 952'0 948'3 958'8 959'2 960'9 959'8 962'0	979°0 979'7 983'2 987'1 995'5 994'8 999'6 994'2 993'6 993'6 993'1	1004'9 1007'2 1009'8 1016'0 1020'2 1022'1 1022'0 1019'5 1022'0 1022'0 1021'0	965 ^{.8} 967 ^{.1} 97 ^{.9} 977 ^{.0} 977 ^{.0} 978 ^{.6} 981 ^{.9} 981 ^{.4} 979 ^{.3} 982 ^{.0} 980 ^{.4}	977'4 980'9 984'8 980'4 978'0 980'2 984'3 983'7 981'9 984'8 982'2	973'4 976'6 979'7 982'6 983'6 983'6 988'8 988'1 987'2 988'9 987'8	Very cloudy mor- ning.
20th	7 42 A.M. 8 21 8 59 9 34 10 10 10 40 0 10 P.M. 0 35 0 56 1 16 1 35 1 53 2 14 2 31 2 51 3 8 3 25 3 43	$\begin{array}{c} 15 & 47.8 \\ 16 & 50.6 \\ 17 & 53.5 \\ 18 & 55.6 \\ 19 & 57.6 \\ 20 & 59.1 \\ 21 & 65.5 \\ 22 & 67.3 \\ 23 & 67.4 \\ 25 & 67.9 \\ 24 & 67.4 \\ 25 & 67.9 \\ 27 & 68.0 \\ 29 & 67.6 \\ 29 & 67.5 \\ 31 & 66.6 \\ 30 & 67.2 \\ 32 & 66.6 \\ \end{array}$	40.85 47.20 48.28 49.58 51.18 52.68 57.85 59.38 62.63 63.30 63.95 64.43 64.88 65.15 65.38 65.58	567.8 576.0 593.4 617.2 644.3 671.9 762.6 790.0 810.9 828.8 842.6 853.6 866.7 875.5 882.3 885.6 888.9 889.9	972'2 975'1 973'3 974'2 973'1 973'1 973'1 973'1 988'4 987'7 985'3 984'1 985'2 985'1 985'2 985'1 987'2 991'5 988'4 991'5 988'4	943.3 944.0 942.0 946.9 946.9 946.9 946.9 947.9 963.7 959.9 953.7 955.8 965.8 965.8 965.8 965.8 965.8 965.8	970'3 966'3 976'5 972'0 975'0 985'6 1000'0 1004'7 1004'1 999'8 1000'7 1000'0 1002'2 1006'5 1000'8 1002'3 999'2 999'7	1005.2 1001.8 1005.2 1004.3 1010.1 1013.2 1031.2 1033.7 1029.1 1029.7 1027.8 1025.3 1024.9 1028.7 1031.9 1020.0 1030.0 1030.0	961.7 962.5 961.9 973.8 995.1 973.8 989.3 989.3 989.3 989.3 989.3 989.3 989.3 989.3 989.3 989.3 989.3 988.3 989.3 988.3 989.5 988.3	973'1 970'3 969'4 973'5 974'8 974'8 974'8 974'8 987'3 984'2 983'9 983'9 983'9 983'9 983'9 983'7 983'1 983'1 983'1 983'1 983'1	971°0 970°0 971°5 972°7 975°4 973°3 993°5 993°5 993°4 993°5 993°4 992°6 991°0 991°0 991°0 991°0 993°8 994°4 993°9 992°6 991°4 993°9	out the day. Cloudy morning. Lieut. Walker at the micrometer micro- scope; Mr. Keelan at the plain micro- scope. Sunahine.
21st	4 3 7 35 A.M. 8 17 9 1 9 36 10 8 10 40 11 8	33 05.5 34 36.0 35 39.1 36 43.9 37 48.2 38 52.7 39 56.7 40 59.3	36.08 37.13 38.28 40.10 42.48 45.05 47.08	007 ^{.2} 397 ^{.1} 400 ^{.4} 424 ^{.4} 458 ^{.6} 50 ^{1.4} 547 ^{.9} 59 ^{6.4}	964.7 965.1 967.7 971.6 970.0 972.0 974.5	902.9 941.5 946.1 943.1 944.2 946.2 945.0 945.0	959°0 961°8 964°5 968°9 970°0 970°9 970°0	993°0 995°0 995°0 995°9 998°0 999°1 1003°3 1009°9	970'0 951'0 958'2 957'5 959'3 969'1 970'1 969'0	970 ⁻⁹ 972 ^{.6} 974 ^{.7} 970 ^{.2} 972 ^{.2} 972 ^{.5} 973 ^{.8} 974 ^{.0}	963.6 966.8 966.5 969.1 971.2 972.5 974.8	Sunny afternoon. Cloudy morning. Col. Waugh at the micrometer micro- scope; Lt. Walker at the plain micro- scope.

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made on a site selected about the middle of the base-line, after set No. 341.

January 18th. (1) Very cloudy morning. (3) Sunny afternoon.

.

VI___7

After set No. 341-(Continued.)

	ving A		e of A		MICEOMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{-1697.47}$ Cary's Inch [7.8], = 1.2837 m.y. of A								
	obser	ison Air	ratur				11697.47	ay a men [1.					
1854 Jany.	Mean of the times of	No. of compar Temperature of	Corrected mean tempe	Mean A	A	В	С	D	Е	Н	Mean of the compensated bars	REMARKS	
21st 22nd 23rd	h. m. o 30 P.M. i 41 2 29 2 51 3 34 3 57 4 23 3 34 3 57 4 39 2 39 3 34 3 57 4 39 2 39 3 44 3 99 3 34 3 99 3 44 3 99 3 84 4 32 8 44 9 35 1 0 2 28 4 43 9 35 1 0 2 44 3 0 4 30 4 43 5 10 2 43 1 10 2 57 4 30 4 43 1 10 2 57 4 30 4 10 1 10 2 57 2 312 3 44 3 228 4 40 3 57 4 30 4 41 1 10 2 57 1 10 2 58 8 44 9 35 3 34 1 10 2 51 1 10 2 51 1 10 2 51 1 10 2 51 1 10 2 51 1 10 2 51 1 10 2 51 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 2 31 3 28 4 6 4 45 2 31 2 31 3 28 4 6 4 6 4 7 3 28 4 10 5 10 2 51 3 28 3 46 4 10 2 51 1 10 2 51 3 28 3 46 10 2 57 2 10 2 51 1 10 2 51 1 10 2 51 1 10 2 51 1 10 2 51 2 31 2 31 2 31 2 328 2 346 10 2 10 2	$\begin{array}{c} 41 & 64 \\ 42 & 65 \\ 43 & 65 \\ 44 & 65 \\ 45 & 67 \\ 45 & 67 \\ 48 & 66 \\ 57 \\ 48 & 66 \\ 51 \\ 49 \\ 65 \\ 51 \\ 48 \\ 50 \\ 51 \\ 48 \\ 50 \\ 51 \\ 48 \\ 50 \\ 51 \\ 48 \\ 50 \\ 51 \\ 48 \\ 50 \\ 51 \\ 52 \\ 48 \\ 55 \\ 57 \\ 58 \\ 55 \\ 57 \\ 58 \\ 55 \\ 57 \\ 58 \\ 55 \\ 57 \\ 58 \\ 55 \\ 57 \\ 58 \\ 59 \\ 57 \\ 58 \\$	\circ 54.98 3 57.23 5 61.83 3 62.53 3 62.53 5 61.83 4 63.13 5 64.96 3 55.55 6 64.93 3 64.783 3 48.35 8 44.783 3 48.783 3 48.783 3 48.783 3 48.783 3 48.783 3 48.783 3 48.783 5 50.755 5 50.133 5 60.755 5 50.53 5 50.55 5 50.53 5 50.53 5 50.53 5 50.53 5 50.55 5 50.53 5 50.53 5 50.53 5 50.55 5 50.53 5 50.55	+ 715^{11} 752^{14} 794^{17} 814^{15} 827^{15} 837^{10} 8514^{10} 8550^{14} 8550^{14} 8560^{14} 592^{14} 450^{17} 595^{17} 595^{15} 595^{15} 595^{15} 595^{15} 595^{15} 746^{10} 581^{15} 812^{15} 822^{15}	$\begin{array}{c} + \\ 973^{\circ}99984^{\circ}99882^{\circ}99882^{\circ}99882^{\circ}99882^{\circ}99882^{\circ}99882^{\circ}999999999999999999999999999999999999$	$\begin{array}{c} + & \circ \\ 9 \\ 9 \\ 5 \\ 4 \\ 0 \\ 9 \\ 9 \\ 5 \\ 5 \\ 6 \\ 0 \\ 9 \\ 9 \\ 5 \\ 5 \\ 6 \\ 0 \\ 9 \\ 9 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	+ 9988999988000300 99888000320 99888000320 99888000320 99888000320 99888000320 99888000320 99888000320 999999999999999999999999999999999	+ 1022.0 1026.0 1029.8 1029.2 1024.0 1019.9 1025.8 1022.2 1021.9 995.1 995.1 995.2 995.7 995.0 995.7 995.7 995.7 995.7 995.7 995.7 995.7 995.7 995.7 995.7 1025.8 995.7 995.7 995.7 1025.8 995.7 995.7 1025.8 995.7 995.7 995.7 1025.8 995.7 995.7 1025.8 995.7 995.7 1025.8 995.7 1025.8 995.7 1025.8 995.7 1025.7 1025.8 1025.7	+ 97834 998800 998800 9998800 99999 9513 99513 99513 95500 95530 95570000000000	+ 9982.0 1999999999999999999999999999999999999	+ 9856 9988750 9988750 988650 988650 988650 9988750 988650 9988750 9988750 99999 99999 99999 99999 99999 999999 9999	Cloudy morning. Lt. Walker at the micrometer micro- scope; Mr. Keelan at the plain micros: Cloudy. Capt. Strange at the micrometer mi- croscope; Mr. Mul- heran at the plain microscope. Cloudy. The morning pro- mised a fine day but this expectation was not realized.	
		Means	53.20	689 [.] 85	976 [.] 83	950.22	983.63	1012.23	972.51	975 - 41	978.57		

VI__8

.

BAR COMPARISONS

After set No. 341-(Continued.)

As on page VI_5 we have

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = 0$

and from the preceding bar comparisons, we obtain the following series of results :---

		(7)))))	ď		-		d
<i>x</i> +	7'92	$(E_a - dE_a)$	-285.8 =	0	x - 3.28	$(E_a - dE_a)$	-101.6 = 0
<i>x</i> +	4.00	>>	-220.9 =	0	x - 3.60	"	-101.6 = 0
x +	0.92	"	-172.2 =	o .	\$\$ + 25.02	"	-566.5 = 0
x +:	20.70	"	-494'9 =	0	x+24.87	,,	-5 ⁶⁶ ·4 = 0
x +:	19.80	"	-478.9 =	0	\$+ 23.72	"	-542.1 = 0
# +:	17.23	"	-440.0 =	0	x+21.90	,,	-510 [.] 5 = 0
x+ :	13 .35	"	-373.4 =	0	x+19.52	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-469.8 = 0
s +	8.95	"	-304.9 =	0	<i>x</i> +16.95	,,	-424 ^{.6} = 0
x +	8.17	"	-291.0 =	0	x+14.32	,,	-378.4 = 0
<i>x</i> +	7:25	,,	-277.7 =	0	x+ 7.02	,,	-266.8 = 0
<i>x</i> +	6:40	"	-262.2 =	0	x+ 4.80	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-233.2 = 0
x +	5.22	'))	-248.1 =	0	x+ 2.27		-1957 = 0
# +	4'95	"	-239.3 =	0	x+ 0.97		$-174^{2} = 0$
<i>x</i> +	4.60	,,	-234.3 =	0	#+ 0°17		-1590 = 0
x +:	15.15	"	-403.2 =	0	x- 0.53		-140.0 = 0
x+1	14.80		-394.0 =	0	x - 1.13		-141.4 = 0
x +:	13.72	"	-378.1 =	0	a - 1.55	**	-133.3 = 0
x +:	12.42	,,	-355.5 =	0	x- 1.85		-128.3 = 0
x +:	10.82	,,	-331.1 =	0	<i>x</i> - 2.03	33	-1230 = 0
x +	9.32	"	-307.4 =	o .	x+13.25		-375.4 = 0
<i>x</i> +	4.12	,,	-230.9 =	0	x+13.65		-383.0 = 0
<i>x</i> +	2.62	"	-203.4 =	0	x+14.02	23	-383.4 = 0
x +	1.27	,,	-181.7 =	0	x+14.17		-378.7 = 0
<i>x</i> +	0.33	,,	-162.2 =	0	x+13.87		-371.3 = 0
x	0.63	,,	- 148.4 =	0	#+13.57	11	-361.8 = 0
x	1.30	,,	-136.6 =	0	x+13.25	33	-354.8 = 0
x-	1.95	23	-125.4 =	0	#+12.62		-344.4 = 0
x —	2.43		-118.3 =	0	x +11.82		-332.8 = 0
<i>x</i>	2.88		-112.1 =	0	x+10.02		-321.8 = 0
<i>x</i> –	3.12	39	-108.3 =	0	\$ +10.00		-307.0 = 0
#	3.38		-103.7 =	0	\$+21.25	**	-507'3 = 0

VI__9

After set No. 341-(Continued.)

x+21.85 (E	$C_a - dE$	a) - 5170 = 0	$x + 2.87 (E_a$	- dE	(a) - 203.4 = 0
x+22.00	"	-513.4 = 0	x + 2.07	,,	-192.6 = 0
x+21.22	,,	-496.7 = 0	x + 1.20	,,	-181.4 = 0
x+20.25	,,	-468.3 = 0	<i>x</i> + 0.92	"	-172.2 = 0
x+18.27	,,	-435 [.] 6 = 0	x+ 0.65	"	-169.2 = 0
x+15.87	"	-398.4 = 0	<i>x</i> + 0.42	,,	-164.5 = 0
x+14.05	,,	-368.9 = 0	x+ 0.22	,,	-161.5 = 0
x+12.62	,,	-3470 = 0	x + 0.02	,,	-160.8 = 0
x+11.32	,,	-327.4 = 0	x— 0.05	"	-158.8 = 0
x+ 5.15	"	-238.3 = 0	x— 0.02	,,	-158·3 = 0
x + 3.90	,,	-219.8 = 0			-

And from the mean of these results,

$$x = 288.72 - 8.24 (E_a - dE_a)$$
:

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.660,$$

and $x = 143^{\circ}20 + 8^{\circ}24 dE_a = 183^{m,y}383 + 8^{\circ}24 dE_a = L - A.$

Proceeding as on page VL_6 we obtain;

In terms of	A – L	B – L	C – L	D – L	E – L	H - L
Micrometer divisions.	— 1·74	— 28·05	+ 5 [.] 06	+ 33 [.] 96	6·06	-3·16
Millionths of a yard.	— 2·23	— 36·01	+ 6.50	+ 43 [.] 59	7·78	-4·06

Also the following;

 $\mathbf{A} - \mathbf{A} = \mathbf{141} \cdot \mathbf{46} + 8 \cdot \mathbf{24} \ dE_a = \mathbf{181} \cdot \mathbf{60} + 8 \cdot \mathbf{24} \ dE_a$ B - A = 115.15 += 147.82 +" C - A = 148.26 += 190.33 + " ,, D - A = 177.16 += 227.42 +,, ,, E - A = 137.14 += 176.05 + ,, ,, H - A = 140.04 += 179.77 + ,, ,, and $6 x = 1103.0 + 49.4 dE_a$.

BAR COMPARISONS

¢ Corrected mean temperature of A MICROMETER READINGS IN DIVISIONS observing 1 Division = $\frac{1}{21617.74}$ Cary's Inch [7.8], = 1.2843 m.y. of A No. of comparison Temperature of 1854 Mean of the times of Mean of the compensated bars REMARKS Feb. Mean A B С D Е н A h. m. + + + + + + + 16th 57[•]58 58[•]63 1 61.0 1069.3 0 0 P.M. 1003.1 1041'1 1083.0 1062.3 1063.3 Clondy. Col. Wang) at the micromete microscope; Lieut Walker at the plain 820.1 1104'3 1089.4 2 60.8 1069.1 1075.0 1078.1 852.2 0 40 1049.1 1113.5 1072.9 3 62.1 867.5 1057.8 1078.1 59.38 1077.7 1083.1 1 15 1079'9 1094.0 1111.0 microscope 59[.]98 60[.]70 I 45 4 63.6 881.0 1081.0 1058.0 1097.6 1078.1 1082.0 1086.3 1120.0 5 63.7 60.70 6 61.9 60.98 1084.8 893.1 1085.4 1002.0 1093.9 1081.5 2 17 1121.3 1088.1 897.0 1087.3 1083.0 1080.1 1059.9 1094.0 I I 33.I 1087.7 2 47 7 56.9 4 7 59.40 861.2 1071.2 1047'3 1080.1 1108.0 1074'1 1073'8 1075.9 9 28 A.M. 8 49'2 17th 48:33 697.0 1074.4 1054.9 1079'0 1100.0 1071'0 1079.0 1077.0 risons after a rain and stormy night the weather contin 1059.2 1061.9 9 50.7 48.88 710.0 1083.2 1087.0 1115.2 1080.1 1083.2 10 14 1074 0 1083.0 10 52.1 1080.0 1085.3 10 41 49.48 1081.0 721.5 1079'1 8 11 53.0 1058.2 uing cloudy 1089.0 1088.4 1118.0 1088.1 11 50.23 735.1 1001.0 1084.3 12 38.1 39.33 8 A.M. 18th 7 824.3 798.3 817'9 844.0 809.8 825.7 820.0 Captain Strange a the micrometer microscope; Mr. Mul-heran at the plain 200'1 821.2 846.1 7 32 13 39.7 30.18 289.7 825.1 797'2 809.5 829.1 821.4 825·3 826·0 796.1 14 40.8 820.1 846.2 820.8 39.28 295.1 810.1 827.0 49 7 8 microscope. 15 41.4 799**.0** 803**.0** 39.58 821.8 848.8 813.8 823.4 9 302.5 830.1 8 31 826.8 826.0 16 42.3 854.2 819.4 833.8 827.2 40.00 313.5 17 43 9 18 45 0 40.00 834.2 807.7 833.1 860'2 821.7 838.3 832.5 9 4 339.7 344 8 834.5 835.7 41.43 808.0 836.6 866.1 9 22 827.1 841.1 19 40.0 839.7 813.9 9 4 I 355.0 839.9 869.5 831.8 846.7 840.3 42.05 20 46.8 9 59 10 18 843.0 872.9 835.6 841.0 42.75 370.0 840.8 812.2 844.0 21 47.8 383 9 847.0 845.5 837.4 8200 874.6 847.0 845.3 43.20 857.9 854.3 856.1 11 51 22 50.7 47.28 855.8 823.1 894.3 853.0 856.4 445.1 893.5 856.5 825.8 859.2 23 51.2 47.98 850.3 854.0 0 II P.M. 459.5 0 33 24 52.2 48.73 471'1 855.8 827.5 862.0 892.4 852.2 856.6 857.8 52.6 53.1 853·4 857·1 859**.**2 861.3 25 26 855.0 858.4 857.8 482.4 828.4 894.9 858.1 ο 52 49.38 862.0 8čo·2 **9** 830.0 892.1 1 49'93 493'4 53.Q 54.1 861.4 27 28 864.8 893.1 856.6 I 34 800.0 833.0 860.3 50.75 507.4 860.2 I 51 51.25 856.2 830.4 866.3 894.0 855.9 859.8 515.9 865.5 892.8 854.3 9 29 54'2 51.22 859.4 833.9 860.3 861.0 2 524.9 866.5 857.4 833.9 860.4 860.8 52.20 890.0 855.4 2 25 30 54.0 531.2 42 6 864.1 860.7 2 31 53**'9** 52.25 536.9 859.5 835.0 890.2 854.4 860.2 541.7 32 53.7 857.3 893.2 851.1 859.3 832.3 864.4 857.4 3 52.93 863.7 859.3 858.2 33 53.8 858.8 858.4 3 24 544.6 831.8 891.0 852.3 53.13 863.2 888.0 855.9 858.8 832.0 851.0 3 43 34 53.9 53'30 547'0 35 54·2 36 54·6 854.9 846.8 854.9 855.7 856.6 0 829.8 860.0 887.8 4 53'35 549'7 857.3 4 17 861.0 889.3 852.0 53.43 553.3 830.4 849.3 37 54.6 858.6 884.3 843.8 848.3 8<u>5</u>3.c 53.00 827.0 855.7 4 35 552.9

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at Agzar, or North-East-End of the base-line, after the measurement.

February 16th. After No. 5, the comparisons were stopped by rain and darkness for about $\frac{2}{3}$ of an hour. , 17th. (8) Raining heavy.

" 18th. (12) Foggy. (13) to (36) Cloudy.

VI____12

.

.

,

CHACH OR ATTOK BASE-LINE

After the measurement-(Continued.)

	berring A	uos	Air	nature of A	MICBOMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{31617.74}$ Cary's Inch [7.8], = 1.2843 m.y. of A								
1854 Feb.	Mean of the times of o	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	C	D	E	н	Mean of the compensated bars	- B WMARKS
19th	h.m. 7 18 A.M 7 40 7 58 8 13 8 30 8 51	. 38 39 40 41 42 43	0 40'0 41'7 43'3 44'3 45'5 47'5	41'95 41'68 41'68 41'83 42'13 42'73	+ 355.9 350.0 357.1 304.7 373.7 383.5	+ 846.1 848.3 850.5 855.1 852.1 849.1	+ 822.6 821.2 818.3 816.3 816.3	+ 844·9 843·1 844·3 843·3 843·1 843·1	+ 873.6 874.2 875.1 874.2 874.2 874.3 873.8	+ 836.7 835.9 833.2 830.6 833.2 833.9	+ 848.4 851.8 848.0 845.9 844.0 844.3	+ 845 [.] 4 845 [.] 8 845 [.] 4 844 [.] 6 843 [.] 9 843 [.] 5	Clear morning. Lt. Walker at the micro- meter microscope; Mr. Keelan at the plan microscope. Cloudy.
	9 9 9 9 26 9 42 9 58 10 22 10 41 11 46 0 2 P.M.	44 45 46 47 48 49 50 51	49.0 50.3 51.3 52.4 54.1 54.5 55.8 56.5	43 43 44 18 45 00 45 93 47 25 48 30 51 40 52 08	394-2 407.3 425.3 441.9 463.2 484.1 531.5 543.1	852.2 849.7 857.3 862.1 867.3 873.2 873.2	8170 8228 8221 8248 8308 8330 8330 8359 8397	850'9 850'9 851'2 856'4 866'2 866'2 876'2 880'9	8759 8771 8798 8885 8912 8957 9080 9104	838.8 841.1 845.7 851.8 853.1 863.3 864.7	840.0 849.9 853.7 854.0 858.1 860.1 869.3 869.1	845 9 848.6 849.6 854.5 859.3 862.6 871.2 873.0	Cloudy.
	0 18 0 37 0 50 1 2 1 15 1 29	52 53 54 55 56 57	50 [.] 9 57 [.] 4 57 [.] 6 57 [.] 6 57 [.] 7 57 [.] 7	52.80 53.50 53.98 54.35 54.75 55.15	554 8 567 7 575 6 584 2 591 4 596 0	875'2 876'3 879'4 875'8 879'4 879'4	839'8 845'5 846'8 843'3 848'7 848'6	880.8 881.8 881.7 881.6 885.0 885.0	909'7 914'9 914'3 911'9 910'5 910'7	804.8 809.3 806.6 808.2 871.4 870.3	872.4 871.1 875.2 873.2 877.2 872.8	873.8 876.5 877.3 875.7 878.7 878.7 876.4	Cloudy.
1	1 46 1 59 2 12 2 26 2 39 2 55	58 59 60 61 62 63	58.2 58.1 58.2 57.9 57.5 57.1	55.68 56.98 56.35 56.58 56.75 56.88	604.2 609.2 612.4 615.7 618.0 620.1	877'3 877'8 879'0 877'8 873'2 871'7	846.6 847.8 846.2 848.7 846.7 844.2	884.9 885.0 883.2 882.0 878.1 878.7	908.6 909.8 910.4 911.1 907.0 904.9	868.6 872.7 870.3 871.2 865.7 868.1	873.4 875.8 873.8 873.8 871.2 866.8 870.0	876.6 878.2 877.2 877.0 872.9 872.9	Cloudy.
	3 8 3 20 3 33 3 44 3 59 4 11 4 24	04 65 66 67 68 69 70	50 [.] 9 56 [.] 8 56 [.] 6 56 [.] 4 56 [.] 2 55 [.] 0	50°95 57°00 56°98 56°98 57°00 56°90 56°78	021.4 622.4 621.9 621.1 620.6 619.5 617.9	874'9 873'3 872'0 872'3 869'8 870'8 872'9	845.4 844.6 842.2 843.6 841.6 841.1 844.2	878.8 878.1 877.0 878.0 874.1 872.9 874.7	904'3 903'3 901'6 898'9 900'2 900'7 899'5	800'7 863'1 862'6 862'8 862'1 862'3 861'6	870.0 867.0 864.4 865.7 864.0 864.2 866.4	873'4 871'6 870'0 870'2 868'6 868'7 869'9	Cloudy.
22nd	4 38 7 12 A.M. 7 45 8 16 8 49 9 22 9 47	71 72 73 73 74 75 75 76 70 77	55.2 40.9 48.0 50.5 52.4 54.2 55.4	56.63 46.48 46.48 46.85 47.63 48.65 49.63	615.3 466.2 469.5 478.7 493.2 512.6 529.8	869.8 885.6 883.4 877.8 877.0 878.3 881.2	841°6 855°6 854'3 850°9 849°1 847'3 851°6	872'3 879'8 879'8 876'9 874'3 881'1 881'9	898.8 908.6 905.6 905.7 901.9 906.3 907.9	858.8 872.2 870.6 867.3 865.9 867.3 871.7	860'1 881'2 879'5 877'7 873'3 876'8 878'9	866'9 880'5 878'9 876'1 873'6 876'2 878'9	Lt. Weiker at the micrometer micro- scope; Mr. Keelan at the plain micro- scope.

.

BAR COMPARISONS

After the measurement—(Continued.)

	beerving A	eon	Air	emperature of A		MICE 1 Divis	0 METBR $1 \text{ for } = \frac{1}{21617}$	READI	NGS IN ch[7.8], —	DIVISI 1-3843 m.y. (ons M A		
1854 Feb.	Mean of the times of o	No. of compari	Temperature of	Corrected mean temper	Mean A	A	В	C	D	E	н	Mean of the compensated bass	BENABES
22nd	λ. m. 10 16 A.M. 10 46 0 6 P.M. 0 34 1 1 32 1 1 32 1 2 19 2 2 40 3 4 3 4 3 23 3 41 57 4 4 53 53	78 79 81 82 83 83 84 85 88 85 88 89 91 92 93	56.6 58.3 60.7 61.0 63.1 64.8 65.5 66.2 65.6 65.6 65.6 65.6 65.6 65.6	50°83 51°98 55'53 55'65 57'65 58'88 59'75 60'55 61'30 61'95 62'45 63'00 63'00 63'00 63'53	+ 550'3 571'8 617'1 637'7 655'5 663'1 677'7 689'7 703'6 716'4 725'3 731'6 734'2 732'0 725'1 721'1	+ 883'3 885'1 867'3 864'0 862'9 853'1 853'1 853'1 855'4 857'1 857'1 857'1 857'1 863'0 864'2 869'0	+ 855.0 850.9 839.0 834.9 835.1 822.1 823.7 826.9 827.0 827.2 830.1 832.2 836.2 837.9 842.5	+ 889 ² 887 ⁸ 874 ³ 871 ³ 859 ⁹ 863 ³ 863 ³ 863 ⁸ 863 ⁸ 866 ⁹ 869 ² 869 ² 869 ² 869 ² 872 ² 872 ² 872 ² 872 ² 872 ²	+ 914'1 915'2 900'5 904'0 903'9 888'9 889'9 889'9 889'9 889'0 895'2 893'8 895'9 897'4 901'0 904'0 899'3 905'0	+ 874'7 874'3 866'9 865'9 865'2 850'3 849'0 850'9 851'1 852'7 854'0 857'1 858'2 865'9 865'9 865'9	+ 881:2 879:0 863:7 864:1 859:2 848:5 845:9 854:0 855:0 859:3 860:9 865:9	+ 882 9 882 1 869 0 867 4 866 4 853 5 854 0 855 9 857 8 857 3 860 0 861 5 866 4 866 6 870 9	Colonel Waugh at the micrometer mi- croscope; Lt. Walker at the plain micro- scope. Cloudy with a cold wind from North.
		М	leans	51.92	562.15	686.80	858.68	890,00	918.8 1	879.66	884.88	886.58	

.

VI_13

After the measurement—(Continued.)

As on page VI_{5} we have

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = 0$

and from the preceding bar comparisons we obtain the following series of results :---

		a.			a.
$x + 4.42 (E_a)$	$- dE_a$	()-240.2 = 0	x+ 8.70 (E _a	— dE _a)-311.2 = 0
<i>x</i> + 3.37	"	-225.9 = 0	x+ 8.65	"	-306.0 = 0
x + 2.62	"	-215.6 = 0	x+ 8.57	"	-303.3 = 0
x + 2.02	"	-205.3 = 0	x+ 8·40	,,,	-300.1 = 0
<i>x</i> + 1.30	,,	-1950 = 0	x + 20.05	"	-489 [.] 5 = 0
<i>x</i> + 1.02	,,	-190.7 = 0	<i>x</i> +20.32	"	-489 [.] 8 = 0
x + 2.60	"	-214.4 = 0	x+20.32	"	-488·3 = 0
\$#+13.67	"	-380.9 = 0	x +20.17	"	-479 [.] 9 = 0
x+13.12	"	$-373^{2} = 0$	x +19.87	"	-470.2 = 0
x+12.52	"	-363.7 = 0	x +19.27	"	-460.0 = 0
\$ +11.77	"	-353.3 = 0	x +18.57	"	-451·7 = 0
x +22·67	"	-529.9 = 0	x+17.82	"	-441.3 = 0
x+22.82	"	-531.7 = 0	x+17.00	"	-424·3 = 0
x +22.72	"	-525.7 = 0	x +16.07	"	-412.6 = 0
x+22.42	,,	-520.9 = 0	<i>x</i> +14.75	"	-396.1 = 0
x +22.00	3 7	-514.0 = 0	x+13.70	"	-378.5 = 0
x +21.10)) `	-492.8 = 0	x + 10.00	, .	-339 [.] 7 = 0
x +20.57	,,	-490 [.] 9 = 0	x+ 9.92	"	-329 · 9 = 0
x+19.95	,,	-484·7 = 0	x + 9.30	"	-319.0 = 0
# +19.25	"	-471.6 = 0	<i>x</i> + 8.20	"	-308.8 = 0
x +18.50	"	-461.4 = 0	x+ 8.02	"	-301.7 = 0
x+14.72	"	-411.3 = 0	x+ 7.65	"	-291.5 = 0
x+14.02	"	-397.0 = 0	x+ 7 [.] 25	"	-287.3 = 0
#+13.27	"	-386.7 = 0	x+ 6·85	"	-280.4 = 0
# +12.62	"	-375.7 = 0	x+ 6.32	"	-272.4 = 0
# + 12.07	"	-366.8 = 0	x+ 5.92	"	$-269^{\circ}0 = 0$
x+11°25	"	-354·0 = 0	x+ 5 [.] 65	"	-264.8 = 0
# +10.75	"	-344 ^{.6} = 0	x+ 5.43	"	-261.3 = 0
<i>a</i> +10.32	"	-336.1 = 0	x + 5 [.] 25	"	-254.9 = 0
x + 9.80	"	-329.3 = 0	x+ 5 ¹²	"	-252.8 = 0
x + 9 [.] 45	,,	-323.8 = 0	x+ 5.05	"	-2520 = 0
# + 9°07	"	-317.6 = 0	x + 5.00	"	-249.2 = 0
x + 8·87	"	-314.7 = 0	x+ 5°02	"	-248.1 = 0

VI___14

BAR COMPARISONS

After the measurement—(Continued.)

			d						ď	
x +	5.03	$(E_a - dE_a)$	-249'1	=	o x	+	5:35	$(E_a - dE_a)$	- 229.7 =	= 0
x +	5.00	"	- 248.0	-	o <i>x</i>	+	4.32	"	-210.9 =	= 0
æ +	5.10	"	- 249'2	-	o <i>x</i>	+	3.12	"	- 190.4 =	= 0
x +	5.33	"	-252.0	=	o <i>a</i>	+	2.22	"	-176.3 =	= 0
<i>x</i> +	5 [.] 37	"	-251.6	=	0 <i>x</i>	+	1.42	,,	- 166.3 =	= 0
x +3	15.22	"	-414'3	=	0 <i>x</i>	+	0.40	"	-154.5 =	= 0
x +	15.22	"	-409.4	=	0 <i>x</i>	+	0.02	"	- 140.9 =	= 0
x +	15.12	"	-397'4	=	o <i>x</i>	—	° ·4 5	"	-134.7 =	= 0
x +	14:37	"	-380.4	=	o <i>a</i>	-	0.80	"	-129.9 =	= 0
æ +	13.32	"	-363.6	=	0 <i>x</i>	-	1.00	"	-130.0 =	= 0
x +	12.37	"	-349'1	=	o <i>x</i>		1.00	"	-134.4 =	= 0
x +	11.17	. ,,	-332.6	=	0 <i>x</i>		0.83	"	- 141.5 =	= o
x +	10.03	"	-310.3	=	0 <i>x</i>		0.23	"	- 149.8 =	= 0
<i>x</i> +	6.47	"	-252.5	=	0					

And from the mean of these results,

$$x = 324.43 - 1008 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.652,$$

and $x = 146.50 + 10.08 \ dE_a = 188.15 + 10.08 \ dE_a = L - A$.

Proceeding as on page VI_6 we obtain :--

In terms of	A - L	B – L	C – L	D – L	E – L	H - L
Micrometer divisions.	+0.35	-27 [.] 90	+4 [.] 08	+32·23	-6·92	- 1·70
Millionths of a yard.	+0.38	-35 [.] 83	+5 [.] 24	+41·39	-8·89	- 2·18

Also the following,

VI_15

Final deduction of the total length measured with the compensated bars.

-	377 43	C 17	<i>·</i> ·					<i>m.y</i>	
From pag	ge VI6 the	excess of the (b compensate	ed bars abov	e 6 times A bef measu	<i>ore</i> the } rement ∫	= 10	69.3 +	69'1 dE _a
"	VI10	"	"	"	after set N	Io. 341	= 11	03.0 +	49'4 dE _a
,,	VI_15	"	"	"	after the measu	rement	= 11	28.9 +	60 [.] 5 dE _a
Therefore	e the mean exc	ess of	**	applicable	to sets Nos. 1	to 341	≕ I0	86.3 +	59 [.] 3 dE _a
and	"	"	"	•	Nos. 342	to 656	= 11	16.0 +	55°0 dE _a
Also the	mean length o	f a set of 6 c	ompensated app	b ars in feet licable to se	of the standard ts Nos. 1 to 34	; ;}=60%	00325	86 A 10 +	59 [.] 3 dEa
and		"	appli	cable to sets	Nos. 342 to 65	56 =60.0	×03348	Bo A 10 +	55°0 dE _a

Similarly from pages VI_10 and VI_15 the mean excess of the two compensated bars A and H above twice \mathbf{A} = $367.9 + 18.4 dE_a$ and the mean length of the set of compensated bars A and H in feet of the standard = 20.0011037 \mathbf{A} + 18.4 dE_a

Hence the total lengths measured with the compensated bars

	-			feet of A		
in sets Nos.	i to 167	•••••	Ξ	10020.5442	+	9903 dEa
>>	168 to 341	•••••	=	10440.5670	+	10318 dEa
"	342 to 494	•••••	-	9180.5122	+	8415 dEa
"	495 to 656	••••	=	9720.5424	+	8910 <i>dE</i> a
in set No.	6571	•••••••	=	20.0011	+	18 dE_a
in sets Nos.	1 to 6571		=	39382.1669	+	37564 dEa

Now the mean temperature of A during the bar comparisons before the measurement and after set No. 341 was $62^{\circ} - \frac{59^{\circ}3}{6} = 52^{\circ}1$, for which temperature the corresponding expansion of A from page (19) = 21.586 m.y. Also the mean temperature of A during the bar comparisons after set No. 341 and after the measurement was $62^{\circ} - \frac{55^{\circ}}{6} = 52^{\circ}8$, for which temperature the corresponding expansion of A from page (19) = 21.590 m.y. Comparing these values of expansion respectively with the original value = 22.67 m.y, used in the foregoing, it is found that $dE_a = +1.084 \text{ m.y.}$ for sets Nos. 1 to 341, and = +1.080 m.y. for sets Nos. 342 to 6571. Substituting for dE_a respectively these numerical values, there result,

Total lengths measured with the compensated bars

		feet	of .	A
in sets Nos.	1 to 167 or S.W. End, to Station $A =$	(10020.5442	$+ \cdot 0322) =$	10020.5764
"	168 to 341 or Station A, to Station $B =$	(10440.5670	+ .0336) =	10440.6006
"	342 to 494 or Station B, to Station C =	(9180.5122	+ .0273) =	9180.5395
"	495 to 657_1 or Station C, to N.E. End =	(9740.5435	+ .0289) =	9740.5724
"	1 to 657_1 or S.W. End, to N.E. End =	(39382.1669	+ '1220) =	39382-2889

VI_16

Comparisons between the Compensated Microscopes and the 6-inch brass scales during the measurement, and provisional determination of Microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m.i.)

	Who	en compared	ope.	red with.	empera-	62° Fah. . 6″ scale 52'5 m.i.	Micr Microse	oscope ope Scale.	le – 4, ah.	Micros : - at 62	- Scale A, ° Fah.
			Licros	compa	cted to ture	ion to ion of EE=	Observed term	l value in 18 of	: Scal 62° F		8
		1853-54	4	Scale	Согге	Reduct Expans for 1°=	Divisions 10000=1".	m.i.	Micros	m.i.	Referen numbe
December	r 15th	Before the measure- ment.	T M O R N P	T M U R N P	66 [°] 25 66 [°] 76 68 [°] 15 69 [°] 21 64 [°] 35 69 [°] 95	+ 266 + 298 + 384 + 451 + 147 + 497	0'00 0'00 0'00 + 4'86 + 1'37	0 0 + 486 + 137	$ \begin{array}{r} - & 97 \\ - & 21 \\ + & 283 \\ + & 93 \\ + & 363 \\ + & 350 \end{array} $	+ 169 + 277 + 667 + 544 + 996 + 984	I 2 3 4 5 6
"	12th	"	S	S	60.62	- 83	0.00	0	- 75	- 158	7
" January	26th 4th	Between sets No. 55 and 56. Between sets No. 167 and 168.	TMM* ORNPS TMORN* P* S	TMMURNPS TMURNNPPS	30 58 31 69 35 43 34 70 44 03 31 65 33 69 32 80 60 15 60 29 57 88 59 99 60 32 32 09 60 32 32 09 60 70	- 1964 - 1894 - 1661 - 1706 - 1123 - 1897 - 1769 - 1825 - 1825 - 116 - 107 - 258 - 126 - 1869 - 1869 - 1776 - 81	$\begin{array}{r} + 16^{\circ}37 \\ + 17^{\circ}37 \\ + 16^{\circ}37 \\ + 16^{\circ}37 \\ + 11^{\circ}25 \\ + 18^{\circ}60 \\ + 15^{\circ}47 \\ + 12^{\circ}27 \\ + 9^{\circ}10 \\ + 4^{\circ}93 \\ + 4^{\circ}20 \\ + 3^{\circ}90 \\ + 3^{\circ}90 \\ + 18^{\circ}13 \\ + 4^{\circ}45 \\ + 11^{\circ}10 \\ - 3^{\circ}43 \end{array}$	+ 1637 + 1737 + 1737 + 1630 + 1637 + 1125 + 1860 + 1547 + 1227 + 910 + 493 + 420 + 550 + 1813 + 445 + 1110 + 445 + 1110 - 343	$\begin{array}{c} - & 97 \\ - & 21 \\ + & 283 \\ + & 363 \\ + & 350 \\ - & 283 \\ + & 350 \\ - & 283 \\ + & 93 \\ + & 363 \\ + & 363 \\ + & 350 \\ + & 350 \\ + & 350 \\ - & 283 \\ - $	- 424 + 178 - 178 + 95 + 326 + 326 + 357 + 445 + 445 + 457	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23
**	15th	Between sets No. 318 & 319.	8	S	64.27	+ 142	- 303	- 303	- 75	- 236	25
"	17th	Between sets No. 341 and 342.	T T* M M* P R N O S	T T M M P R N U S	64.05 57.62 65.14 65.56 66.45 64.99 65.29 63.05 63.80	$\begin{array}{r} + & 128 \\ - & 274 \\ + & 196 \\ + & 223 \\ + & 278 \\ + & 187 \\ + & 206 \\ + & 66 \\ + & 113 \end{array}$	$ \begin{array}{r} + 8.03 \\ + 14.77 \\ + 1.08 \\ 0.00 \\ - 3.18 \\ - 1.23 \\ + 2.80 \\ + 3.00 \\ - 2.60 \\ \end{array} $	$ \begin{array}{r} + 803 \\ + 1477 \\ + 108 \\ 0 \\ - 318 \\ - 123 \\ + 280 \\ + 300 \\ - 260 \end{array} $	$ \begin{array}{r} - & 97 \\ - & 97 \\ - & 21 \\ + & 350 \\ + & 93 \\ + & 363 \\ + & 283 \\ - & 75 \\ \end{array} $	$\begin{array}{r} -36 \\ + 834 \\ + 1106 \\ + 283 \\ + 202 \\ + 310 \\ + 157 \\ + 849 \\ + 649 \\ - 222 \end{array}$	-5 26 27 28 29 30 31 32 33 33 34
February	2nd	Between sets No. 416 and 417	N N*	N N	54 ^{.8} 2 53 ^{.2} 9	- 449 - 544	+ 8 [.] 47 + 4 [.] 77	+ 847 + 477	+ 363 + 363	+ 761 + 296	35 30

* These microscopes were compared a second time, because they were adjusted after the first comparison.

VI_____17

Digitized by Google

Microscope Comparisons—(Continued.)

		-e	d with.	1pera-	2° Fah. 6″ scule 2·5 m.i.	Micro Microsco	scope - pe Scale.	⁰ − ⊿, հհ.	Micros : - Scale A, at 62° Fah.		
Whe:	n compared	icroscop	ompare	cted ter ture.	ion to 6 $ion of 0$ = $E = 62$	Observed tern	value in 18 of	s : Scale 62° Fr		ence Jer.	
	1854	W	Scale c	Corre	Reduct Expans for 1°	Divisions 10000=1"	<i>m.i.</i>	Micro	<i>m.</i> i.	Referonne	
February 6th "16th	Between sets No. 494 and 495. After the measure- ment.	T T* M P R N O S T M P R N O S	T T M P R N U S T M P R N U S	55°52 56°15 55°59 59°92 57°99 54°82 56°65 56°57 49°78 49°96 55°22 51°87 49°82 51°48 61°87	$\begin{array}{c} - & 405 \\ - & 366 \\ - & 401 \\ - & 130 \\ - & 307 \\ - & 449 \\ - & 334 \\ - & 339 \\ - & 764 \\ - & 753 \\ - & 424 \\ - & 633 \\ - & 761 \\ - & 658 \\ - & 8 \end{array}$	$\begin{array}{r} + 17^{\circ}50 \\ + 17^{\circ}33 \\ + 600 \\ + 2^{\circ}65 \\ + 2^{\circ}80 \\ + 5^{\circ}03 \\ + 5^{\circ}17 \\ + 2^{\circ}23 \\ + 18^{\circ}38 \\ + 8^{\circ}33 \\ + 2^{\circ}90 \\ + 4^{\circ}92 \\ + 8^{\circ}37 \\ + 9^{\circ}40 \\ 0^{\circ}00 \end{array}$	$\begin{array}{r} + 1750 \\ + 1733 \\ + 600 \\ + 265 \\ + 280 \\ + 503 \\ + 517 \\ + 223 \\ + 1838 \\ + 833 \\ + 290 \\ + 492 \\ + 837 \\ + 940 \\ 0 \end{array}$	$ \begin{array}{r} - & 97 \\ - & 97 \\ - & 21 \\ + & 350 \\ + & 93 \\ + & 363 \\ + & 283 \\ - & 75 \\ - & 97 \\ - & 21 \\ + & 350 \\ + & 93 \\ + & 283 \\ + & 283 \\ - & 75 \end{array} $	$\begin{array}{r} + 1248 \\ + 1270 \\ + 178 \\ + 485 \\ + 66 \\ + 417 \\ + 466 \\ - 191 \\ + 977 \\ + 59 \\ + 216 \\ - 48 \\ + 439 \\ + 565 \\ - 83 \end{array}$	37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	

The required combinations of individual microscope errors taken from pages VI_{17} and VI_{18} are expressed as follows;

	Reference numbers.													m.i.		me	an te	mp:				
e 1	=	2	+	3	+	4	+	5	+	6	+	$\frac{1+7}{2}$	= +	- 3474	. at	(62	+	4 [.] 98)			before t	he measurement.
eg	=	9	+	11	+	12	+	13	+	14	+	8+15	= +	. 36	at	(62	-2	7:42)		betwe	en sets 55	\$ 56
e ₃	=	10	+	11	+	12	+	13	+	14	+	$\frac{8+15}{2}$	= +	· 162	at	(62	- 20	6 [.] 80)		"	da	•
e ₄	=	17	+	18	+	19	+	20	+	22	+	$\frac{16+24}{2}$	= +	- 2869	at	(62		1·85)		"	167 (k 168
e ₅	=	17	+	18	+	19	+	21	+	23	+	$\frac{16+24}{2}$	= +	- 1257	at	(62	— 1	1.56)	ade	"	d	0.
e ₆	=	28	+	30	+	31	+	32	+	33	+	$\frac{24+26}{2}$	= +	- 2410	i at	(62	+	2 ·55)	ms m	"	167 & 168	, and 341 & 342
e7	=	17	+	18	+	19	+	21	+	23	+	$\frac{16+25}{2}$	= +	- 1389) at	: (62	- I	0.99)	parisc	"	do.	and 318 & 319
e ₈	=	28	+	30	+	31	+	32	+	33	+	$\frac{26+34}{2}$	= +	- 2554	, at	(62	+	2.81)	com	"	341 & 342	· ,
eg	=	29	+	30	+	31	+	32	+	33	+	$\frac{27+34}{2}$	≂ +	- 2609	at	(62	+	2·34)	From	"	do.	
<i>e</i> 1	₀ =	39	+	40	+	41	+	32	+	43	+	$\frac{37+44}{2}$	= +	- 2573	at	(62	-	3 [.] 57)		"	do.	and 494 & 495
<i>e</i> 1	ı =	29	+	30	+	31	+	33	+	35	+	$\frac{27+34}{2}$	= +	- 2521	at	(62	+	0 [.] 60)		"	do.	and 416 & 417
<i>e</i> 1	₂ =	29	+	30	+	31	+	33	+	30	+	$\frac{27+34}{2}$	= +	- 2056	i at	(62	+ (0 [.] 34)		"	do.	do.
<i>e</i> 1	3 =	39	+	40	+	4 I	+	35	+	43	+	$\frac{37+44}{2}$	= +	- 2485	; at	(62	-	5.31)		"	416 & 41	7 and 494 & 495

VI____18
Microscope Comparisons—(Continued.)

				Rej	fe ren	c e #	umbe	rs.						m.i.		mean	ter	mp:	•		
$e_{14} =$	39	+	40	+	4 1	+	42	+	43	+	$\frac{37+44}{2}$:	= ·	+	2141	at	(62 -		5 [°] 31)	e made	between se	ets 494 & 495,
e ₁₆ =	39	+	40	+	4 I	+	42	+	43	+	$\frac{38+44}{2}$	=	+	2152	at	(62 -	-	5.26)	arison	"	do.
e ₁₆ =	46	+	47	+	48	+	49	+	50	+	$\frac{45+51}{2}$	=	+	1678	at	(62 -	-	9 [.] 64)	a comp	after the r	neasurement.
e ₁₇ =	46	+	<u>45</u>	+ <u>5</u> 2	<u> </u>							#	+	506	at	(62 -	-	0.10)	Fron	đ	0.

And from the foregoing, we obtain the following equations for the microscope errors per set (or *m.e.*); where dE expresses the error in the adopted value of the expansion for the 6-inch scales.

$(m.e.)_1 = \frac{e_1 + e_3}{2} = + 1755 + 6 \times$	11 . 22 dE	applicable to sets Nos.	1 to 55
$(m.e.)_g = \frac{e_3 + e_4}{2} = + 1516 + 6 \times 1000$	14.32 dE	"	56 to 167
$(m.e.)_3 = \frac{e_5 + e_6}{2} = + 1837 + 6 \times$	4·37 dE	"	168 to 318
$(m.e.)_4 = \frac{e_7 + e_8}{2} = + 1972 + 6 \times$	4.09 dE	>>	319 to 341
$(m.e.)_5 = \frac{e_9 + e_{10}}{2} = + 2591 + 6 \times$	0 [.] 61 <i>dE</i>	**	342 to 416
$(m.e.)_6 = \frac{e_{11} + e_{13}}{2} = + 2503 + 6 \times$	2.35 dE	>>	417 to 436
$(m.e.)_7 = \frac{e_{12} + e_{14}}{2} = +2099 + 6 \times$	2 [.] 48 dE	>>	437 to 494
$(m.e.)_8 = \frac{e_{15} + e_{16}}{2} = + 1915 + 6 \times$	7 . 45 dE	"	495 to 656
$(m.e.)_9 = e_{17} = + 500 + 2 \times$	9.10 dE	" set No.	6571

Hence the total microscope errors are as follows,

 $I \text{ to } 167 \begin{cases} 55(m.e)_1 = + 96525 + 3703 \ dE = 0.0080 + 112(m.e)_2 = + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.0141 + 169792 + 9623 \ dE = 0.00141 + 169792 + 169792 + 9623 \ dE = 0.00141 + 169792 + 169$ 3703 dE In sets Nos. 9623 dE sum = 0.0221 + 13326 dEIn sets Nos. 168 to 341 $\begin{cases} 151(m.e)_{3} = + 277387 + 3959 \ dE = 0.0231 + 23(m.e)_{4} = + 45356 + 564 \ dE = 0.0038 + 564 \ d$ 3959 dE 564 dE sum = 0.0269 +4523 dE In sets Nos. 342 to 494 $\begin{cases} 75(m.e)_5 = + 194325 + 275 \ dE = 0.0162 + 20(m.e)_6 = + 5.060 + 282 \ dE = 0.0042 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 863 \ dE = 0.0101 + 58(m.e)_7 = + 121742 + 58(m.e)_$ 275 dE 282 dE 863 dE sum = 0.0305 +1420 dE In sets Nos. 495 to $657_1 \begin{cases} 162(m.e)_8 = + 310230 + 7241 \ dE = 0.0259 + 7241 \ dE \\ 1(m.e)_9 = + 506 + 18 \ dE = 0.000 + 18 \ dE \end{cases}$

0.0259 + 7259 dE

VI_____19

Microscope Comparisons—(Continued.)

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally; *i.e.* in terms of the 6-inch brass scale A. But from page (31), we have $2A = 1.0000192 \frac{A}{10}$, value in 1835. Also the coefficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that .000,000,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (*m.e*) we have,

Total lengths measured with the compensated microscopes

	feet of A	feet	of	Α
In sets Nos. 1 to 167 or S.W. End to Stn. A $\left\{ \begin{array}{c} \dots & \dots \\ \dots & \dots \end{array} \right\}$	${167 \times 3 + 0221} + 13326 dE =$	(501.0317 +	•••37) =	501.0354
,, Nos. 168 to 341 or Stn. A, to Stn. B $\left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\} \cdots = \left\{ \begin{array}{c} & & \\ & & \\ \end{array} \right\}$	$\left\{174 \times 3 + 0269\right\} + 4523 dE =$	(522.0369 +	·0013) =	522.0382
$\left. \begin{array}{c} \text{,, Nos. 342 to 494} \\ \text{or Stn. B, to Stn. C} \end{array} \right\} \dots = \left\{ \begin{array}{c} \end{array} \right.$	$\left\{153 \times 3 + 0305\right\} + 1420 dE =$	(459 [.] 039 3 +	·0004) =	459'0397
,, Nos. $495 \text{ to } 657_1$ or Stn. C, to N.E. End $\left\{ \begin{array}{c} \dots \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ $	$ \begin{cases} 162 \times 3 + 0259 \\ +1 \times 1 + 0000 \end{cases} + 7259 \ dE = $	(487.0353 +	·0020) =	4 87 [.] 037 3
,, Nos. 1 to 6571 or S.W. End to N.E. End	=	(1969.1432 +	·0074) =	1969.1506

Disposition of the bars and microscopes during the measurement.

The following typical illustrations show the permutations and combinations of the bars and microscopes during the measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set; and the numbers assigned to the illustrations, will be found employed in the tables of "Extracts from the Field Book &c."

Digitized by Google

VI____20

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin. Adopted heights above mean sea level.

> South-West-End (origin) = 1014.6 feet. North-East-End (terminus) = 1049.3 feet.

	the Set. are of Air	Mean time of	sars used Set above gin	Nun shev arra mer	neral wing .nge- nt of		the Set.	ure of Air	Mean time of	ars used	Set above gin	Num shev arra men	neral ving nge- it of
1853	No. of Temperati	ending	No. of 1 Height of ori	Bars.	Micros :	1853	No. of	Temperat	ending	No. of b	Height of ori	Bars	Micros :
17th Dec.	ι ₁ 62.5	h. m. 10 25 A.M. 0 45 P.M.	$\begin{array}{r} \text{feet.} \\ 3 + 0.9 \\ 2 - 1.1 \end{array}$	1	1	23rd Dec.	37	55°6	h. m. 10 5 м.М.	6	feet. - 10.7	3	3
19th "	2_{1} 70.8 2_{2} 67.7 3_{1} 46.2	2 о 3 15 8 50 А.М.	3 3 [·] I 3 4 [·] 9 3 6 [·] 2	I 2 1	I 2 I		39 40 41	68.8 68.2 68.4	о 30 Р.М. 1 17 1 55	6 6 6	11.0 10.0 10.0	3 3 3	3 3 3
	32 54 5 41 61 1 42 65 8 51 67 7	955 110 25 P.M. 119	3 7.7 3 8.9 3 10.1 3 11.6	2 I 2 I	2 I . 2 I	24th "	42 43 44 45	69 [.] 3 69 [.] 9 67 [.] 7 37 [.] 3	2 30 3 1 3 58 7 50 A.M.	0 6 6 6	11.0 11.0 11.1 11.1	3 3 3 3	3 3 3 3
20th "	52 68.8 6 66.6 7 38.9 8 51.6	2 4 3 19 7 57 A.M. 9 5	3 13.0 6 15.4 6 16.6 6 17.1	2 3 3 3	2 3 3		46 47 48 40	45°1 49°6 55°4 63°1	8 30 9 14 10 10 10 58	6 6 6	11.6 11.7 11.8 11.5	3 3 3	3 3 3 3
	9 60.4 10 64.2 11 66.8	ю 15 0 ор. м . 0 48	6 16·7 6 15·8 6 15·4	3 3 3	3 3 3		50 51 52	64 [.] 8 66 [.] 3 68 [.] 1	0 21 P.M. I 3 I 40	6 6 6	11.9 12.0 11.9	3 3 3	3 3 3
21st "	12 08 8 13 69 3 14 68 6 15 31 6	и 50 2 50 3 47 7 55 л.ж.	6 14.6 6 14.7 6 14.2 6 12.1	3 3 3 3	3 3 3 3	26th "	53 54 55 56	69°0 69°1 68°8 63°1	230 35 350 103б л.м.	0 6 6	11.7 11.6 11.7	3 3 3 3	3 3 3 3
	16 43.3 17 50.7 18 55.2	8 42 9 35 10 23	6 12.1 6 12.0 6 11.0	3 3 3	3 3 3		57 58 59	66·3 70 [·] 9 72·2	11 27 0 55 р.м. 1 40 2 10	6 6 6 6	11.8 11.0 11.2	3 3 3	3 3 3
	20 69.7 21 71.8 22 72.2	0 JO P.M. I 23 2 27	6 11.6 6 11.3 6 11.4	333	3 3 3	27th "	61 62 63	72·8 71·6 30·8	3 4 3 45 7 55 ▲.M.	666	11.2 11.2 11.2	3 3 3	3 3 3
22nd "	23 71.0 24 32.8 25 44.8 26 53.3	3 30 7 50 ▲,M. 8 44 9 40	6 11.0 6 11.1 6 11.5	333	3 3 3		64 65 66 67	39 ^{.2} 47 ^{.8} 53 ^{.6} 57 ^{.3}	8 40 9 20 9 57 10 37	6 6 6 6	11.0 11.2 11.2	3 3 3	3 3 3
	27 57.7 28 62.2 29 68.0	10 30 11 20 0 43 P.M.	0.11 9 8.01 9 0.11 9	333	333		68 69 70	62°2 67°9 70°4	II 12 0 25 P.M. I 23	6 6 6	11.4 11.4 11.2	333	333
	31 70°C 32 70°C 33 69°	5 1 27 5 2 10 5 3 0 7 3 40	ο 11.0 2 11.0 2 10.8	3 3 3 3	333		71 72 73 74	72 ^{.0} 73 [.] 1 73 [.] 3 71 [.] 8	2 5 2 39 3 14 4 0	0 6 6 6	11.2 11.2 11.2	3 3 3 3	3 3 3 3
23rd "	34 373 35 433 36 500	3 7 50 A.M. 3 8 40 9 15	б 10 [.] 8 б 10 [.] 9 б 10 [.] 9	333	3 3 3	28th "	75 76 77	29.9 38.8 46.2	7 53 л.м. 8 45 9 32	6 6 6	10'7 10'4 10'3	3 3 3	333

Note.—The rear-end of set No. 1 stood exactly over the dot at South-West-End.

(4₂) and (5₁) Windy. (20) to (23) High wind. (34) to (40) Cloudy. (58) and (59) High wind.

Extracts from the Field Book-(Continued.)

1853	.54	the Set.	ure of Air	Mean time of	oars used Set above	gin	Num shev arra men	neral ving nge- nt of	1854	the Set.	ure of Air	Mean time of	bars used	' Set abore igin	Num shew arrai men	ieral ring nge- it of
		No. of	Temperat	ending	No. of 1 Height of	ori	Bars.	Micros :		No. of	Temperat	ending	No. of	Height of or	Bars.	Micros:
28th] 29th	Dec.	78 79 81 82 83 83 85 88 87 88 90 91	51°8 57'7 66'9 70'9 71'9 31'6 43'3 50'0 55'2 60'9 65'9 68'9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	feet. 10.4 10.3 10.2 9.9 9.5 9.7 9.5 9.7 9.5 9.7 9.5 9.9 9.5 9.8 8.8 8.8	3333333333333333333	333333333333333333333333333333333333333	2nd Jan	. 124 125 120 127 128 129 130 131 132 133 134 135 130	35°0 40'9 48'8 53'9 58'3 63'0 64'3 66'0 67'1 67'4 67'8	 h. m. 8 30 A.M. 9 10 9 39 10 38 10 38 11 19 0 20 P.M. 0 50 1 22 1 50 2 15 2 45 3 10 3 37 	000000000000000000000000000000000000000	feet. - 6.6 6.6 6.6 6.6 6.4 6.3 6.0 6.0 5.7 5.8 5.9	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	333333333333333333333333333333333333333
30th	, ,	92 93 94 95 96 97 98 99 100 101 102 103 104	70.2 70.9 71.3 71.2 70.8 28.4 35.8 43.4 50.4 54.7 59.6 60.3 67.7 60.7	I 3I 2 6 2 35 3 8 3 45 7 54 A.M. 8 29 9 10 9 52 10 33 11 14 0 35 P.M. I 3	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	875 885 888 888 887 887 887 775 775	33333333333333333	33333333333333333333333333333333333333	3rd "	138 139 140 141 142 143 144 145 146 147 148 149 150	67.0 25.1 30.9 36.9 43.6 48.4 52.8 55.4 57.1 63.7 65.4 57.1 63.7 65.4 66.1 66.0	4 5 7 35 A.M. 8 8 9 18 9 53 10 25 10 55 11 25 0 26 P.M. 0 54 1 24 1 45 2 16	00000000000000000000000000000000000000	6·2 6·0 6·1 6·2 5·8 5·9 5·8 5·8 5·8 5·8 5·8 5·8 5·8	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33333333333333333333
31st	»» *	105 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	77708 3418 4756 5716 570 417 5378 4756 571 656 6791 6577 6914 677	2 15 2 55 3 35 4 7 7 4 ^I A.M. 8 23 9 35 10 9 35 10 9 10 57 0 10 P.M. 0 50 1 30 1 58 2 46 3 26 4 15	, , , , , , , , , , , , , , , , , , ,	7776666666666 6 7776666666555	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4th ",	152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167	67'3 66'8 66'1 26'1 36'1 40'4 47'0 55'0 55'0 55'0 55'0 55'0 55'0 55'0 5	2 40 3 27 3 56 7 43 A.M. 8 46 9 25 9 58 10 29 11 0 11 35 0 30 P.M. 1 25 2 0 2 30 3 3 3 51	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.6 5.7 5.5 5.5 5.5 5.5 4.9 4.9 4.9 5.0 5.3 2 5.3 5.2 5.2 5.1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
2nd .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$															

.

VI___22

•

.

•

(155) Cloudy.

DETAILS OF THE MEASUREMENT

Extracts from the Field Book-(Continued.)

1854	the Set	ure of Air	Mean time of	oars used	Set above igin	Nun shev arra: men	neral wing nge- it of	1071	the Set	ure of Air	Mean time of	ars used	Set above gin	Num shew arran men	ieral ving nge- t of
1854	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:	1854	No. of	Temperat	ending	No. of b	Height of ori	Bars	Micros :
5th Jan. 6th " 7th "	168 169 171 172 177 177 177 177 177 177	8 5 9 7 2 7 3 2 9 2 6 0 7 3 3 6 0 3 0 3 1 1 2 8 8 0 8 0 3 8 8 6 3 1 4 2 3 3 0 4 6 9 9 9 7 0 6 3 6 3 4 4 5 5 5 5 6 6 6 6 6 7 7 5 5 5 6 6 6 8 0 2 2 4 3 2 6 0 3 1 4 2 3 3 0 4 6 9 9 9 7 0 6 3 6 3 4 4 5 5 5 8 1 6 6 8 0 8 0 3 8 8 6 3 1 4 2 3 3 0 4 6 9 9 9 7 0 6 3 6 3 4 4 5 5 5 8 1 6 6 8 0 8 0 3 8 8 6 3 1 4 2 3 3 0 4 6 9 9 9 7 0 6 3 6 3 4 4 5 5 5 8 1 6 6 8 0 8 0 3 8 8 6 3 1 4 2 3 3 0 4 6 9 9 9 7 0 6 3 6 3 4 4 5 5 5 8 1 6 6 8 0 8 0 3 8 8 6 3 1 4 2 3 3 0 4 6 9 9 9 7 0 6 3 6 3 4 4 5 5 5 5 6 6 6 6 7 7 6 6 3 6 3 4 4 5 5 5 6 6 6 6 7 7 6 8 1 6 8 0 8 0 3 8 8 6 3 1 4 5 5 5 5 6 6 6 6 7 7 6 6 8 7 5 5 8 1 6 6 7 7 6 8 1 6 8	h. m. 9 6 A.M. 9 43 10 12 10 46 11 35 0 38 P.M. 1 12 1 48 2 10 2 33 3 0 3 25 4 0 7 50 A.M. 8 25 8 50 9 25 9 26 10 55 9 20 10 55 2 20 2 45 3 10 3 31 4 0 7 47 A.M. 8 18 8 55 9 20 9 50 10 15 10 45 11 15 0 10 P.M. 0 34 0 56 2 2 2 30 2 58 3 20 3 50 8 37 A.M.	, , , , , , , , , , , , , , , , , , ,	feet. fe	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	444444444444444444444444444444444444444	9th Jan. 10th ", 11th "	$\begin{array}{c} 221\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222$	C 0 0 7 2 8 9 7 0 9 0 0 2 3 3 4 4 5 5 5 9 3 5 6 6 6 6 6 6 7 6 3 3 3 5 9 7 0 4 7 7 6 8 0 3 9 6 0 2 3 3 4 4 5 5 5 6 6 6 6 6 6 6 7 6 3 3 3 5 9 7 0 4 7 6 8 0 3 9 3 9 8 3 3 0 6 9 3 8 8 7 1 6 7 6 8 0 3 3 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\hbar m. o 37 P.M. I 3 I 29 I 50 2 15 2 43 3 10 3 36 4 12 7 41 A.M. 8 15 8 50 9 23 10 0 10 25 10 56 11 30 2 33 P.M. I 25 I 55 2 25 3 0 3 30 4 0 7 37 A.M. 8 7 9 38 10 4 10 30 11 0 7 37 A.M. 8 7 9 38 10 4 10 30 11 0 7 37 A.M. 8 7 9 38 10 0 9 7 3 30 4 0 7 37 A.M. 8 7 9 38 10 0 9 7 3 30 4 0 7 37 A.M. 8 7 9 38 10 0 9 7 3 30 4 0 7 37 A.M. 8 7 9 38 10 0 9 7 3 30 4 0 7 37 A.M. 8 7 9 38 10 0 9 7 3 30 4 0 7 37 A.M. 8 7 9 38 10 0 9 38 10 30 11 17 1 47 2 13 2 40 3 58 A.M. 8 6 8 43 9 42 10 3 10 3 10 0 10 25 10 30 10 4 10 30 11 0 10 25 10 30 10 4 10 30 11 0 10 2 10 30 11 0 10 2 10 30 11 0 10 2 10 30 11 0 10 2 10 30 10 4 10 30 11 0 10 2 10 30 10 4 10 30 11 0 10 2 10 30 10 4 10 30 11 0 10 2 10 30 11 0 10 2 10 30 11 0 10 2 10 30 11 0 10 2 10 30 10 2 10 30 10 3 10 3	, , , , , , , , , , , , , , , , , , ,	H feet. 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 444444444444444444444444444444444444
9th "	210 211 212 213 214 215 216 217 218	07'9 66'7 68'0 67'6 35'3 42'6 48'3 54'0 56'3	2 30 2 58 3 20 3 50 8 37 ▲.₩. 9 7 9 40 10 11 10 38	00000000000	3.8 3.8 3.8 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.3 3.3	33333333	4 4 4 4 4 4 4 4	12th - ,,	263 264 265 266 267 268 269 270 271	68.0 26.6 30.9 37.3 41.8 46.8 50.7 54.6 59.0	3 58 7 35 A.M. 8 6 8 43 9 10 9 42 10 3 10 30 11 5	00000000000	2·3 2·3 2·1 2·1 2·1 2·0 1·8 1·8 1·7 1·5	3333333333	4 4 4 4 4 4 4 4 4

(168) to (197), (211), (242) and (261) to (263) Cloudy.

VI____23

Extracts from the Field Book-(Continued.)

1854	the Set.	ure of Air	Mean time of	bars used	f Set above igin	Nun shev arra men	ne ral ving nge- t of	1054	the Set.	ture of Air	Mean time of	bars used	t Set above igin	Nun shev arra mei	neral wing inge- nt of		
	184		No. of	Temperat	enaing	No. of	Height of or	Bars.	Micros:	100.4	No. of	Temperat	enuing	No. of	Height of or	Bars.	Micros:
	2th	Jan. "	274 2750 22778 2282 2883 28850 2880 2880 2880 2880 2880 2880 288	6570669674495590489673 6689674495590489673 558264	h. m. 1 3 P.M. 1 32 2 0 2 22 2 50 3 14 3 37 4 3 7 42 A.M. 8 14 8 52 9 19 9 50 10 18 10 47 11 14 0 14 P.M. 0 42	00000000000000000000000000000000000000	feet. - 1.5 1.6 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	444444444444444444444444444444444444444	14th Jan. 16th "	300 311 331 314 315 318 312 322 322 322 322 322 322 322 322 322	62.59 63.99 64.49 664.9 664.7 35.0 64.7 35.0 7 417.7 9 57.4 55.29 417.7 9 57.4 8	h. m. 0 47 P.M. 1 8 1 29 1 54 2 15 2 43 3 3 3 25 3 42 4 13 7 55 A.M. 8 27 9 3 9 35 10 6 10 39 11 20 11 45	0000000000000000000000000000000000000	feet. - '7 '7 '5 '5 '4 '4 '4 '4 + '1 '3 '4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
1	4th	. "	291 292 293 294 295 295 295 295 295 297 298 299 300 301 302 303 304 305 306 307 308	657392 68869316 677392 68869316 67738 67738 67738 67738 67738 67738 67738 67738 67738 67738 67738 67738 67738 67738 67738 67738 67739 23558 558 558 623 558 623	1 11 1 39 2 9 2 34 3 27 3 51 4 24 7 51 8 23 9 9 9 19 9 48 10 39 11 11 0 23 Р.М.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	·89100 10978 109778 101111 111 111 111 1990 555	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	+ 4 4 4 4 4 4 4 4 4 4	17th "	327 328 329 331 332 333 333 333 333 335 335 335 337 338 339 3341 341	65.0 67.8 68.3 67.8 68.3 68.2 33.1 36.2 41.7 45.3 49.8 53.9 61.1	I 4 P.M. I 32 I 57 2 23 2 50 3 18 3 45 4 II 7 51 A.M. 8 28 9 3 9 29 10 3 10 43 0 15 P.M. To	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+ - - - 395:4 - 4 - 395:4 - 4 - 395:4 - 395:4	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		Th He Th	e dot eight o e teri	denot of set minal	ing Station B No. 341 abov point of set N	was 7e St To. 3	fixed ex tation B 41 was t	$\begin{array}{l} \text{actly i} \\ = 2.4 \\ \text{he poi} \end{array}$	n the 1 feet. nt of	ormal at t	the ad	lvance 0. 342.	l-end of set N	To. 3	41.	[l
2	4th	Jan.	342 343 344 345 346 347 348 349 350 351 352 353 354	50°4 51°2 51°9 52°7 54°3 54°4 54°4 54°6 54°7 54°7 54°7 54°7 54°9 55°1 54°5	8 40 A.M. 9 15 9 55 10 28 11 3 11 30 0 30 P.M. 0 52 1 20 1 45 2 12 2 34 3 0	00000000000000000000000000000000000000	+ ·8 ·9 J·1 J·2 T·3 I·3 I·5 I·5 I·5 I·6 I·7 I·8 J·7	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4	24th Jan. 25th "	355 356 357 358 359 360 361 362 363 364 365 366 367	54 ^{.3} 50 ^{.3} 51 ^{.3} 52 ^{.4} 53 ^{.0} 54 ^{.3} 55 ^{.1} 58 ^{.2} 61 ^{.0} 62 ^{.9} 62 ^{.4} 58 ^{.6}	3 26 P.M. 3 53 7 50 A.M. 8 25 8 50 9 11 9 35 10 0 10 26 11 0 0 0P.M. 0 23 0 52	00000000000000	+ 1.7 1.8 1.9 2.0 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.3 1.2 1.0	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4

(298) to (341) Cloudy. January 24th Rainy night and cloudy throughout this day's measurement, with occasional rain in the forenoon. January 25th Rainy night and cloudy throughout this day's measurement.

VI___24

DETAILS OF THE MEASUREMENT

VI____25

Digitized by Google

-

Extracts _	from	the	Field	Book-((Continued.))
------------	------	-----	-------	--------	--------------	---

1954	the Set	ture of Air	Mean time of	bars used	f Set above igin	Nur she arra mer	neral wing nge- nt of	1954	the Set	ure of Air	Mean time of	ars used	Set above igin	Nun shev arra mer	ne ral wing nge- at of
1094	No. of	Tempera	enumg	No. of	Height of	Bars.	Micros :	1094	No. of	Temperat	ending	No. of 1	Height of ori	Bars	Micros :
25th Jan. 30th ,, 31st ,,	368 377 377 377 377 377 377 377 37	55555555555555555555555555555555555555	h. m. 1 21 PM. 1 50 2 15 2 40 3 27 3 58 9 30 A.M. 10 52 0 0 P.M. 0 36 1 7 1 40 2 7 2 43 3 36 7 47 A.M. 8 19 9 8 9 36 10 10 10 41 11 20 0 29 P.M. 1 10 1 38 2 7 2 40 3 35 7 47 A.M. 8 19 9 8 9 36 10 10 10 41 11 20 0 29 P.M. 1 10 1 38 2 7 2 40 3 23 3 54 7 31 A.M. 8 2 8 45 9 16 9 54 10 27 10 56 11 22 0 25 P.M. 0 50 1 14 1 39 2 2 2 50 1 14 1 39 2 2 2 50 1 14 1 39 2 2 2 5 2 50 1 14 1 39 2 2 2 5 5 7 1 14 1 39 2 2 5 5 5 7 1 14 1 39 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5		$\begin{array}{c} feet. \\ + & .98 \\ + & .30 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 4 \\ 8 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 7 \\ 8 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	* * * * * * * * * * * * * * * * * * * *	2nd Feb 3rd "	$\begin{array}{c} \cdot & 4245 \\ 4425 \\ 4424 \\ 4225 \\ 44334 \\ 4334 \\ 4334 \\ 4334 \\ 4334 \\ 4334 \\ 4444 \\ 4444 \\ 4444 \\ 4450 \\ 78 \\ 9012334550789012334550789012234550789012234605078 \\ 4650789012346507890122345507890122346050789 \\ 4650789012346507890122346507890122346050789 \\ 465078901234650789901223465078990122346050789 \\ 465078901234650789901223465078990122346050789 \\ 4650789901234650789901223465078990122346050789 \\ 4650789901223465078990122346050789 \\ 4650789901223465078990122346050789 \\ 4650789901223465078990122346050789 \\ 4650789901223465078990122346050789 \\ 46507899012234650789 \\ 46507899012234650789 \\ 465077899012234650789 \\ 465077899012234650789 \\ 465077899012234650789 \\ 4650778990122366789 \\ 4650778990122366789 \\ 4650778990122366789 \\ 4650778990122366789 \\ 46507789 \\ 46507789 \\ 46$	0 0 0 0 0 0 0 0 0 0 0 0 0 0	\hbar . m. 10 4 A.M. 10 35 11 5 0 0 P.M. 0 32 0 56 1 17 1 38 2 5 2 29 2 52 3 15 3 39 4 17 7 53 A.M. 8 21 9 0 9 28 10 3 10 30 11 10 11 41 0 38 P.M. 0 57 1 19 1 39 1 58 2 14 2 34 2 51 3 9 3 28 3 51 4 9 4 32 7 34 A.M. 8 0 8 31 8 55 9 28 9 53 10 45 11 5 11 42 0 29 P.M.		feet. 7 90 97 4 2 4 7 2 6 9 2 4 7 91 46 8 0 8 8 0 36 7 7 6 8 8 8 0 1 1 5 5 6 7 0 2 3 5 5 8 6 6 7 6 6 7 7 7 7 7 7 7 8 8 8 1 5 5 6 7 0 2 3 5 5 8 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
2nd "	414 415 416 417 418 419 420 420 421 422	55.0 55.3 55.1 54.6 34.4 38.1 41.0 42.5 44.4	3 13 3 40 4 2 4 32 7 22 A.M. 7 55 8 30 9 0 9 34	0 0 0 0 0 0 0 0 0 0 0 0 0	4 •0 •9 1•2 1•5 2•0 2•1 2•2 2•4	33333333333	4 4 4 4 4 4 4		469 470 471 472 473 474 475 476 477	59.2 58.1 60.7 62.3 64.4 63.0 60.8 60.8 60.8	0 47 1 6 1 23 1 42 2 25 2 45 3 4 3 25	00000000000000000000000000000000000000	9 ^{.6} 9 ^{.3} 9 ^{.3} 9 ^{.1} 9 ^{.0} 8 ^{.7} 8 ^{.8} 9 ^{.1} 9 ^{.0}	3 3 3 3 3 3 3 3 3 3 3 3	4 4 4 4 4 4 4

(375) to (384) High wind. (385) to (398) Hazy. (437) to (457) Cloudy. (458) to (479) Cloudy with occasional sunshine.

Extracts from the Field Book-(Continued.)

the Set. ure of Air	Mean time of	bars used * Set above gin	Numeral shewing arrange- ment of	the Set. Bet above gin	Numeral shewing arrange- ment of
1854 jo tanan No. of Hard	ending	No. of 1 Height of ori	Bars. Micros :	Ro. of Jampus 4281 Height of Jampus 4281	Bars. Micros :
4th Feb. 478 602 479 597 6th ,, 480 377 481 402 482 443 483 463 484 483 485 502 486 523 487 549 The dot deno Height of se The termina 7th Feb. 495 367	h. m. 3 46 P.M. 4 20 7 41 A.M. 8 7 8 42 9 8 9 42 10 5 10 36 11 8 5 9 42 10 5 10 36 11 8 5 9 42 10 5 10 36 11 8 5 10 36 5 11 8 5 10 5 5 1	$\begin{array}{c} fert. \\ 6 + 8.8 \\ 6 8.7 \\ 6 8.8 \\ 6 8.7 \\ 6 9.0 \\ 6 9.0 \\ 6 9.0 \\ 6 9.0 \\ 6 9.2 \\ 6 9.1 \\ \hline \\ was fixed ex \\ 7 e Station C \\ 10. 494 was 1 \\ 6 + 8.3 \\ \end{array}$	$\begin{vmatrix} 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ 3 & 4 \\ actly in the = 2^2 feet. the point of \\ 3 & 4 \end{vmatrix}$	h.m. feet. 6th Feb. 488 56'7 o 12 P.M. $6 + 9'1$ 489 57'4 o 36 6 9'0 490 56'1 o 58 6 8'9 491 55'7 1 21 6 8'6 492 56'4 1 47 6 8'5 493 55'9 2 6 6 8'4 494 58'0 2 45 6 8'2 Total + 525'0 normal at the advanced-end of set No. 494. origin for set No. 495. 8th Feb. 534 $62'8$ 3 4 P.M. 6 + 12'1	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4
7th Feb. 495 36.0 496 413 497 45. 498 48.3 499 49.0 500 51.1 501 53.3 502 55. 503 57. 504 58. 505 59. 506 60.2 505 60.2 506 60.2 507 61.1 508 61.0 509 62.0 510 62.1 511 62.0 512 62.2 513 62.2 513 62.2 514 62.0 517 42.2 518 44.2 518 44.2 519 47.3 522 51.5 522 51.5 522 50.0 521 50.2 523 52.2 524 55.0 526 57.0 526 57.0 527 60.2 528 63.2 529 63.2 529 63.2 531 62.0 531 62.0 531 62.0 533 62.0 533 62.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 + 8·3 6 8·1 6 8·2 6 8·0 6 8·0 9 9·0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	8th Feb. 534 62.8 3 4 P.M. $6 + 12^{\circ}1$ 535 61.8 3 23 6 12.2 536 60.9 3 44 6 12.4 537 60.6 4 11 6 12.4 9th , 538 40.6 7 29 A.M. 6 12.7 539 43.4 8 3 6 12.9 540 45.3 8 36 6 13.0 541 46.3 9 3 6 13.1 542 48.7 9 36 6 13.2 543 50.2 10 0 6 13.4 544 51.7 10 30 6 13.4 544 51.7 10 30 6 13.4 545 53.2 11 0 6 13.3 544 51.7 0 4 P.M. 6 13.3 547 53.0 0 25 6 12.9 548 53.0 0 45 6 12.3 549 52.6 I 3 6 12.2 550 52.7 I 24 6 12.3 549 52.6 I 3 6 12.2 550 52.7 I 24 6 12.3 551 54.0 I 45 6 11.2 552 53.0 2 5 6 11.7 553 53.5 2 2 24 6 11.6 10th , 557 54.0 0 4 P.M. 6 10.8 558 56.4 0 34 6 11.0 559 57.6 I 4 6 11.1 560 57.9 I 26 6 11.2 561 58.1 I 51 6 11.2 561 58.1 I 51 6 11.2 562 58.4 2 14 6 11.6 563 57.7 2 42 6 12.1 564 59.9 3 7 6 12.4 565 569 3 39 6 11.6 565 569 3 39 6 11.6 564 59.9 3 7 6 12.4 565 569 3 39 6 11.6 564 59.9 3 7 6 12.4 565 569 3 39 6 11.6 564 59.9 3 7 6 12.4 565 569 3 39 6 11.6 564 59.9 3 7 6 12.4 565 569 3 39 6 11.6 566 56.2 4 10 6 10.4 11th , 567 41.6 8 10 A.M. 6 98 568 44.4 8 39 6 9.3 569 49.0 9 21 6 92 570 52.1 9 52 6 94 571 54.2 10 18 6 94 572 54.8 10 53 6 96	3 4

(485) to (494) Cloudy. (516) to (556) Cloudy. January 10th. Heavy rain throughout the night, cloudy throughout the day. (567) Heavy fog delayed the measurement of this set.

Digitized by Google

DETAILS OF THE MEASUREMENT

VI____27

Extracts from the Field Book-(Continued.)

1854	the Set.	ure of Air	Mean time of	bars used	f Set above igin	Nur shev arrs mer	neral wing inge- nt of	1854	the Set.	ture of Air	Mean time of	bars used	f Set above igin	Nur she arra me	meral wing inge- nt of
	No. of	Temperat	ending	No. of	Height of	Bars.	Micros:		No. of	Temperat	ending	No. of	Height of or	Bars.	Micros :
11th Feb. 13th "	5774 5555 555 555 555 555 555 555 555 55	5750544102482097030201041050670300074700359	\hbar . m. 11 49 A.M. 0 35 0 50 1 17 1 30 1 57 2 19 2 38 2 57 3 17 3 32 3 53 4 17 7 27 A.M. 7 53 8 50 9 43 10 42 11 4 11 20 0 32 0 48 1 35 1 52 2 9 2 44 3 19 1 35 1 52 2 9 2 44 3 23 3 4 7 4 32 2 7 3 4 7 53 8 50 9 43 1 57 2 7 4 8 3 23 4 7 3 4 7 53 8 50 9 43 1 57 2 7 4 8 3 2 2 7 2 44 3 3 4 7 4 32 2 7 3 4 3 53 4 7 4 32 2 7 2 44 3 3 4 7 4 32 2 7 3 4 3 53 4 7 4 32 2 7 2 7 4 8 3 2 3 4 3 53 4 7 4 32 2 7 2 7 4 8 3 2 3 4 3 53 4 7 4 32 2 7 2 7 4 8 3 2 3 4 3 53 4 7 4 8 3 2 3 4 3 5 9 20 9 43 1 5 1 5 2 9 2 7 2 44 3 2 3 4 3 4 3 5 2 9 2 7 2 44 3 2 3 4 3 2 3 4 3 5 9 20 9 43 1 5 1 5 2 9 2 7 2 44 3 3 4 3 2 3 3 4 3 4 3 4 3 5 9 20 9 2 2 7 2 44 8 3 3 4 3 4 7 4 32 7 34 8 3 3 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0	୶ଡ଼ୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠ	$\begin{array}{c} feet. \\ + & 9.7 \\ 10.0 \\ 10.0 \\ 10.1 \\ 10.2 \\ 10.2 \\ 10.1 \\ 10.3 \\ 10.6 \\ 11.0 \\ 11.1 \\ 11.9 \\ 12.3 \\ 13.1 \\ 13.2 \\ 13.3 \\ 13.2 \\ 13.3 \\ 13.2 \\ 13.3 \\ 13.2 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.4 \\ 13.5 \\ 14.0 \\ 14.2 \\ 14.7 \\ 15.5 \\ 15.8 \\ 16.8 \\ 17.3 \\ 17.9 $	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	444444444444444444444444444444444444444	14th Feb	. 6190 6222 6222 666666666666666666666666666	5575556666666666666666666666666667555555	h. m. 9 45 A.M. 10 5 10 29 10 50 11 37 11 55 0 15 P.M. 0 32 0 52 1 12 1 32 1 54 2 12 2 27 2 40 3 41 4 31 7 7 A.M. 7 3+ 8 6 8 28 8 54 9 15 9 43 10 29 10 58 11 22 0 17 P.M. 0 34 10 52 11 12 10 32 11 22 0 58 11 22 0 17 P.M. 0 34 10 52 11 0 58 11 22 0 17 P.M. 0 34 0 52 1 10 58 11 22 0 17 P.M. 0 34 5 52 1 10 58 11 22 0 17 P.M. 0 34 5 52 1 10 58 11 22 0 17 2.M. 0 34 0 52 1 10 58 11 22 0 17 2.M. 0 34 0 52 1 10 58 11 22 0 17 2.M. 0 34 0 52 1 10 58 1 2 2 30 3 15 3 54 4 20 4 53 5 3 0 Total	+ *************************************	feet. + 18.7 19.0 18.9 19.9 19.9 19.9 19.9 19.9 19.9 20.4 20.8 21.4 22.9 22.9 22.9 22.7 22.8 23.3 23.3 23.3 23.3 23.3 22.0 22.9 22.7 22.8 23.3 23.3 23.3 23.3 22.0 21.7 22.8 23.3 23.3 23.3 23.3 23.3 23.3 23.3	333333333333333333333333333333333333333	****************
	614 615 616 617	40'3 49'5 52'9 54'8	8 12 8 35 9 0 9 23	0 6 6 6	17·3 17·8 17·9 18·5	3 3 3 3	4 4 4 4		0571	50.3	5 30 Total	2 .+	<u>34</u> .0 2362.9	4	7

The advanced-end of set No. 657₁ fell in excess (*i.e.* North-East) of the dot at North-East-End 4.0065 feet, as measured on Cary's brass scale with a pair of compasses. Height of set No. 657₁ above North-East-End = 1.4 feet.

•

Reduction to Mean Sea Level.

Let the sections into which this base-line is divided be denoted as follows;

South-V	We	st-I	End to Station	n A b	y Section	Ι
Station	Α	to	22	В	,,	п
,,	B	to		С	,,	\mathbf{III}
,,	С	to	North-East-	\mathbf{End}	,,	IV

Then in the notation of (7) page I_{22} we have

H = 1015; h = 34.7; $\delta h = + 1.5$; Log. R = 7.32042, and n = 656.

			$\begin{bmatrix} h \end{bmatrix}_{1}^{p}$	a	n	dh	F	λ	C_2	$\cdot C_1$	C
Section , 1 , 1 , 1 , 1	I I II V	···· ····	-1545 - 395 + 525 + 2363	+ 33 - 86	167 174 153 162	+ 0'4 0'3 0'4	1478 290 + 671 + 2488	10522 10963 9640 10224	+:0045 +:0009 -:0021 -:0075	 •5107 •5321 •4679 •4962	 •5062 •5312 •4700 •5037

Final length	of	the	Base-Line	and	of its	parts i	in	feet	of	Standard	A.

	Me	asured wi	t h				
Section	Compensated bars page VI16	Compensated microscopes page VI20	Beam compass pages VI_22 to VI_27	Reduction to sea level as above	Total Length	Log.	
S. W. End to Stn. A	10020.5764	501.0324	0.0000	-0.2062	10521.1056	4.02206 1379	
Stn. A to Stn. B	10440.0000	522.0382	0.0000	-0.2312	10962.1076	4 [.] 03989 4060	
Stn. B to Stn. C	9180.5395	459.0397	0.0000	-0.4200	9639.1092	3.98403 6900	
Stn. C to N.E. End	9740 [.] 5724	487.0373	-4.0062	-0.2032	10223.0995	4.00958 2588	
S.W.End to N.E. End	39382.2889	1969.1206	-4.0062	-2'0111	41345.4219	4.61642 7428	

VI____28

Verificatory Minor Triangulation.

0. of	Name of Station	Corrected Angle	Log Sine	T. Di	Distance	e in	of Ble
			Log. Sine	Log. Distance	Feet	Miles	Error
1	South-West-End of Base, or Kálu Station Station A, ,, a	$\begin{cases} 60 & 1 & 45^{\circ}219 \\ 59 & 42 & 19^{\circ}235 \\ 60 & 15 & 55^{\circ}569 \\ \hline 180 & 0 & 0^{\circ}023 \\ \end{cases}$	9 [.] 937658453 9 [.] 936233461 9 [.] 938686030	4 [.] 021033802 4 [.] 019608810 4 [.] 022061379	10521.1056	1.003	+ 0.002
- 2	Station $a \dots \dots \dots \dots$,, $A, \dots \dots \dots$,, $\beta \dots \dots \dots$	56 33 48.734 74 47 40.729 48 38 30.565 180 0 0.028	9 [.] 921424960 9 [.] 984523705 9 [.] 875404841	4°067053921 4°130152666 4°021033802			+0.322
3	Station A, ,, β ,, B ,	45 30 3.049 62 59 12.239 71 30 44.734 180 0 0.022	9 ^{.8} 53248348 9 ^{.949829623} 9 ^{.976988082}	3 [.] 943314187 4 [.] 039895462 4 [.] 067053921	10962.1430	2.026	+0.208
4	Station β ,, B, ,, γ	87 42 43.003 39 47 3.407 52 30 13.605 180 0 0.015	9 [.] 999653616 9 [.] 896111338 9 ^{.8} 99488626	4:043479177 3:849936899 3:943314187			+1.552
5	Station B , ,, γ ,, C ,	68 42 12.614 49 56 21.837 61 21 25.572 180 0 0.023	9.9692823,54 9.883868103 9.943308649	4*069452882 3*984038631 4*043479177	9639°1476	1.820	+ 1'467
6	Station γ ,, C, ,, δ	69 33 45 ² 59 48 28 24 ⁶¹⁶ 61 57 50 ¹⁵¹ 180 0 0 ⁰ 26	9 [.] 971764652 9 [.] 874278363 9 [.] 9457 ⁸ 9437	4`095428097 3`997941808 4`069452882			—0 [.] 296
7	Station C, ,, δ North-East-End of Base, or Agzar Station	70 10 5.510 46 55 55.971 62 53 58.547	9 [•] 973447721 9 [•] 863647744 9 [•] 949492261	4`119383557 4`009583580 4`095428097	10223.1229	1.930	+0.305
		180 0 0.028		Sum	41345.5191	7.831	

Nors.—Each side of a triangle is given in the same horizontal line with the angle which it subtends.

The angles of the verificatory triangulation were measured with a 3-foot Theodolite by Barrow read by 5 micrometer microscopes. At all the stations 3 measures were made on each of 10 zeros. The stations on the line are South-West-End, A, B, C and North-East-End. The auxiliary stations are α , β , γ and δ .

VI_29

Comparison in feet between the values computed by means of the verificatory triangulaticn and the measured value.

Of the entire line.

South-West-Er	nd to North-East-End by the measurement, page VI_28 41345.4219	Log. 4.616 427 428
"	computed in terms of South-West-End to Station A, page VI_29	4.616 428 449
	Log. computed value $-$ Log. measured value $=+$	0.000 001 031

In terms of the entire line by measurement.

										Computed	Computed Measured*
South-	West-E	nd to	Stati	ion	A	•	•	•	•	10521.0809	— ·0247
Station	h A to S	lation	B	•	•	•	•	•	•	10962.1172	+.0096
"	B to	,,	С	•	•	•	•	•	•	9639 [.] 1249	+'0157
"	C to	,, I	Jorth	ı-E	ast-	-En	id	•	é	10223.0989	— ·0006

Of each section in terms of the others.

	South-West-End to Station A	Station A to Station B	Computed Measured	Station B to Station C	Computed Mcasured	Station C to N.E. End	Computed Measured
Measured lengths*	10521*1056	10962.1076		9639.1092		10223.0995	
Computed on base S.W. End to Station A	}	10962-1430	+ '0354	9639.1476	+ .0384	10223.1229	+.0234
Computed on base Station A to Station B	}			9639.1165	+ .0073	10223.0899	0096
Computed on base Station B to Station C	}	•• ••			•••••	10223.0822	0173

NOTE.—Since
$$\operatorname{Log}_{\theta}(x + dx) = \operatorname{Log}_{\theta}x + \frac{(dx)}{x} - \frac{(dx)^2}{2x^2} + \&c.$$

$$dx = \left\{ \text{Log}_{10} (x + dx) - \text{Log}_{10} x \right\} \frac{x}{\text{Modulus}}$$
 nearly, by which expression the required

variations in the foregoing natural numbers have been calculated.

۳I_____30

Description of Stations.

SOUTH-WEST-END OF CHACH BASE OR KALU STATION, Lat. 33° 53', Long. 72° 25', is situated on the south end of a mound to the S. of the village of that name, in the Chach valley; thana Hazro, pargana Attok, tappa Haveli, tahsil Hassan Abdal, and district Rawul Pindi.

The pillar is solid, and 4.5 feet high. It contains three mark-stones, one at top, another at bottom and the third 2 feet below the former. Of these marks, the one uppermost was used in the measurement of the base-line. The dot in question is on a piece of silver let into a strip of brass, which latter is fixed in the stone. The pillar and mark-stones are protected by a hemispherical dome of masonry, on the key stone of which a mark for ordinary reference will be found; the height of this mark above the base-line dot is 3.54 feet. The pillar is enclosed in a platform of earth-work some 14 feet square.

The South-West-End was connected in 1860, by a double line of spirit levels with the mean sea level at Karáchi, when it was found that the height of the markstone on the dome of masonry was 1018.15 feet above this datum.

NORTH-EAST-END OF CHACH BASE on AGZAR STATION, Lat. 33° 57', Long. 72° 32', is situated on the southern end of a mound in the Chach valley; mouza Agzar, thana Hazro, tappa Sarkani, pargana Attok, tahsil Hassan Abdal, and district Rawul Pindi.

The pillar is solid, and 5.2 feet high. It contains three mark-stones, one at top, another at bottom, and a third 2.8 feet below the former. Of these marks the uppermost one was used in the measurement of the base-line. The dot in question, and the means employed for its protection, are similar to those adopted for the South-West-End of this base. The height of the mark on the dome of masonry is 3.41 feet above the base-line dot. The pillar is enclosed in a platform of earth-work some 14 feet square.

STATION A. Is on the straight line from Kalu Station to Agzar Station, and distant 199 miles from the former.

The mark consists of a dot on a brass pin fixed in the head of a stout wooden picket, driven about 5 feet into the ground and projecting 14 inches above the surface. This picket is in the centre of an equilateral triangle formed by 3 other pickets of equal height on which the feet of the theodolite stand rest and the spaces between the pickets are filled up with masoury so as to form a triangular pillar; the latter is isolated from the platform of earth-work, some 14 feet square, in which it is enclosed.

STATION B. Is on the straight line from Kalu Station to Agzar Station, and distant 4.07 miles from the former.

The mark and platform at this station are similar to those at Station A.

STATION C. Is on the straight line from Kálu Station to Agzar Station, and distant 1.94 miles from the latter.

The mark and platform at this station are similar to those at Station A.

AUXILIARY STATIONS α , β , γ , and δ , are situated on suitable swells of land lying to the S.E. of the base-line.

The stations are marked by a central isolated pillar of masonry, surrounded by a platform of stones and earth, about 14 feet square. There are mark-stones at top and bottom of the pillar.

J. B. N. HENNESSEY.

Digitized by Google

VI_______

· · · · ·

Digitized by Google

.

.

,

т

. . -

.

.

The middle point of this base-line is in Latitude N. 24° 56', Longitude E. 67° 13'; the Azimuth of North-End at South-End is 205° 24', and the line is 7.32 Miles in length. The measurement was effected under the supervision of Lieut.-Colonel* A. S. Waugh, R.E. by Major† A. Strange assisted by the following:

> Lieut. J. F. Tennant, R.E. D. J. Nasmyth, R.E. ,, T. G. Montgomerie, R.E. ,, Mr. C. Lane H. Keelan ,, N. A. Belletty ,, C. H. Burt ,, C. J. Carty •• J. H. Smith ,, J. McGill •• Mir Siud Mohsim

> > Digitized by Google

* Now General Sir A. S. Waugh.

† Now Colonel A. Strange.

INTRODUCTION.

This base-line was measured East of the town of Karachi in the province of Sind, the South-End of the line being at an azimuth of about 255° from Karachi church and distant from thence 8.2 miles. The line was selected by Mr. W. C. Rossenrode and the preliminary arrangements made by Major A. Strange.

The measurement was commenced at South-End, bar-tongues pointing West, and carried on *continuously* to North-End, so that every succeeding set originated at the point marking the terminus of its predecessor. The line was divided into 4 sections by the sub-dividing points A, B and C, to admit of verification by minor triangulation; and in addition four points, called *Posterity-marks a, e, f,* and g, were laid down in the measurement. Of these, a was at 10 sets or about 630 feet, e at 21 sets or nearly $\frac{1}{2}$ mile, f at 42 sets or some $\frac{1}{2}$ mile and g at 84 sets or 1 mile, all reckoned from the South-End. It is also to be noticed that the extremities of the line were connected by means of the triangulation with the tide-gauge set up at Manora point in Karachi harbour, where the mean sea level was determined by Lieutenant J. F. Tennant, R.E.

The compensated bars were compared with the standard \mathbf{A} on three occasions, *i.e.* before the measurement near South-End, after set No. 306 near Section Station B and after the measurement near North-End. On all these occasions the comparing piers were set up parallel to the line and within a few feet of it, while the bar-tongues pointed West as they did during the measurement. The series of comparisons at South-End comprised 109 sets, that at B consisted of 93 sets and 85 sets were taken at North-End.

One of the comparing microscopes employed in the preceding bar comparisons was fitted with a micrometer, while the other had its wires (or lines) fixed.

The compensated microscopes were compared with their scales on 6 occasions, including the comparisons taken prior and subsequent to the measurement.

In respect to time, the first set of bar comparisons was taken on the 30th November 1854, the last on the 29th of the following January.

The stations of the verificatory triangulation were 9 in number, forming a single series of triangles. Of these stations, 5 were in the alignment, *viz*. South-End, A, B, C and North-End, while the auxiliary stations a, β , γ and δ were placed on suitable sites West of the line. The angles were measured by Lieut. J. F. Tennant, R.E., with Troughton's 3-foot theodolite on 10 equidistant zeros; three measures were made on each zero, so that 30 measures in all were made of each angle.

observing A rison f Air ersture of A						MICEOMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{21604 \cdot 10}$ Cary's Inch [7.8], = 1.2851 m.y. of A								
1854 Nov. & Dec.	Mean of the times of c	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	н	Mean of the compensated bars	REMARES	
30th	h. m. 7 I A.M. 7 24 7 42 7 58 8 30 8 45 9 0 9 16 9 31 11 4 11 32 11 46 0 3 P.M. 0 18 0 32 0 46 0 59 1 13 1 26 1 50 2 4 2 20	1 2 3 4 5 0 7 8 9 0 11 12 3 4 5 0 7 8 9 0 11 12 3 4 5 10 17 18 9 0 21 22 3 24	64.6 65.3 65.9 66.9 66.9 69.7 69.4 73.5 74.0 74.1 74.4 75.8 76.4 75.7 75.3	63 ^{.5} 0 63 ^{.5} 0 63 ^{.6} 3 63 ^{.8} 3 64 ^{.13} 64 ^{.45} 64 ^{.80} 65 ^{.20} 65 ^{.65} 66 ^{.20} 68 ^{.25} 68 ^{.80} 69 ^{.35} 69 ^{.90} 70 ^{.43} 71 ^{.68} 72 ^{.78} 73 ^{.43} 73 ^{.78} 74 ^{.08}	+ 9595 9684 9745 9869 9869 9869 9869 9988 10086 10184 10510 10628 10711 10892 10966 11043 1114 1169 11239 11305 11393 11447 11485	+ 1089.2 1092.5 1092.5 1097.5 1102.6 1102.6 1103.0 1104.2 1106.5 1104.2 1104.2 1105.2 1107.0 1105.2 1108.0 1110.8 0 1109.8 1109.5 1108.0 1113.1 1112.5 1113.7	+ 1070.6 1075.0 1077.9 1079.5 1079.5 1079.5 1079.5 1079.5 1081.0 1081.5 1083.8 1083.0 1085.8 1085.8 1085.8 1085.8 1085.7 1087.1 1087.8	+ 1094'5 1097'0 1097'0 1104'4 1102'7 1101'8 1104'6 1107'5 1117'5 1118'5 1118'5 1118'5 1118'5 1117'3 1119'6 1115'6 1116'2 1120'7 1122'5 1124'0	+ 1125.0 1128.5 1128.7 1138.5 1134.2 1134.2 1133.2 1134.2 1133.2 1134.2 1133.2 1134.2 1146.0 1146.0 1144.0 1144.0 1144.0 1146.5 1145.2 1145.2 1145.5 1145.5 1145.5 1145.5 1145.5 1145.5 1146.5 1146.5 1146.5 1145.5 1152.7 1152.7 1155.5 115	+ 1084.0 1088.9 1088.5 1097.2 1097.2 1097.0 1099.8 1098.5 1103.4 1103.0 1102.9 1104.4 1104.0 1104.2 1105.8 1107.6 111.5 1111.7	+ 1090'1 1089'2 1094'0 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'2 1095'3 1097'3 1098'0 1097'3 1098'0 1097'3 1098'0 1097'3 1098'0 1097'3 1098'0 1097'3 1097'3 1098'0 1097'3 1097'3 1097'3 1098'5 1099'7 1100'3 1101'9 1103'8 1104'0 1105'4	+ 1092'2 1095'2 1097'1 1099'8 1102'1 1101'5 1102'4 1102'9 1105'6 1105'6 1105'6 1105'5 1106'7 1107'2 1108'1 1109'5 1109'5 1109'5 1109'5 1109'5 1109'5 1109'5 1109'5 1109'5 1109'5 1105'6 1105'6 1105'5 1110'5 1110'5 1115'5 115	Major Strange at the micrometer mi- croscope; Mr. Kee- lan at the plain mi- croscope. Sky obscured by dense clouds. Sharp wind from N.E.	
lat	2 30 2 51 3 8 3 23 6 20 A M	25 26 27 28	75°2 74°8 74°4	74 ²⁰ 74 ²⁸ 74 ²⁸ 74 ³⁵	1150'5 1152'0 1155'2 1156'1	1113'0 1112'8 1109'2	10910 1089.0 1089.0	1120 y 1122 °G 1124 °7 1120 °2	1151.8 1149.2 1149.2	1108.2 1108.8 1107.7	1103 C 1100 C 1103 2 1102 C	1114.3 1114.9 1113.0	Sunshine and clouds alternating throughout the alternoon.	
100	7 24 8 0 8 25 8 44 9 14	30 31 32 33 33	59 ^{.8} 59 ^{.8} 64 ^{.7} 68 ^{.4} 71 ^{.2} 74 ^{.1}	50 70 56 63 57 43 58 78 60 30 62 68	867'4 885'4 908'5 938'3 981'5	11140 11140 11100 11060 11060 11080 110807	1088.0 1083.0 1081.2 1075.1 1076.7	1108.6 1108.8 1108.4 1106.8 1110.8	1137'8 1138'0 1138'0 1135'0 1138'3	1099'9 1102'9 1099'4 1100'2 1103'6	1107.7 1107.7 1009.9 1099.8 1100.6	1109.4 1107.6 1105.6 1103.6 1106.5	Lt. Montgomeric at the micrometer microscope; Lieut Nasmyth at the plain microscope.	
	9 34 9 56 11 35 11 55 0 16 P.M. 0 36 0 56 1 16	35 30 37 38 39 40 41 42	76.1 77.6 79.0 78.1 77.0 77.7 78.9 78.9 79.1	64.65 66.43 73.65 74.58 75.15 75.55 75.93 76.33	1016 ^{.6} 1048 ^{.0} 1170 ^{.1} 1186 ^{.4} 1196 ^{.7} 1202 ^{.5} 1209 ^{.2} 1220 ^{.8}	1105'1 1104'6 1115'2 1116'9 1121'2 1127'8 1124'7 1135'1	1080'4 1079'4 1092'0 1094'6 1098'4 1103'7 1107'0 1113'8	1110 ^{.2} 1112 ^{.9} 1156 ^{.7} 1158 ^{.6} 1159 ^{.7} 1157 ^{.2} 1154 ^{.6} 1158 ^{.6}	1141 ^{.8} 1143 ^{.2} 1164 ^{.0} 1169 ^{.0} 1172 ^{.0} 1175 ^{.0} 1176 ^{.2} 1178 ^{.2}	1104'4 1104'0 1117'0 1122'2 1127'2 1129'9 1131'8 1136'8	1101'1 1100'4 1100'8 1105'1 1107'7 1116'9 1121'1 1130'2	1107'2 1107'4 1124'3 1127'7 1131'0 1135'1 1135'9 1142'1	Sunshine with oc casional clouds.	

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at the South-End of the base-line, before the measurement.

Digitized by Google

BAR COMPARISONS

Before the measurement—(Continued.)

	observing A	ison	Àir	erature of A	MICROMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{21604 \cdot 10}$ Cary's Inch [7.8], = 1.2851 m.y. of A								
1854 Dec.	Mean of the times of	No. of compar	Temperature of	Corrected mean temp	Mean A	A	В	C	D	Е	н	Mean of the compensated bars	REMARKS
lst 2nd	h. m. i 39 P.M. j 59 i 2 i 9 i 3 2 6 i 3 2 6 i 3 2 6 i 46 i 3 2 6 i 46 i 3 2 6 i 46 i 3 2 6 i 46 i 3 2 6 i 9 j 7 3 9 j 32 j 35 j 1 j 56 j P.M. i 15 j 35 j 1 j 1 j 53 j 1 j 1 j 25 j 1 j 25 j 1 j 25 j 1 j 23 j 1 j 23 j 1 j 23 j 1 j 23 j 1 j 23 j 1 j 1 j 25 j 1 j 33 j 22 j 33 j 22 j 33 j 22 j 33 j 22 j 33 j 22 j 33 j 22 j 32 j 33 j 32 j 32 j 33 j 32 j 32 j 32 j 33 j 32 j 32 j 33 j 32 j 32 j 32 j 32 j 32 j 33 j 32 j 32 j 33 j 32 j 32 j 32 j 33 j 32 j 32 j 32 j 33 j 32 j 32 j 32 j 32 j 32 j 32 j 33 j 32 j 32 j 32 j 32 j 32 j 32 j 32 j 33 j 32 j 32 j 32 j 32 j 32 j 33 j 32 j 32 j 32 j 33 j 32 j 32 j 32 j 32 j 33 j 32 j 32 j 32 j 32 j 32 j 32 j 33 j 32 j 33 j 32 j	4445678 901235555555556666666666667777777777898188888888888888	0 7	76.90 50.90 55.90 <td< th=""><th>+ 1231'7 1242'0 1248'9 1256'3 1261'1 1260'2 932'7 930'1 928'0 929'1 932'4 937'7 947'8 958'6 970'7 983'6 970'7 983'6 970'7 983'6 105'3 1033'2 1050'4 127'4 1262'0 1262'0 1267'4 127'4 1243'4 1249'6 1255'4 1262'0 1267'4 127</th><th>+ 1144'6 1142'1 1146'2 1144'9 1145'7 1151'6 1129'4 1133'1 1131'0 1132'0 1128'9 1125'2 1125'5 1124'1 1122'5 1124'0 1121'9 1122'2 1122'5 1124'0 1121'8 1123'5 1144'0 1149'5 1157'3 1159'4 1162'7 1169'0 1172'6 1174'8 1179'1 1179'1</th><th>+ 1116'4 1122'6 1121'2 1122'6 1128'1 1124'7 1106'8 1106'8 1106'0 1105'0 1105'0 1105'0 1105'1 1101'0 1107'7 1097'8 1096'4 1096'4 1096'9 1097'0 1097'0 1097'5 1096'4 1097'1 1097'8 1096'4 1097'1 1097'5 1120'3 1124'5 1126'4 1133'3 1137'2 1138'8 1140'8 1140'8 1140'5 1141'8 1139'9 1145'7 1146'8 1147'0 1145'7 1153'7 1154'2 1152'1</th><th>+ 1157'2 1160'3 1158'8 1163'0 1159'0 1132'1 1126'0 1129'5 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1123'6 1121'7 1122'0 1124'1 1123'3 1123'5 1123'5 1123'5 1128'0 1179'2 1185'4 1181'1 1186'1 1187'2 1185'4 1187'0 1190'5 1191'1</th><th>+ 1178.6 1182.2 1180.2 1180.2 1180.2 1192.7 1186.1 1149.8 1153.6 1150.9 1152.8 1153.6 1150.9 1152.8 1153.6 1155.2 1154.7 1154.5 1154.5 1154.7 1154.5 1154.7 1154.6 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1193.5 1196.5 1198.2 1190.9 1203.6 1209.2 1207.0 1212.0 1213.0 1217.0 1217.0</th><th>+ 1139.8 1147.4 1143.2 1145.0 1149.0 1150.9 1110.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1117.9 1110.4 1117.3 1115.7 1115.8 1117.6 1117.8 1120.7 1140.5 115.7 115.7 117.5</th><th>+ 1134'9 1138'2 1135'8 1130'7 1141'3 1140'8 1130'5 1127'4 1120'2 1120'2 1120'2 1120'2 1120'2 1120'3 1120'3 1130'1 1140'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1135'3 1150'3 1150'3 1150'3 1150'5</th><th>+ 1145'3 1148'8 1147'6 1150'3 1152'2 1127'6 1127'7 1127'0 1127'3 1123'0 1121'7 1121'3 1122'6 1121'8 1122'6 1121'8 1122'9 1122'9 1122'9 1122'9 1122'9 1122'9 1122'9 1122'9 1125'0 1152'5 1155'3 1157'9 1160'9 1165'0 1177'3 1177'3 1179'2 1180'8 1177'3 1179'2 1180'8</th><th>Major Strange at the micrometer mi- croscope. Wr. Kee- lan at the plain mi- croscope.</th></td<>	+ 1231'7 1242'0 1248'9 1256'3 1261'1 1260'2 932'7 930'1 928'0 929'1 932'4 937'7 947'8 958'6 970'7 983'6 970'7 983'6 970'7 983'6 105'3 1033'2 1050'4 127'4 1262'0 1262'0 1267'4 127'4 1243'4 1249'6 1255'4 1262'0 1267'4 127	+ 1144'6 1142'1 1146'2 1144'9 1145'7 1151'6 1129'4 1133'1 1131'0 1132'0 1128'9 1125'2 1125'5 1124'1 1122'5 1124'0 1121'9 1122'2 1122'5 1124'0 1121'8 1123'5 1144'0 1149'5 1157'3 1159'4 1162'7 1169'0 1172'6 1174'8 1179'1 1179'1	+ 1116'4 1122'6 1121'2 1122'6 1128'1 1124'7 1106'8 1106'8 1106'0 1105'0 1105'0 1105'0 1105'1 1101'0 1107'7 1097'8 1096'4 1096'4 1096'9 1097'0 1097'0 1097'5 1096'4 1097'1 1097'8 1096'4 1097'1 1097'5 1120'3 1124'5 1126'4 1133'3 1137'2 1138'8 1140'8 1140'8 1140'5 1141'8 1139'9 1145'7 1146'8 1147'0 1145'7 1153'7 1154'2 1152'1	+ 1157'2 1160'3 1158'8 1163'0 1159'0 1132'1 1126'0 1129'5 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1126'9 1123'6 1121'7 1122'0 1124'1 1123'3 1123'5 1123'5 1123'5 1128'0 1179'2 1185'4 1181'1 1186'1 1187'2 1185'4 1187'0 1190'5 1191'1	+ 1178.6 1182.2 1180.2 1180.2 1180.2 1192.7 1186.1 1149.8 1153.6 1150.9 1152.8 1153.6 1150.9 1152.8 1153.6 1155.2 1154.7 1154.5 1154.5 1154.7 1154.5 1154.7 1154.6 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1160.9 1157.0 1154.8 1193.5 1196.5 1198.2 1190.9 1203.6 1209.2 1207.0 1212.0 1213.0 1217.0 1217.0	+ 1139.8 1147.4 1143.2 1145.0 1149.0 1150.9 1110.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1119.8 1117.9 1110.4 1117.3 1115.7 1115.8 1117.6 1117.8 1120.7 1140.5 115.7 115.7 117.5	+ 1134'9 1138'2 1135'8 1130'7 1141'3 1140'8 1130'5 1127'4 1120'2 1120'2 1120'2 1120'2 1120'2 1120'3 1120'3 1130'1 1140'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1133'0 1135'3 1150'3 1150'3 1150'3 1150'5	+ 1145'3 1148'8 1147'6 1150'3 1152'2 1127'6 1127'7 1127'0 1127'3 1123'0 1121'7 1121'3 1122'6 1121'8 1122'6 1121'8 1122'9 1122'9 1122'9 1122'9 1122'9 1122'9 1122'9 1122'9 1125'0 1152'5 1155'3 1157'9 1160'9 1165'0 1177'3 1177'3 1179'2 1180'8 1177'3 1179'2 1180'8	Major Strange at the micrometer mi- croscope. Wr. Kee- lan at the plain mi- croscope.

VII_5

Digitized by Google

.

Before the measurement—(Continued.)

	obeerving A	Bon	Air	rature of A	MICROMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{21604\cdot10}$ Cary's Inch [7.8], = 1.2851 m.y. of A								
1854 Decr.	Mean of the times of	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	Е	н	Mean of the compensated bars	Remarks
2nd 4th	h. m. 2 $32 P.M.$ 2 41 2 50 3 11 3 21 6 $34 A.M.$ 7 4 7 29 7 53 8 17 8 45 9 54 9 55 9 24 9 45 11 24 9 45 11 24 9 45 11 24 9 55 9 24 9 45 11 24 9 55 9 24 9 45 11 44 2 4 2 40 3 31 1 44 2 40 3 31 3	85 86 87 88 99 99 99 99 99 99 99 99 90 101 103 105 100 100 100 100 100 100 100 100 100	809988888 80027732 809988 80053 800277777788 80027777798 80011 800410000000000	° 68 79 78 79 83 79 98 79 98 58 55 58 48 59 68 63 05 64 33 65 63 67 05 72 45 73 63 74 78 75 78 75 78 75 78 75 78 75 78 75 78 75 78 78 45 78 68 78 85	+ 1313'4 1317'1 1319'2 1319'8 1320'9 1321'1 958'0 957'5 965'3 983'0 1006'9 1043'8 1066'4 1088'0 1110'7 1228'3 1252'3 1252'3 1269'4 1295'3 1303'8 1310'6 1315'1 1317'9 1318'8	+ 1180'7 1182'5 1182'2 1180'5 1184'8 1183'2 1169'9 1175'0 1175'0 1175'0 1175'0 1175'0 1175'0 1175'0 1177'8 1164'4 1163'8 1177'8 1177'8 1177'8 1177'8 1177'8 1189'0 1189'0 1180'0 1190'4 1200'2 1204'3	+ 1156.8 1154.2 1159.0 1160.8 1160.0 1160.0 1140.8 1140.3 1139.3 1130.3 1130.4 1133.0 1134.9 1148.5 1149.1 1153.0 1153.0 1153.0 1153.0 1153.0 1170.8 1170.8 1177.4 1180.8	+ 1192.8 1191.3 1195.2 1197.2 1197.2 1167.8 1172.8 1172.8 1172.8 1172.9 1165.4 1168.0 1168.2 1168.0 1168.2 1171.7 1193.7 1197.3 1195.8 1204.0 1203.8 1207.6 1208.3 1212.8 1214.1	+ 1216.8 1221.2 1221.5 1222.1 1221.5 1220.9 1199.0 1195.9 1196.1 1194.3 1195.6 1195.6 1195.6 1195.6 1195.6 1195.6 1195.6 1217.0 1225.5 1225.5 1225.4 1229.6 1235.8 1234.4 1242.9	+ 1178.9 1180.3 1183.3 1180.7 1184.0 1182.2 1164.7 1162.9 1157.8 1160.0 1157.8 1160.0 1157.8 1160.3 1159.2 1160.8 1162.3 1175.1 1175.3 1178.8 1180.6 1190.3 1192.0 1190.6 1201.0 1202.3	+ 1173'4 1171'2 1172'0 1174'1 1177'0 1175'2 1172'9 1167'1 1165'4 1163'6 1157'7 1150'1 1156'4 1155'6 1155'6 1155'6 1172'7 1172'7 1178'8 1172'7 1178'8 1189'8 1190'0 1196'4 1196'9	+ 1183 ² 1183 ⁵ 1185 ⁵ 1184 ³ 1186 ⁹ 1186 ⁹ 1170 ⁹ 1170 ⁶ 1168 ¹ 1166 ⁹ 1163 ⁷ 1164 ⁹ 1163 ³ 1164 ¹ 1178 ⁷ 1182 ¹ 1183 ⁹ 1193 ² 1193 ² 1200 ⁵ 1203 ⁷ 1206 ⁹	Lient. Tennant at the micrometer mi- croecope. Mr. Lane at the plain micro- scope.
		Mea	ns	70.41	1127.96	1139.35	1114'79	1149.50	1174.25	1136-20	1131.88	1141'00	

BAR COMPARISONS

Before the measurement-(Continued.)

Let the mean length of the compensated bars minus the Standard A at 62° F be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$\boldsymbol{x} - (t^{\circ} - 62^{\circ}) (E_{a} - dE_{a}) - \delta = 0;$$

Treating the preceding bar comparisons as shewn in this equation, we obtain the following series of results :---

		5			. d
x— 1.20	$(E_a - dE_a)$	() - 132.7 = 0	$x + 5.37 (E_a -$	– dE	$(a) - 242 \circ = 0$
x - 1.20	"	-1320 = 0	x+ 4.57	"	$-222^{2} = 0$
x— 1.63	"	-128.7 = 0	x+ 3.33	,,,	-197.1 = 0
x - 1.83	"	-125.3 = 0	x+ 1.70	"	-165.3 = 0
x - 2.13	"	-121.5 = 0	x - 0.68	"	-1250 = 0
x - 2.45	"	-115.5 = 0	x — 2.65	"	- 90 [.] 6 = 0
x— 2.80	>>	-110.5 = 0	x- 4.43		- 59 · 4 = 0
x - 3.30	"	-104.1 = 0	x-11.65	"	+ 45.8 = 0
x - 3.65	"	- 97 [.] 0 = 0	x-12.58	"	+ 5 ^{8·7} = 0
x - 4.30	"	-88.5 = 0	x-13.12	"	+ 65·7 = 0
æ- 6·25	"	-56.5 = 0	x-13.22	"	+ 67.4 = 0
x - 6.80	"	- 43·9 = 0	<i>x</i> -13.93	"	+ 73'3 = 0
x - 7.35	"	- 36·1 = 0	x —14.33	,,,	+ 78.7 = 0
x - 7 · 90	"	-28.0 = 0	x-14.90	"	+ 86:4 = 0
<i>x</i> - 8.43	ຸ່າ	- 20.3 = 0	x -15.35	"	+ 93.5 = 0
x - 8.85	22	-12.4 = 0	x —15.80	,,,	+101.3 = 0
x - 9 ^{.2} 3	"	- 4·9 = o	x-16.18	"	+100.0 = 0
x - 9.68	"	- 0.1 = 0	x -16·28	"	+107.8 = 0
x-10.00	"	+ 6.9 = 0	x —16·30	"	+ 108.0 = 0
<i>x</i> -10.33	"	+ 13.9 = 0	\$	> >	-194 ' 9 = 0
<i>x</i> -10.78	29	+ 19.1 = 0	x + 2.20	,,	-197.6 = 0
x-11.43	"	+ 25.6 = 0	x+ 2.22	"	-199.0 = 0
<i>x</i> -11.78	"	+ 29.4 = 0	x+ 2.20	,,	-198.2 = 0
x-12.08	"	+ 32.6 = 0	x+ 2.40	"	-193.9 = 0
x-12.30	23	+ 33.7 = 0	x+ 2.15	"	-186.0 = 0
x -12.28	"	+ 37.7 = 0	x+ 1.62	"	-1752 = 0
x-12.28	"	+ 40.3 = 0	x+ 1·25	"	-163.1 = 0
x-12.35	"	+ 43°ï = 0	x+ 0.63	"	-150.6 = 0
x + 5.22	22	-244.7 = 0	x- 0.03	"	-1390 = 0

Before the measurement-(Continued.)

		a			đ
x- 0.80 (Ea	– dE _d	() - 124.5 = 0	<i>x</i> -17.68	$(E_a - dE_a)$)+130.5 = 0
x 1.80	"	-105 [.] 9 = 0	<i>x</i> -17.78	"	+133.6 = 0
x - 2.78	,,	- 88·4 = 0	x-17 ^{.8} 3	,,	-133.7 = 0
x- 3.65	33	- 71.7 = 0	x-17.88	ور	+135.2 = 0
x-4.50		-55.5 = 0	x-17.93	"	+134.0 = 0
<i>x</i> - 5'33		-42.8 = 0	x-17.98	"	+134.6 = 0
x = 6.18		-26.2 = 0	<i>x</i> + 3 [.] 45	,,	-212.5 = 0
<i>x</i> -12.08	· · ·	+ 58.9 = 0	x+ 3.52	"	-213.1 = 0
x-12.63		+ 66.7 = 0	x+ 3.32))	-202.8 = 0
<i>x</i> -13.05		+ 73.4 = 0	x+ 2.32	"	-183·9 = 0
<i>a</i> - 13.48		+ 78.8 = 0	x+ 0.77	"	-156.8 = 0
<i>x</i> - 12.00		+ 855 = 0	<i>x</i> — 1.05	"	-121.1 = 0
#	<i>"</i>	+ 88.7 = 0	x- 2.33	,,	- 95 [.] 5 = 0
#	<i>"</i>	+ 02.5 = 0	x- 3.63	"	- 75 [.] 3 = 0
<i>a</i> -14.08	,,	+ 07.0 = 0	x- 5.05	,,	- 53.4 = 0
<i>a</i> - 14 90	"	+100.0 = 0	x -10.45	,,	+ 26.0 = 0
#-15 10 m-15.55	"	+103.3 = 0	x-11.63	,,	+ 48.1 = 0
# 15 55 # 15 82	,,	+106.7 = 0	x - 12.78	,,	+ 70.2 = 0
#-1303	,,,	+114.4 = 0	x - 13.78	33	+ 855 = 0
<i>x</i> = 10 10	"	+117.2 = 0	x-15.38		+103.5 = 0
# 10 40	"	+110.0 = 0	x - 15.93	33	+110.0 = 0
z - 10 70	"	+121.6 = 0	x - 16.23		+112.4 = 0
x = 10.90	"	+124.8 = 0	x-16.45		+114.6 = 0
z 17 ⁰⁰	,,	$\pm 1270 = 0$	x - 16.68	••	+114.2 = 0
$x - 17^{2}3$	"	+12/0=0 +108.7=0	x-16.85		+111.0 = 0
x -17 [•] 43	"	+1207 = 0	- 1000	"	,
x 17 · 50	"	+1302 = 0			

VII_8

Digitized by Google

BAR COMPARISONS

Before the measurement—(Continued.)

And from the mean of these results,

$$x = 13^{\circ}04 + 8^{\circ}41 (E_a - dE_a):$$

adopting the approximate value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.641,$$

and $x = 161.40 - 8.41 \ dE_a = 207.42 - 8.41 \ dE_a = L - A;$

where L denotes the mean length of the compensated bars obtained from all the comparisons, as represented by the mean micrometer reading 1141.00, page VII___6.

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following :---

In terms of	A - L	B – L	С — L	D - L	E - L	H - L
Micrometer divisions.	-1.65	-26·21	+ 8.50	+33 ^{.25}	-4·80	— 9 ^{.12}
Millionths of a yard.	-2.12	-33·68	+ 10.92	+42 ^{.73}	-6·17	—11 [.] 72

Also combining the values in this table with the equivalent of L-A above determined, there result,

$$A - A = 159'75 - 8'41 \ dE_a = 205'30 - 8'41 \ dE_a$$

$$B - A = 135'19 - ,, = 173'74 - ,,$$

$$C - A = 169'90 - ,, = 218'34 - ,,$$

$$D - A = 194'65 - ,, = 250'15 - ,,$$

$$E - A = 156'60 - ,, = 201'25 - ,,$$

$$H - A = 152'28 - ,, = 195'70 - ,,$$

and $6 \ x = 1244'5 - 50'5 \ dE_a.$

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made on a site selected at the centre of the base-line, after set No. 306.

	f observing A arison of Air					MICEOMETEE READINGS IN DIVISIONS 1 Division = $\frac{1}{21590\cdot 30}$ Cary's Inch [7.8], = 1.2859 m.y. of A								
1855 Jany	Mean of the times of o	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	Е	Н	Mean of the compensated bars	R B M A R K S	
2nd	h. m. 7 12 л.М.	I	55 [°] .3	54.45	+ 862.1	+	+ 1122'4	+ 1140'0	+	+	+	+ 1143.5	Lieut. Tennant at the micrometer mi-	
1	7 42	2.	58.2	54.22	872.5	1148.4	1121.3	11412	1109.7	11334	11440	11431	croscope: Mr. Lane at the plain micros-	
	8 34	3 4	64.6	55 10	805.2	1130.3	1110.8	1132.3	1166.3	1127.7	1133.0	1135.2	cope.	
	9 7	5	69.3	58.45	935.7	1133.8	1105.8	1135.8	1164.0	1129.7	1128.2	1132.9		
1	9 32	Ğ	71.7	ŏо•48	971.8	1132.9	1104.0	1134.0	1163.3	11250	1128.3	1131.2	Cold wind from N. till 10 o'clock A.M.	
	9 54	7	73.0	62.40	1004.2	1132.8	1000.0	1134.8	1164.8	1131.2	1127.3	1131.2		
	11 3	8	78.3	08.00	1100.3	1113.3	1087'2	1135.3	1157.7	1122 3	11101	11210		
I		9 10	79.0	70 10	11201	11111	1087.1	11303	1103.8	1125.7	1114.4	1123.0		
	ο ς р. м.	11	80.0	72.83	1176.3	1113.4	1087.7	1140'3	1164.2	1125.0	1118.0	1124.9		
	0 29	I 2	1.18	74.23	1200.0	1124.4	10959	1144.0	1167.7	1131.7	1124.4	1131.4		
	0 51	13	81.0	75.33	1218.8	1127.7	1105.7	1149.0	1169.0	1137.2	1120.0	1130.1		
	1 13	14	82.1	70.23	1235.5	1130.4	1108.0	1153.7	1177.1	1139.4	1130.0	1140'0		
1	142	15	82.2	7/30	12549	1142 0	1110.0	1102.3	1188.4	11439	1140'0	1150.0		
	2 30	17	81.7	78 83	1278.8	1148.0	1123.2	1103.3	1101.0	1154.1	1143.9	1153.9		
	2 57	18	81.4	79 [.] 28	1286.3	1154.6	1126.7	1169.4	1191.7	1155.4	1150.0	1158.1	Light clouds during	
l I	3 24	19	80.4	79.53	1289.9	1157.3	1134.0	3171.8	1 197.7	1100.0	1 1 20.0	1103.1	the area hour.	
3rd	7 5 A.M.	20	56.0	58.20	915.5	1136.5	1117 [.] 6	1133.5	1166.1	1131.2	1141.3	1137.7	Major Strange at	
	7 24	21	56.4	57 [.] 83	908.7	1144.8	1118.8	1137.0	1163.0	1128.9	1138.0	1138.7	croscope : Mr. Lane	
	7 40	22	57.0	57.28	906.2	1143'2	1115.3	1134'1	1164'1	1130'7	1142'4	1138.3	cope.	
	7 50	23	58.0	57.48	900.7	1140'7	1117.8	1134.0	1103.9	1129.0	11399	11370		
	8 40	24	593	57 45	015.4	1142 4	1110.5	11331	1104.0	1120'0	1135.0	1130.0		
	0 3	20	63.1	57 75	026.5	1144'4	1111.0	1135.4	1163.3	1131.0	1135.9	1137.0		
	9 23	27	64.5	58.9 <u>5</u>	938.5	1139.8	1112.5	1134.8	1162.0	1133.2	1134.9	1136.4		
	9 40	28	65.5	59.68	951.1	1138.0	1110.7	1137.2	1164.3	1133.8	1134.5	1130.2		
	9 56	29	00.2	00.30	901.4	1130.8	1110.3	1137'0	1101'6	11310	11330	11350		
	II 10 II 24	30	707	65.28	1018.2	1133.0	1103 3	1143 0	1102.0	1130.2	1126.0	1134'2		
	11 55	32	73.0	66.35	1068.5	1133.5	1110.0	1144'4	1167.9	1133.7	1127.3	1130.1		
	0 12 P.M.	33	73.9	67.20	1084.3	1135.9	1110.4	1145.4	1167.7	1134.2	1130.8	1137.5		
!	030	34	74 8	68.12	1101.3	1134.8	1110.0	1144.3	1167.5	1138.0	1130.8	1137.7		
	0 42	35	75.3	60.08	1117'2	1135.5	1113.0	1147'0	1109.0	11399	1131 2	11394		
	0 50	30	757	71.43	11309	1130.0	11141	114/3	1175.5	1144.0	1136.4	1144'3		
1	- J 1 I 49	38	77.0	72'10	1168.5	1142.9	1110.0	1156.4	1178.0	1144.8	1137.2	1145.9		
1	2 5	39	77.5	72.70	1178.9	1144.9	1110.8	11597	1180.0	1152.1	1138.0	1149'2		
1	2 19	40	77.3	73.25	1186.2	1147.4	1120.3	1159.7	1182.5	1149.0	1142.0	1150.3		
1	2 33	41	77.5	73.00	1195.5	1151.5	1125.5	1101.9	1180.0	11240	1145 0	11240		
1	2 2	44	77.2	74.68	1212.2	1124.0	1130.1	1160.0	1101.4	1156.5	1149.3	1158.3		
1	3 20	44	77.2	74.93	1218.1	1159.3	1128.5	1169.1	1193.5	1100.2	1150.7	1100.3		
1	3 37	45	77.1	75.28	1223.9	1100.0	1132.8	1171.9	1 195.8	1159.0	1153.0	1103.1]	

January 2nd. Rained this evening.

Digitized by Google

BAR COMPARISONS

After set No. 306-(Continued.)

	beerving A	ison Air	rature of A		MICBOMETEE READINGS IN DIVISIONS 1 Division = $\frac{1}{21690\cdot 30}$ Cary's Inch [7.8], == 1.2859 m.y. of A							
1855 Jany.	Mean of the times of c	No. of compar Temperature of	Corrected mean tempe	Mean A	A	В	С	D	Е	Н	Mean of the compensated bars	Remarks
6th 9th	h. m. 7 2I A.M. 7 5I 8 15 8 40 9 7 9 27 9 47 11 26 11 26 11 43 0 4 P.M. 0 28 0 50 I 8 I 37 2 0 2 40 2 58 3 I6 7 II A.M.	40 56 47 58 49 64 50 68 51 70 52 71 53 75 54 76 55 77 55 78 55 78 57 78 57 78 58 78 59 79 61 78 62 78 63 77 64 76 65 77 66 56 66 56 70 66 56 66 56 70 66 57 70 66 57 70 60 56 60 56	o 57:45 57:15 57:28 57:93 59:38 60:73 60:20 70:25 71:30 72:23 73:13 73:95 75:98 75:98 75:98 76:55 76:55 76:55 76:55 76:55 76:55 75:888	+ 919'8 915'6 921'7 936'6 961'9 986'9 1011'5 1112'5 1131'8 1150'7 11205'4 1219'7 1235'6 1245'7 1253'7 1258'8 1262'3 1259'9 056'0	+ 1139'1 1136'7 1136'7 1135'8 1131'7 1131'0 1128'1 1132'6 1137'7 1138'7 1139'9 1145'9 1152'8 1157'2 1162'4 1159'8 1165'1 1171'4 1177'0 1153'2	+ 1134'0 1127'4 1127'3 1125'1 1121'5 1119'4 1119'9 1120'1 1122'4 1128'3 1132'3 1136'9 1142'1 1147'8 1149'8 1151'0 1158'2 1161'8 1161'3 1146'3	+ 1146.4 1142.8 1141.2 1141.9 1142.3 1142.3 1142.3 1142.3 1142.3 1142.3 1142.3 1142.3 1142.3 1142.3 1142.3 1142.3 1161.6 1161.6 1163.7 1192.2 1194.2 1199.3 1190.0 1162.1	+ 1173'7 1170'8 1169'3 1171'4 1169'0 1169'7 1168'9 1185'6 1185'6 1185'6 1187'4 1191'8 1198'0 1198'3 1203'5 1209'2 1210'5 1217'0 1209'7 1185'8	+ 1139'4 1138'1 1134'3 1137'3 1135'0 1155'0 1170'9 1177'3 1179'0 1177'7 1155'0 115	+ 1152.3 1147.7 1146.5 1145.6 1143.0 1143.0 1143.0 1130.7 1130.7 1130.7 1150.7 1150.7 1155.4 1168.2 1165.4 1164.0	+ 1147'5 1143'9 1142'5 1142'9 1140'2 1139'6 1139'8 1146'2 1146'2 1148'7 1150'9 1155'4 1155'4 1155'8 1172'9 1177'5 1182'3 1184'7 1179'2 1160'0	Lieut. Tennant at the micrometer mi- croscope: Mr. Lane at the plain micros- cope.
	7 28 7 42 7 57 8 12 8 28 8 50 9 7 9 36 9 52 11 35 11 48 0 1 2 1 35 11 48 0 1 2 50 0 40 0 56 1 12 1 41 1 55 2 9 2 23 2 38 2 53 3 12 3 30	67 56 6 68 57 5 70 58 7 71 59 6 72 60 6 73 61 7 74 61 9 75 62 6 76 63 7 76 63 7 76 63 7 76 65 9 80 65 9 81 66 9 82 66 6 83 66 9 84 66 9 85 67 6 86 67 8 86 67 8 80 7 80 80 80 80 80 80 80 80 80 80 80 80 80 8	58:58 58:58 58:28 58:28 55:58:28 55:58:28 55:58:58 55:58:58 55:58:58 55:58:58 55:58:58 55:59:59:59:59 55:59:59:59:59 55:59:59:59:59:59 55:59:59:59:59:59 55:59:59:59:59:59 55:59:59:59:59:59 55:59:59:59:59:59:59 55:59:59:59:59:59:59:59 55:59:59:59:59:59:59:59:59:59:59:59:59:5	9,5 9 9519 9480 9451 9440 9450 9555 9555 9555 9575 9555 9577 10157 10257 10257 10306 10306 10413 10458 10515 10577 10577 10577 10577 10577 10577 10577 10577 10577 10577 10577	1150.9 1150.9 1151.8 1151.1 1152.2 1152.3 1149.5 1151.8 1149.5 1151.8 1149.5 1149.5 1151.8 1148.5 1148.5 1148.5 1148.5 1148.5 1147.2 1151.8 1150.0 1157.7 1158.5 1163.0 1163.0 1167.0 1170.9	11465 11465 11448 11429 11448 11429 11448 11420 11423 11408 11420 11423 11408 11420 11430 11430 11430 11408 11422 11408 11422 11408 11422 11408 11425 11408 11425 11408 11425 11408 11425 11455 11455 11557 11565	1160.3 1160.4 1163.6 1163.6 1163.6 1163.5 1165.5 1165.5 1164.4 1164.0 1167.2 1166.1 1170.0 1167.2 1168.0 1169.7 1171.7 1172.0 1174.4 1177.1 1178.5 1183.8 1183.8 1184.7 1186.8	1189°0 1189°0 1189°0 1189°0 1191°2 1191°6 1190°7 1188°8 1192°0 1193°0 1193°0 1193°0 1193°0 1193°0 1195°2 1196°2 1196°2 1196°2 1196°2 1196°2 1196°2 1196°2 1196°2 1196°2 1195°2 1201°6 1203°6 1205°2 1209°0 1205°5 1211°7	1151.8 1152.3 1152.3 1151.1 1154.0 1150.0 1150.1 1157.8 1155.3 1156.0 1155.3 1156.0 1157.3 1158.9 1158.9 1158.9 1164.0 1164.5 1167.3 1169.9 1172.7 1172.7	1163 8 1163 0 1163 0 1163 0 1163 0 1162 9 1163 2 1161 0 1162 8 1161 0 1162 8 1161 2 1160 2 1158 7 1163 8 1163 7 1163 8 1163 7 1163 8 1164 8 1164 8 1164 8 1164 8 1165 8 1169 2 1171 2 1173 2 1174 6	1160 9 1160 9 1160 0 1160 0 1160 0 1160 0 1160 0 1160 0 1159 9 1160 0 1162 0 1161 2 1161 2 1160 8 1161 7 1162 0 1162 0 1162 0 1162 0 1163 0 1163 0 1163 0 1163 0 1163 0 1160 0 1160 0 1160 0 1160 0 1159 9 1160 0 1160 0 1159 9 1160 0 1160 0 1160 0 1159 9 1160 0 1160 0 1170 0 1170 0 1174 0 1175 1 1175 4 1177 0 1178 5	the micrometer mi- croecope; Mr. Lane at the plain micro- scope.

January 8th. Rained heavily this morning.

VII____

Digitized by Google

After set No. 306-(Continued.)

As on page VII_7 we have

.

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = \circ;$

and from the preceding bar comparisons we obtain the following series of results :---

		2			đ
x+ 7.55 (1	$E_a - dE_a$	()-281.4 = 0	$x-6.15 (E_{c})$	" – dE	$(E_a) - 36.4 = 0$
x + 7.45	"	-279.3 = 0	x — 7.10	"	-22.5 = 0
<i>x</i> + 6.82	"	-261.0 = 0	x — 7.98	"	-9.8 = 0
x+ 5.72	"	-240.3 = 0	x - 9'43	"	+ 11.0 = 0
x+ 3.22	"	-197.2 = 0	x -10.10	"	+ 22.6 = 0
x + 1.22	"	-159·7 = 0	x —10.70	"	+ 29.7 = 0
x — 0.40	"	-127.2 = 0	x -11.25	,,	+ 36.4 = 0
x - 6.60	"	-20.7=0	x -11.68	,,	+ 41.5 = 0
x - 8.10	"	+ 5.2 = 0	x -12.18	"	+ 48.6 = 0
<i>x</i> - 9.43	"	+ 27.1 = 0	x -12.68	"	+ 54.0 = 0
x -10.83	"	+ 51.4 = 0	x -12.93	"	+ 57.8 = 0
x-12.23	"	+ 68.6 = 0	x —13·28	"	+ 61.8 = 0
x -13.33	,,,	+ 82.7 = 0	x + 4.55	"	-227.7 = 0
x -14.23	,,	+ 95.5 = 0	x + 4 ^{.8} 5	. 33	-228.3 = 0
x -15.30	"	+ 107.3 = 0	x + 4.72	"	-220.8 = 0
x -16·13	"	+117.9 = 0	x+ 4.02	"	-206.3 = 0
x -16.83	"	+ 124.9 = 0	x+ 2.62	j •	-178.3 = 0
x-17.28	"	+128.1 = 0	x + 1°27	"	-152.7 = 0
x-17.53	,,	+127.8 = 0	x - 0.13	"	-128.3 = 0
x + 3.80	33	$-222^{2} = 0$	x— 5.93	"	- 33 [.] 7 = 0
x+ 4 ^{.17}	"	-230.0 = 0	x— 7·20	"	-16.9 = 0
x + 4.43	"	-232.1 = 0	x— 8·25	"	- 0.3 = 0
x+ 4.52	,,	-230.9 = 0	x - 9.30	"	+ 15.2 = 0
x + 4.55	,,	-229.9 = 0	x-10.23	"	+ 29.6 = 0
x+ 4 [.] 27	"	-220.6 = 0	x-11.13	"	+ 41.1 = 0
x + 3.70	"	-210.5 = 0	<i>a</i> -11.95	"	+ 51.9 = 0
x+ 3.05	"	-197.9 = 0	x-12.93	"	+ 62.7 = 0
x+ 2.32	"	-185.4 = 0	x —13.48	"	+ 71.1 = 0
<i>x</i> + 1.70	"	-173.6 = 0	x -13.98	,,	+ 76.2 = 0
x - 2·25	"	-103.9 = 0	a —14 . 40	"	+ 76.5 = 0
x- 3 [.] 28	"	- 85 [.] 7 = 0	x — 14·55	"	+ 77.6 = 0
x - 4.35	"	- 67·6 = 0	x —14.65	"	+ 80.7 = 0
x - 5.20	"	$-53^{2}=0$	x+ 3.13	"	-204.0 = 0

BAR COMPARISONS

After set No. 306-(Continued.)

		đ			d
x+ 3.43	$(E_a - dE_a)$	$(x_{1}) - 208.5 = 0$	$x - 1.25 (E_a$	-dl	$E_a) - 126 \cdot 1 = 0$
x + 3.57	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-212.0 = 0	x— 1.53	,,	-1220 = 0
x+ 3.72	"	-215.4 = 0	<i>x</i> — 1.80	,,	-110.0 = 0
x + 3.77	,,	-217.1 = 0	<i>x</i> - 2.08	,,	-113.3 = 0
x+ 3.72	"	-215.3 = 0	x— 2·38	"	-109.8 = 0
x+ 3.65	"	-209.5 = 0	x— 2.95	"	-105.5 = 0
x+ 3.42	"	-204.4 = 0	x- 3·25	"	-102.5 = 0
x+ 3.10	"	-198.5 = 0	x- 3.23	"	-97.8 = 0
<i>x</i> + 2.77	"	-193.3 = 0	x- 3.70	"	- 96·1 = 0
x+ 2.32	,,	-185.5 = 0	x— 3.88	,,	- 90 [.] 4 = 0
x— 0.13	"	-145.1 = 0	<i>x</i> - 4 ^{.15}	"	- 88.0 = 0
<i>x</i> - 0.43	"	-140.4 = 0	<i>x</i> - 4.43	"	- 86·3 = 0
x— 0.63	"	-136.6 = 0	<i>х</i> — 4 [.] 60	"	-82.9 = 0
x - 0.92	"	-131.9 = 0			
10 01		A			

And from the mean of these results,

$$x = 8_{3} \cdot 3_{1} + 3 \cdot 88 (E_{a} - dE_{a}):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.630,$$

and
$$x = 151.71 - 3.88 \ dE_a = 195.08 - 3.88 \ dE_a = L - A$$

Proceeding as on page VII_9 we obtain :-

In terms of	A - L	B – L	C – L	D – L	E – L	H - L
Micrometer divisions.	-6.12	-24:46	+6.67	+ 31.45	-3.73	-3.78
Millionths of a yard.	-7.93	-31.42	+ 8.28	+40.44	-4.80	-4.86

Also the following,

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H, made at the North-End of the base-line, after the measurement.

observing A observing A rison of Air serature of A						MICROMETER READINGS IN DIVISIONS 1 Division = $\frac{1}{21620\cdot 18}$ Cary's Inch [7.8], = 1.2841 m.y. of A								
1855 Jany.	Mean of the times of a	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	Е	н	Mean of the compensated bars	Bewarks	
25th	h. m. 7 39 A.M. 8 6 8 30 9 7 9 26 9 49 11 9 11 31 11 46 11 58 0 9 P.M. 0 33 0 46 0 59 1 12 1 34 1 49 2 4 2 16 2 29 2 40 2 52 3 8 3 28	1 2 3 4 5 0 7 8 9 0 1 1 2 3 4 5 0 7 8 9 0 1 1 2 3 4 5 0 7 8 9 0 1 2 3 4 5 0 7 8 9 0 1 2 2 2 3 4 5 0 7 8 9 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	547 27 47 193 06 26 799 2 58 9 498 547 01	54*45 54*45 5578 5578 5578 5578 5578 5578 5578 55	+ 867.6 87.3.2 885.5 918.6 944.1 974.3 1078.9 1092.9 106.8 1130.1 1130.6 1150.8 1161.1 1171.3 1181.5 1190.7 1208.2 1219.1 1229.8 1237.1 1244.0 1250.7 1256.0 1260.7 1267.3	+ 1135.5 1142.2 1135.1 1120.8 1126.9 1126.2 1113.8 1111.1 112.2 1113.8 1111.1 112.2 1114.9 1128.2 1130.0 1138.2 1134.0 1138.2 1145.1 1146.1 1148.0 1154.0 1158.2 1160.5 1160.5 1161.1	+ 1130'0 1129'9 1127'9 1127'9 1127'9 1127'9 1127'9 1107'0 1107'0 1107'0 1107'7 1107'0 1110'5 1111'8 1117'8 1120'1 1123'5 1124'8 1130'8 1137'9 1140'9 1143'0 1137'9 1140'5 1151'3	+ 1154.6 1155.8 1155.0 1149.5 1149.5 1149.5 1149.5 1149.5 1149.5 1152.9 1152.9 1154.8 1152.9 1154.8 1158.7 1158.7 1158.9 1159.0 1159.0 1159.0 1164.6 1165.9 1168.7 1177.4 1178.2 1180.2 1187.1 1191.4 1192.3	+ 1177'4 1175'0 1173'0 1173'0 1169'0 1167'0 1167'0 1167'8 1169'6 1167'8 1170'9 1172'8 1171'8 1171'8 1177'8 1177'8 1177'8 1177'8 1175'9 1182'0 1182'0 1182'0 1182'0 1185'9 1195'9 1195'9 1195'9 1205'5 1205'7 1209'0	+ 1135'3 1141'2 1135'2 1135'2 1135'2 1133'4 1133'0 1133'2 1135'1 1135'1 1135'1 1139'3 1174'8 1174'8	+ 1152.0 1151.1 1145.5 1144.2 1136.7 1131.8 1127.5 118.1 1121.8 1125.5 1125.5 1125.5 1125.5 1125.5 1139.4 1144.8 1144.8 1152.7 1155.9 1157.5 1162.5 1163.9 1167.9 1175.9 1175.9 1175.9 1175.9 1175	+ 1147'5 1149'2 1149'2 1139'3 1139'3 1130'9 1134'4 1131'6 1132'3 1133'0 1132'3 1135'9 1136'9 1132'3 1135'9 1136'9 1132'3 1135'9 1136'9 1132'3 1135'9 1136'9 1132'3 1135'9 1136'9 1132'3 1135'9 1136'9 1135'9 1135'9 1136'9 1135'9 1135'9 1136'9 1135'9 1135'9 1136'9 1135'9 1136'9 1136'9 1135'9 1136'9 1136'9 1135'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1136'9 1155'9 1160'1 1160'5 1169'7 1172'6 1177'6 1177'6 1177'6 1177'6 1177'6 1177'6	Major Strange at the micrometer mi- croscope: Mr. Kee- lan at the plain mi- croscope.	
26th	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28 29 30 31 32 33 34 35 30 37 38 39 40 41 42	53'4 53'6 54'7 56'1 57'8 59'6 61'7 57'8 59'6 61'7 64'3 65'5 66'4 67'2 68'2 68'2 69'4 73'7 74'4	54'70 54'48 54'38 54'35 54'73 55'33 55'33 55'33 55'33 55'33 55'30 57'85 59'65 59'65 60'50 64'50 65'45	870-8 867-4 865-0 866-0 869-3 876-2 888-6 907-4 917-9 931-1 947-7 964-0 977-9 1046-6 1063-5	1136'3 1136'3 1136'4 1134'9 1133'9 1129'6 1127'3 1122'3 1119'8 1117'9 1116'4 1114'2 1110'3 1109'3	1125'2 1125'6 1123'3 1124'6 1118'3 1118'9 1113'2 1108'4 1107'7 1106'9 1104'2 1103'8 1104'8 1103'2 1100'0	1140°2 1143°6 1142°2 1142°2 1140°3 1136°8 1142°7 1137°4 1137°4 1137°0 1137°3 1136°4 1134°2 1134°4 1134°4 1140°9 1144°9	1169'1 1167'1 1170'1 1166'8 1166'2 1163'4 1159'4 1158'3 1157'1 1155'4 1156'1 1159'6 1161'2 1162'0	1135 ^{.6} 1132 ^{.4} 1130 ^{.4} 1130 ^{.4} 1135 ^{.4} 1135 ^{.5} 1131 ^{.7} 1128 ^{.0} 1127 ^{.8} 1127 ^{.8} 1127 ^{.8} 1125 ^{.4} 1120 ^{.0} 1120 ^{.0} 1127 ^{.2}	1152'1 1151'2 1149'9 1149'9 1149'3 1145'1 1140'2 1139'7 1133'6 1131'7 1128'7 1125'0 1125'3 1125'4 1117'4 1117'8	1143'I 1142'7 1142'3 1141'8 1140'0 1137'8 1130'3 1131'5 1130'4 1129'3 1127'2 1127'2 1127'5 1128'1 1127'0 1126'9	Lient. Tennant at the micrometer mi- croscope ; Mr. Kee- lan at the plain mi- croscope.	

VII_14

Digitized by Google

BAR COMPARISONS

• • •

••

۰.

-

After the measurement—(Continued.)

,

	observing A	ison	Air	rature of A	MICROMETER READINGS IN DIVISIONS 1 Division $= \frac{1}{21620\cdot 18}$ Cary's Inch [7.8], $= 1\cdot 2841$ m.y. of A								
1855 Jany.	Mean of the times of	No. of compar	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	н	Mean of the compensated bars	Rewarks
26th 29th	h. m. II 13 A.M. II 25 II 37 II 50 0 3P.M. 0 15 0 29 0 42 I 10 I 22 I 36 I 5I 2 6 2 49 3 15 3 20 7 38 A.M. 8 5 8 27 8 5I 9 25 9 38 9 5I II 8 II 22 I 36 I 5 I 2 49 3 25 9 38 9 5I II 8 II 22 I 36 I 5 I 2 49 3 25 9 38 9 5I II 8 II 22 I 36 I 5 I 49 9 25 9 38 I 1 22 I 36 I 1 22 I 36 I 5 I 2 49 3 25 9 38 I 1 22 I 36 I 2 49 3 25 9 38 I 2 36 I 3 I 2 5 I 2 36 I 3 20 7 38 A.M. 0 30 I 1 22 I 2 36 I 1 5 I 2 49 I 2 36 I 2 49 I 2 36 I 1 9 I 1 22 I 36 I 1 5 I 2 49 I 2 36 I 3 20 I 1 9 I 1 9 I 25 9 38 I 1 36 I 1 35 I 2 49 I 2 37 2 37 2 37 3 24	3 4 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 7 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	°439260052217777777777777777777777777777777777	66.33 68.70 77.73.18 68.70 77.73.75 75.70 77.777 77.777 77.777 77.7777 77.7777 77.7777 77.7777 77.77777 77.77777 77.777777	+ 1077'9 1091'8 110.5'4 1118'6 1133'0 114.5'8 1156'8 1169'4 1201'9 1214'1 1225'7 1235'5 1245'9 1256'5 1266'1 1278'7 1284'0 1288'9 9,51'5 962'8 978'9 1002'9 1026'2 1046'8 1064'3 1080'0 1173'9 1188'7 1201'6 1213'8 1229'9 1247'5 1250'3 1266'8 1229'7 1201'6 1213'8 1229'7 1201'6 1213'8 1229'7 1201'6 1213'8 1229'7 1201'6 1213'8 1229'7 1200'7 1307'6 1312'2 1312'8 1312'6	+ 1106'3 1111'5 1113'6 1115'1 1119'4 1117'7 1135'0 1135'5 1137'3 1139'9 1146'4 1152'8 1157'7 1163'3 1164'0 1168'8 1157'5 1168'8 1157'5 1162'8 1172'4 1173'8 1172'4 1178'6 1182'3 1182'5 1185'6 1185'6 1185'6 1185'6 1185'6 1185'6 1185'6 1185'6 1178'6 1185'6 1185'6 1185'6 1178'6 1178'6 1185'6 1185'6 1185'6 1185'6 1185'6 1185'6 1178'6 1178'6 1185'6 118	+ 1098.0 1101.4 1103.4 1103.4 1103.4 1103.6 1103.8 1103.6 1103.8 1103.6 1123.0 1122.7 1125.2 1130.0 1133.9 1139.9 1145.6 1139.9 1145.6 1139.5 1133.9 1130.3 1130.5 1133.5 1133.5 1135.5 1135.5 1155.6 1155.6 1157.5 1167.0 1177.2 1177.2	+ 1144.3 1144.4 1148.0 1148.0 1148.1 1150.8 1149.1 1151.4 1163.0 1169.5 1172.0 1169.5 1172.0 1182.0 1182.0 1184.3 1188.4 1191.5 1157.0 115	+ 11599 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1163^{2} 1170^{2} 1183^{2} 1191^{2} 1203^{2} 1213^{2} 1213^{2} 1213^{2} 1213^{2} 1222^{2} 1225^{2} 1225^{2} 1225^{2} 1225^{2} 123^{2}	+ 1132'2 1133'3 1133'9 1133'9 1133'9 1135'6 1136'1 1135'6 1152'7 1154'6 1155'5 1157'7 1177'3 1175'9 1177'7 1177'4'3 1175'9 1177'4'3 1175'9 1177'4'3 1175'9 1177'4'3 1175'9 1177'4'3 1175'9 1177'4'3 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1175'9 1175'9 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1175'9 1177'3 1177'3 1175'9 1177'3 1175'9 1177'3	+ 1118.4 1118.6 1118.7 1124.3 1125.8 1127.8 1130.1 1140.6 1141.1 1144.5 1149.3 1153.7 1150.7 1165.3 1165.3 1153.0 1153.0 1153.0 1158.6 1153.0 1158.3 1165.3 1173.0 1174.0 1178.8 1177.0 1186.7 1186.3 1174.0 1174.0 1176.3 1186.3 1174.0 1176.3 1186.3 1174.0 1177.0 1186.3 1174.0 1177.0 1186.3 1174.0 1177.0 1186.3 1174.0 1177.0 1186.3 1174.0 1177.0 1186.3 1174.0 1177.0 1186.3 1174.0 1186.3 1174.0 1186.3 118	+ 1126.5 1128.4 1128.6 1130.1 1131.7 1133.6 1130.1 1133.6 1130.1 1149.5 1151.2 1153.6 1157.7 1162.0 1167.5 1174.3 1176.5 1177.9 1156.5 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.4 1152.5 1179.5 1183.1 1185.0 1188.1 1188.1 1188.1 1188.1 1189.0 1194.1 1196.6 1197.5 1199.1	Major Strange at the micrometer mi- croscope. Mr. Kee- lan at the plain mi- croscope. Wind strong but not cold. N.E. wind. Cloudy.
		Mea	ns	68.27	1117.63	1141.52	1129.20	1167.25	1186.30	1153.26	1148.22	1154.30	

After the measurement-(Continued.)

As on page VII_{7} we have

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = 0$

and from the preceding bar comparisons we obtain the following series of results:---

		đ			d
$x + 7.55 (E_{a})$, – dl	$E_a) - 279.9 = 0$	$x + 7.55 (E_a$, — d1	$E_a) - 270.7 = 0$
x+ 7.55	"	-2760 = 0	x+ 7·22	"	-261.6 = 0
x+ 7.02	,,	-260.8 = 0	x + 6.67	"	-247.7 = 0
x+ 6·22	,,	-244.7 = 0	x + 5 [.] 65	"	-224.1 = 0
x + 5.20	,,	-220.7 = 0	<i>x</i> + 4.90	,,	-212.5 = 0
x + 3 ^{.8} 2	,,	-192.8 = 0	x+ 4 ^{.15}	,,	-198.2 = 0
x + 2.07	"	-160.1 = 0	x+ 3.30	"	-179.5 = 0
x - 4.40	,,	-52.7 = 0	x+ 2.35	"	-163.5 = 0
x— 5 ^{.1} 5	"	- 39 [.] 4 = 0	<i>x</i> + 1.20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-150.2 = 0
z - 5.90	"	-26.2 = 0	x— 2.20	,,,	- 80·4 = 0
x - 6.68	;,	-16.1 = 0	x - 3.45	"	- 63.4 = 0
x— 7°35	,,	- 6.8 = 0	x - 4.33	,,	-48.6 = 0
x- 7.93	"	+ 1.4 = 0	x - 5.18	"	-36.6 = 0
x - 8·55	"	+ 9.1 = 0	x- 6.00	"	-23.5 = 0
x - 9 ^{.1} 5	"	+ 16.9 = 0	x — 6·70	"	- 11.5 = 0
x - 9.73		+ 25.3 = 0	x - 7.43	"	+ 1.3 = 0
x -10.33	"	+ 32.6 = 0	x - 8.25	"	+ 12.2 = 0
x -10.88	"	+ 37.9 = 0	x - 9.00	"	+ 23.5 = 0
# —11.78	,,	+ 52.8 = 0	x - 9.70	,,	+ 33.3 = 0
x-12.35	"	+ 59.0 = 0	x-11.15	"	+ 52.4 = 0
x —12.90	,,	+ 68.2 = 0	x-11.83	,,	+ 62.9 = 0
x -13.38	"	+ 72.6 = 0	x-12.53	"	+ 72.1 = 0
x -13.73	"	+ 78.1 = 0	x-13.10	"	+ 77.8 = 0
#—14·08	"	+ 81.0 = 0	<i>x</i> -13.70	"	+ 83.9 = 0
# —14·45		+ 83.4 = 0	x -14.25	"	+ 89.0 = 0
x—14.73	"	+ 85.3 = 0	x-14.70	"	+ 94.0 = 0
<i>x</i> —15.08	"	+ 90.9 = 0	x-15.13	"	+ 98·9 = 0
#+· 7 · 30	"	-272.3 = 0	x —15.45	"	+102.5 = 0
x + 7.52	"	-275.3 = 0	x-15.73	"	+100.1 = 0
x + 7.62	,,	-2773 = 0	x -16.00	"	+109.7 = 0
x+ 7.65	,,	-275.8 = 0	x + 3.55	"	-2050 = 0

VII_____16

BAR COMPARISONS

After the measurement—(Continued.)

				d								d		
x +	2·92 (E _a	$-dE_a$	1	9 3 '4	=	0	x -	13.13	$(E_a$	$-dE_{a}$	+	64.4	= (0
x +	2.00	"	— I	74.7	=	0	x —	13.73		"	+	74'3	= (0
<i>x</i> +	0.72	"	1	50.0	=	0	<i>x</i> —	14.18		"	+	82.3	=	0
x -	0.42	"	-:	126.3	=	0	<i>x</i> —	15.23		,,	+	95 ° 5	= (0
x -	1.42	"	1	105.6	=	0	x -	15.58		,,	+ 1	02.0	=	0
x -	2.40	,,	—	88.5	=	0	x -	15.93			+ 1	(07 °0	=	0
x -	3.32	"	—	74'1	=	0	<i>x</i> —	16.23	7	"	+ 1	09.3	=	0
<i>x</i> —	8.75	,,	+	5.3	=	0	x -	16.20	3 1	"	+ 3	13.2	=	0
x-	9.63	,,	+	18.4	=	0	<i>x</i> –	16.73		! ,,	+ 1	15.6	=	0
x — 1	10 ·4 5	"	+	28.5	=	0	x -	16.80	ŀ	"	+ 1	15.3	=	ο
x —1	11.30	,,	+	38.8	=	0	<i>x</i> —	16.85		"	+ 1	13.2	=	0
x — :	12.13	"	+	50 [.] 4	=	0								

And from the mean of these results,

$$x = 36^{-6}67 + 6^{-2}7 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.654,$$

and $x = 147.36 - 6.27 \ dE_a = 189.22 - 6.27 \ dE_a = L - A$

Proceeding as on page VII_ $_{9}$ we obtain;

In terms of	A - L	B - L	C - L	D - L	$\mathbf{E} - \mathbf{L}$	H - L
Micrometer divisions.	— 12·78	-25 ^{.10}	+ 12 [.] 95	+32.00	— 1·04	-6·08
Millionths of a yard.	— 16·41		+ 16 [.] 63	+41.12	— 1·34	-7·81

Also the following;

VII_17

Final deduction of the total length measured with the compensated bars.

From pag	e VII the	excess o	f the 6 compensa	ted bars above 6 times	A l	m.y	rour dE
	,			before the measurement	t Ś	- 1244 5 -	. 50 5 <i>иња</i>
"	VII_13	"	>>	after set No. 306		= 1170.5 -	23.3 dE _a
"	VII_17	"	"	after the measurement		= 1135.3 -	37.6 dE _a
Therefore	the mean exc	ess	,,	applicable to sets Nos.	1 to 306	= 1207.5 -	36.9 dEa
\mathbf{a} nd	"))	applicable to sets Nos.	307 to 613	= 1152.9 -	$30.5 dE_a$
Also the 1	mean length o	of a set of con ing	6 compensated barrected for error* s, applicable to se	rs in feet of the standard in the thermometer read ts Nos. 1 to 306	-}=60.00	033940 A -	33 [.] 5 dE _a
and	,,	ap	plicable to sets ?	Nos. 307 to 613	=60.0	032302 A -	27°1 dE _a

Hence the total lengths measured with the compensated bars

VII_18

2

			feet of A	
in sets Nos.	1 to 156	==	9360.5295 —	5225 dEa
"	157 to 306	=	9000.2091 —	5025 dEa
"	307 to 457	=	9060:4878 —	4092 dE _a
"	458 to 613	=	9360.5039 —	4228 dE _a
))	۔ ۱ to 613	=	36782.0303 —	18570 <i>dE_a</i>
•	-	-		

Now the mean temperature of A during the bar comparisons before the measurement and after set No. 306 was $62^{\circ} + \frac{33^{\circ} \cdot 5}{6} = 67^{\circ} \cdot 6$, for which temperature the corresponding expansion of A from page (19) = 21.683 m.y. Also the mean temperature of A during the bar comparisons after set No. 306 and after the measurement was $62^{\circ} + \frac{27^{\circ} \cdot 1}{6} = 66^{\circ} \cdot 5$, for which temperature the corresponding expansion of A from page (19) = 21.676 m.y. Comparing these values of expansion with the original value = 22.67 m.y, used in the foregoing; it is found that $dE_a = + 0.987$ m.y, for sets Nos. 1 to 306, and = + 0.994 m.y, for sets Nos. 307 to 613. Substituting for dE_a respectively these numerical values, there result,

Total lengths measured with the compensated bars

				feet	of	Α
in sets Nos.	1 to 156 or S. End,	to Stn. A	= (9360.5295	— ·0155) =	9360.5140
"	157 to 306 or Stn. A,	to Stn. B	= (9000.2091	0149) =	9000 . 4942
>>	307 to 457 or Stn. B,	to Stn. C	= (9060.4878	0122) =	9060.4756
"	458 to 613 or Stn. C,	to N. End	= (9360.2039	— ·0126) =	9360 . 491 3
"	1 to 613 or S. End,	to N. End	= (3	6782.0303	0552) =	36781.9751

* It is shewn in Appendix No. 8 of this volume, that a correction of $-0^{\circ}.56$ is due to the mean thermometer readings of the Standard bar A at the Karachi base-line. The linear value of this correction for a set of 6 bars = $-6 \times 0.56 (E_a - dE_a)$ = $-0.002285 \frac{A}{10} + 3.4 dE_a$.

VII_____19

Comparisons between the Compensated Microscopes and their 6-inch brass scales during the measurement, and provisional determination of Microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m.i.)

	NT /1		pe.	d with.	ipera-	2° Fah. 3″ scale 15 <i>m.i</i> .	Microsco Microsco	pscope pe Scale.	h – <i>A</i> , h.	Micros : — Scale A, at 62° Fah.	
	w ner		licroscol	ompare	cted ten ture.	ion to 6 sion of 6 = E = 62	Ubserved term	value in 8 of	s : Scale 62° Fa		nce er.
	1	854-55	A	Scale o	Corre	Reduct Expane for 1°=	Divisions 10000 = 1".	m.i.	Micro	m.i.	Refere numb
December	5th 6+b	Before the measure- ment.	T M O N	T M U N	65.08 66.79 81.48	+ 193 299 1217 - 447	$\begin{array}{r} + 2.60 \\ 0.65 \\ - 1.25 \\ + 0.62 \end{array}$	+ 260 65 - 125 + 062	- 97 21 $+ 283$ 262	+ 356 343 1375 850	I 2 3
77 77 77 77	4th 5th		R P S	R P S	78·78 80·16 77·34	+ 1049 1135 959	-2.67 -2.67 -3.37	- 267 - 267 + 237	93 93 - 75	875 1485 1121	5 6 7
"	15th	Between sets No. 84 and 85.	T M O N R P S	T M U N R P S	74 ^{.25} 73 ^{.96} 77 ^{.20} 76 ^{.42} 75 ^{.81} 76 ^{.42} 75 ^{.71}	+ 765 748 950 901 863 901 857	- 2.27 0.00 + 1.20 0.00 0.00 1.67 1.47	- 227 0 + 120 0 167 147	$ \begin{array}{r} - & 97 \\ & 21 \\ + & 283 \\ & 363 \\ & 93 \\ & 35^{\circ} \\ - & 75 \end{array} $	+ 441 727 1353 1264 956 1418 929	8 9 10 11 12 13 14
"	21st	Between sets No. 156 and 157.	T M O N R P S	T M U N R P S	79.05 80.33 79:65 80:05 79:11 79:19 79:37	+ 1065 1146 1103 1128 1069 1074 1086	- 5:20 2:67 0:00 3:27 0:00 0:00 0:00	- 520 267 0 327 0 0	$ \begin{array}{r} - & 97 \\ & 21 \\ + & 283 \\ & 363 \\ & 93 \\ & 350 \\ - & 75 \end{array} $	+ 448 858 1386 1164 1162 1424 1011	15 16 17 18 19 20 21
"	30th	Between sets No. 306 and 307.	T M O N R P S	T M U N R P S	79 [.] 88 80 [.] 19 79 [.] 65 79 [.] 42 79 [.] 91 80 [.] 29 80 [.] 17	+ 1118 1137 1103 1088 1119 1143 1136	- 4.00 4.15 0.00 3.63 1.70 0.00 0.00	- 400 415 0 363 170 0	$ \begin{array}{r} - & 97 \\ 21 \\ + & 283 \\ 363 \\ 93 \\ - & 75 \end{array} $	+ 621 701 1386 1088 1042 1493 1061	22 23 24 25 26 27 28
January	16th	Between sets No. 465 and 466.	T M O N R P P* S	T M U N R P P S	77'35 77'30 76'10 77'42 77'42 76'38 76'44 77'19 76'91	+ 959 956 881 963 963 902 902 949 932	- 2'18 + 1'28 0'00 0'00 4'00 4'93 4'80 3'07	0 - 218 + 128 400 403 480 307	$ \begin{array}{r} - & 97 \\ 21 \\ + & 283 \\ 363 \\ 333 \\ 93 \\ 350 \\ - & 75 \end{array} $	+ 862 717 1292 1326 1326 1392 1745 1779 1164	29 30 31 32 33 34 35 36 37

• These microscopes were compared a second time, because they were adjusted after the first comparison.

Microscope Comparisons-(Continued.)

		-	ē	l with.	ıpera-	2° Fah. 5″ scale ?:5 <i>m.i</i> .	Micro Microsco	scope - pe Scale.	⁸ − <i>∆</i> , फ.	Micros: - Scale <i>A</i> , at 62° Fah.	
	Wher	compared	icroscop	ompare	cted tem ture.	ion to 6 sion of $($	Observed term	value in us of	e: Scale t 62° Fa		ence ber.
1854-55				Scale c	Corre	Reduct Expander 1°.	Divisions 10000 = 1"	<i>m.</i> i.	Micro	78.1.	Refer
January "	22nd 24th	After the measure- ment.	T M O N	T M U N	72°45 76°66 76°65 78°32	+ 653 916 916 1020	$ \begin{vmatrix} + & 0.77 \\ - & 1.40 \\ + & 1.23 \\ & 0.00 \end{vmatrix} $	$ \begin{array}{c} + & 77 \\ - & 140 \\ + & 123 \\ & 0 \end{array} $	$ \begin{array}{r} - & 97 \\ & 21 \\ + & 283 \\ & 363 \end{array} $	+ 633 .755 1322 1383	38 39 40 41
>> >>	23rd 24th		R P S	R P S	77 [.] 45 79 [.] 79 76 [.] 17	965 1112 886	0.00 0.00 0.00	- 90 0 0	93 350 - 75	968 1462 811	42 43 44

The required combinations of individual microscope errors taken from pages VII_19 and VII_20, are expressed as follows;

					Ref	erenc	e 181	umbe	78.					<i>m.i</i> .	mea	n temp:			
e ₁	=	2	+	3	+	4	+	5	+	6	+	$\frac{1+7}{2} =$	= +	5696	at (62	+ 10.21)		before the me	asurement.
ez	=	9	+	10	+	11	+	12	+	13	+	$\frac{8+14}{2} =$	= +	6403	at (62	+ 13.80)	ande	between sets	84 & 85
e ₈	=	ıq	+	17	+	18	+	19	+	20	+	$\frac{15+21}{2} =$	= +	6724	at (62	+ 17:59)	ons n	>>	156 & 157
e4	=	23	+	24	+	25	+	26	+	27	+	$\frac{22+28}{2} =$	= +	6551	at (62	+ 17'92)	oparia	"	306 & 307
e ₅	=	30	+	31	+	32	+	34	+	35	+	$\frac{29+37}{2} =$	= +	7485	at (62	+ 14.80)	n con	27	465 & 466
e ₆	=	30	+	31	+	33	+	34	+	36	+	$\frac{29+37}{2} =$	= +	7519	at (62	+ 14.92)	Fror	"	do.
e ₇	=	39	+	40	+	4 1	+	42	+	43	+	$\frac{38+44}{2} =$	= +	6612	at (62	+15.20)		after the me	asurement.

And from the foregoing, we obtain the following equations for the microscope errors per set (or *m.e.*); where dE expresses the error in the adopted value of the expansion for the 6-inch scales.

$(m.e.)_1 = \frac{e_1 + e_2}{2} = + \frac{m.i.}{6050} - 6 \times 12.01 dE apple$	plicable to	sets Nos.	1 to 84
$(m.e.)_2 = \frac{e_2 + e_3}{2} = + 6564 - 6 \times 15.70 dE$	"	"	85 to 156
$(m.e.)_3 = \frac{e_3 + e_4}{2} = + 66_38 - 6 \times 17.76 dE$	"	"	157 to 306
$(m.e.)_4 = \frac{e_4 + e_5}{2} = +$ 7018 - 6 × 16.36 dE	>	"	307 to 465
$(m.e.)_6 = \frac{e_6 + e_7}{2} = +$ 7066 - 6 × 15.06 dE	"	"	466 to 613

VII____20

Microscope Comparisons-(Continued.)

Hence the total microscope errors are as follows :----

In sets Nos.	1 to 156 =	$\begin{cases} 84 \ (m.e)_1 = \\ 72 \ (m.e)_2 = \end{cases}$	m.i. 508200 — 472608 —	60 <u>53</u> dE 6782 dE	$\begin{array}{r} feet \ of \ A \\ = \ 0.0424 \\ = \ 0.0394 \end{array}$	— 6053 dE — 6782 dE
			•	Sum	= 0.0818	— 12835 dE
23	157 to 306 =	150 (m.e) ₃ =	995700 —	15984 dE	= 0.0830	— 15984 <i>dE</i>
**	307 to 457 =	$151 (m.e)_4 =$	1059718 —	14822 dE	= 0.0883	— 14822 <i>dE</i>
"	458 to 613 =	$\begin{cases} 8 \ (m.e)_4 = \\ 148 \ (m.e)_5 = \end{cases}$	56144 — 1045768 —	785 dE 13373 dE	= 0 ^{.0047} = 0 ^{.0871}	— 785 dE — 13373 dE
				Sum	= 0.0018	- 14158 dE

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally; *i.e.* in terms of the 6-inch brass scale A. But from page (31), we have $2 A = 1.0000192 \frac{A}{10}$, value in 1835. Also the co-efficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that .000,000,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i.*). Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (*m.e*), we have,

Total lengths measured with the compensated microscopes

In sets Nos. 1 to 156 or S. End, to Stn. A	}	$. = \left\{ \begin{array}{c} \text{feet of } A \\ 156 \times 3 + 0818 \end{array} \right\} - 12835 dE$	$= (\begin{array}{c} feet & of \\ 468 \cdot 0908 - \cdot 0036 \end{pmatrix} = \begin{array}{c} A \\ 468 \cdot 0872 \end{array}$
,, 157 to 306 or Stn. A, to Stn. B	}	$\cdot = \left\{ 150 \times 3 + .0830 \right\} - 15984 dE$	= (450.09160042)= 420.0821
or Stn. B, to Stn. C	}	$. = \left\{ 151 \times 3 + .0883 \right\} - 14822 \ dE$	= (453.0970-0042)= 453.0928
458 to 613 or Stn. C to N. End	}	$\cdot = \left\{ 156 \times 3 + .0918 \right\} - 14158 dE$	= (468·1008-·0040)= 468·0968
or S. End to N. End	}	• • • • • • • • • • • • • • • • • • • •	$= (18_{3}9_{3}80_{2} - 016_{3}) = 18_{3}9_{3}6_{3}9_{3}$

VII____2 I

DETAILS OF THE MEASUREMENT.

Disposition of the bars and microscopes during the measurement.

Each set in the base-line was invariably measured with 6 bars and 7 microscopes, whose order of succession was as follows :----

Bars.

Microscopes.

A, B, C, D, E, H. $\frac{1}{2}$ T, M, O, N, R, P, $\frac{1}{2}$ S.

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin.

Adopted heights above mean sea level. South-End (origin) = 46.4 feet. North-End (terminus) = 204.4 feet.

Dec. 1854	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Dec. 1854	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Dec.	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin
7th	1 2 3 4	60°4 75°1 848 85°0	ћ. т. б 40 д.н. 7 50 10 45 11 58	feet + 1 [.] 2 1 [.] 5 1 [.] 8 2 [.] 1	llth	29 30 31 32	o 72·0 75 [·] 3 81·2 81·0	h.m. 733▲.M. 839 1115 1157	feet + 5 ^{.6} 5 ^{.8} 5 ^{.9} 6 ^{.3}	13th	57 58 59 60	83°0 85°9 87°2 87°2	h.m. 039 P.M. 17 134 150	feet. + 12°2 12°6 12°9 13°1
8th	56 78 9	86.0 85.9 84.3 80.6 59.8	о 35 р.м. 1 24 2 б 2 48 6 18 л.м.	2.0 1.9 1.9 1.9	12th	33 34 35 36 37	80 8 80 9 80 4 78 9 68 3	0 52 P.M. I 43 2 27 3 I2 6 25 Å.M.	6·5 6·4 6·5 6·5	14th	61 62 63 64 65	87'1 85'8 60'2 63'0 66'8	2 31 3 0 6 20 A.M. 7 5 7 35	13.5 13.8 13.9 14.3 14.4
	10 11 12 13 14	72.0 78.1 81.7 84.7 82.3	7 16 8 40 9 35 11 5 11 53	2·2 2·3 2·4 2·5 2·8		38 39 40 41 42	70°2 72°2 74°0 77°2 79°0	7 25 8 7 8 50 10 57 11 33	7'3 7'7 7'8 8'1 8'3		66 67 68 69 7°	69.8 72.4 75.1 76.0 80.4	8 2 8 30 9 4 9 38 11 0	14.8 15.0 15.3 15.5 15.6
9th	15 16 17 18 19	82.0 81.0 81.8 79.1 57.7	о 30 Р. м . 1 3б 2 20 3 5 6 18 д.м .	2 9 3 1 3 3 3 4 3 5	13+6	+3 44 45 46 47	81 0 81 4 80 8 78 8	1 8 1 47 2 23 2 53	87 89 90 92 95		71 72 73 74 75	82.1 83.4 83.2 84.1 81.9	11 35 0 19 P.M. 0 48 1 26 2 2	15 [.] 9 16 [.] 3 16 [.] 8 17 [.] 1 17 [.] 3
	20 21 22 23 24 25	70.0 70.0 79.2 83.2 85.0 85.0	7 13 8 11 9 23 11 5 0 7 P.M.	3.0 4.1 4.4 4.5 4.0	тоги	40 49 50 51 52	70°1 72°7 75°0 77°2	0 24 A.M. 7 50 8 29 8 55 9 26 19 42	10.8 10.8 10.8 10.4	15th	70 77 78 79 80 81	78 9 54 7 56 8 60 4 62 0	2 32 2 58 6 30 A.M. 7 3 7 37 8 0	17'4 17'8 18'1 18'6 18'8
11th	20 27 28	84.0 81.3 65.1	2 13 3 о 6 20 д.м.	5°1 5°5 5°5		55 54 55 56	82.3 82.0	11 9 11 43 0 13 P.M.	11.4 11.7 12.0		82 83 84	67 0 70 2 76 8	8 40 9 10 9 42	19.3 19.3 19.3

NOTE.—The rear-end of set No. 1 stood exactly over the dot at South-End.

The dots denoting "Posterity-marks" a, e, f and g were fixed exactly in the normal at the advanced-ends respect-ively of sets Nos. 10, 21, 42 and 84. (29) Violent wind from N.E. bringing dense clouds of dust.

(42) heavy clouds and thick dust. ,,

VII___22
DETAILS OF THE MEASUREMENT

VII_23

Extracts	from	the	Field	Book-((Coutinued.))
----------	------	-----	-------	--------	--------------	---

Dec. 1854	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Dec. 1854	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Dec. 1854	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin
16th	85 86 87 88 99 91 92 93 94 95 96 97 98 99 100 101 102	o 54'8 61'9 67'8 71'7 74'2 77'3 79'4 81'5 82'1 83'4 85'1 83'4 85'1 83'4 85'1 83'4 85'1 83'4 85'3 79'2 55'3 60'7	<i>h. m.</i> 6 25 A.H. 7 26 8 16 8 55 9 23 9 54 11 7 11 31 11 57 0 25 P.H. 0 48 1 26 1 50 2 16 2 42 3 7 6 25 A.M. 7 11 7 39 8 10	feet. + 19.8 20.3 20.5 20.8 21.1 21.2 21.4 21.8 21.8 22.1 22.2 22.7 23.0 23.3 23.4 23.7 23.8 24.2 24.4 24.5	18th 19th	110 111 112 113 114 115 116 117 118 120 121 122 123 124 125 127 128	802 802 809 810 807 812 807 812 807 812 803 606 602 732 760 810 823 838 844 888	h. m. 11 40 A.M. 0 5 P.M. 0 34 1 32 2 2 2 30 2 56 6 55 A.M. 7 25 7 59 8 25 8 49 9 15 9 43 10 45 11 11 11 30 11 51 0 12 P.M.	feet. + 25.8 26.0 26.4 26.6 27.0 27.1 27.6 27.8 27.9 28.3 28.5 28.9 29.1 29.3 29.4 29.8 30.0 30.3 30.6 30.0	19th 1 20th 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35 36 37 38 39 44 43 44 45 44 45 51 55 55 55 55 55 55 55 55 55 55 55 55	8720755952807777555952566907777782548855768888977638888977638888977638888977638888977638888976335	h. m. 3 3 P.M. 6 35 A.M. 7 7 7 43 8 7 8 31 8 52 9 23 9 46 10 58 11 19 11 42 0 58 11 19 11 42 0 58 1 19 11 42 0 58 1 19 11 42 0 58 1 19 11 42 0 28 0 48 1 7 1 22 1 45 2 5 2 5	feet. + 32.4 32.7 32.9 33.2 33.3 33.6 33.7 34.1 34.3 34.4 34.8 35.0 35.3 35.6 35.7 36.0 36.9 36.9 36.9
measu	105 106 107 108 109 The 1red (Hei The	69'1 72'5 75'0 77'4 79'0 adva: 50 Car ight of e term	8 39 9 8 9 35 10 45 11 12 nced-end of su y's brass scale iset No. 156 a inal point of a	249 251 253 255 257 et No. 15 with a p above Sta set No. 15	6 fell air of tion A 56 was	130 131 132 133 134 in e: comp = 1 the	89'4 90'0 89'2 89'1 88'5 xcess passes. 2 feet point	o 50 1 16 1 42 2 3 2 40 (<i>i.e.</i> North) t. of origin for	31 1 31 4 31 6 31 9 32 1 of the do	ot deno 7.	55 56	85 ^{.7} 83 ^{.5} ; Stat	2 39 3 0 Total - ion A 0.0669	37.4 37.6 + 2841.0 feet, as
22nd	157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	61.8 63.2 65.7 67.2 70.1 71.8 73.0 77.1 78.6 78.4 79.0 79.5 80.0 79.5 80.0 79.5 80.0 79.4 79.0 78.3	6 45 A.M. 7 24 7 50 8 16 8 37 9 26 9 50 11 16 11 41 0 6 P.M. 0 30 0 53 1 16 1 36 1 58 2 20 2 41 3 0 3 20	+ 38 0 38 3 38 4 38 7 39 1 39 2 39 5 39 8 39 9 40 4 40 6 40 7 41 0 41 0 41 0 41 0 42 1 42 1 42 7	23rd	177 178 179 180 181 182 183 184 185 188 190 191 192 193 195 195	60°0 62°0 64°3 68°3 69°2 70°5 71°9 73°7 74°6 70°5 73°7 74°6 70°3 78°0 79°4 80°0 79°8 79°8 79°4 80°9 79°4 78°9	7 0 A.M. 7 25 7 45 8 26 8 45 9 5 9 27 9 48 10 5° 11 12 11 33 11 57 0 24 P.M. 0 45 1 5 1 23 1 39 2 0 2 20	+ 43°0 43°2 43°8 44°1 44°3 44°5 44°6 44°5 44°6 44°9 45°1 45°6 45°8 46°0 46°4 46°5 46°9 47°4 47°7 48°0	23rd 1 1 26th 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	97 98 99 90 101 102 103 105 105 105 105 105 105 105 105 105 105	78.1 77.8 77.1 48.4 53.2 57.2 65.0 68.3 75.6 79.0 80.2 79.0 80.0 79.9 80.0 79.9 80.0	2 38 P.M. 3 3 3 19 6 55 A.M. 7 23 7 50 8 17 8 38 8 57 9 22 9 45 11 0 11 25 11 50 0 7 P.M. 0 26 0 43 1 J 1 9 1 37	+ 48.0 48.1 48.4 49.2 49.5 49.7 50.0 50.3 50.5 50.9 51.3 51.7 52.0 52.3 52.6 53.1 53.9 54.0

December 19th. A heavy fog till near 7 o'clock A.M. (157) to (199) Strong and cold N.E. wind.

Extracts from the Field Book-(Continued.)

Dec. 1854 & Jan. 1855	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Dec. 5 1854 2 & f Jan. 5 1855 2	Temperature of Air	Mean time of ending	Height of Set above origin	Dec. to 1854 22 & 4 Jan. 5 1855 %	Temperature of Air	Mean time of ending	Height of Set above origin
26th 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	112222222222233333333333444444444444444	810092499068422450777881224404914240214	h. m. 2 0 P.M. 2 20 2 37 2 57 3 12 6 40 A.M. 7 10 7 32 7 52 8 15 8 30 8 47 9 2 9 38 10 30 10 52 11 10 11 25 11 41 11 58 0 14 P.M. 0 29 0 44 0 59 1 15 1 28 1 45 2 0 2 17 2 31 2 31 2 31 2 37 2 31 2	feet. + 54.5 54.8 55.5 55.4 55.5 55.4 55.5 55.5	$\begin{array}{c} 27 \text{th} & 248 \\ & 249 \\ & 250 \\ 28 \text{th} & 251 \\ & 252 \\ & 253 \\ & 254 \\ & 255 \\ & 256 \\ & 257 \\ & 258 \\ & 259 \\ & 260 \\ & 261 \\ & 262 \\ & 263 \\ & 264 \\ & 265 \\ & 266 \\ & 267 \\ & 264 \\ & 265 \\ & 266 \\ & 267 \\ & 278 \\ & 278 \\ & 277 \\ & 278 \\ & 277 \\ & 278 \\ & 277 \\ & 278 \\ & 277 \\ & 278 \\ & 277 \\ & 278 \\ & 277 \\ & 278 \\ & 277 \\ & 278 \\ & 278 \\ & 277 \\ & 278 \\ & 278 \\ & 277 \\ & 278 \\ & 278 \\ & 277 \\ & 278 \\ & 278 \\ & 277 \\ & 278 \\ & 278 \\ & 277 \\ & 278 \\ & 278 \\ & 277 \\ & 278$	85 ² 85 ³ 85 ³ 85 ³ 85 ³ 85 ⁴ 85 ⁴ 8	$\begin{array}{c} h. & m. \\ 2 & +8 & P.M. \\ 3 & 4 \\ 3 & 20 \\ 6 & +5 & A.M. \\ 7 & 11 \\ 7 & 29 \\ 7 & 55 \\ 8 & 13 \\ 8 & 35 \\ 8 & 53 \\ 9 & 18 \\ 9 & 37 \\ 10 & 35 \\ 10 & 52 \\ 11 & 15 \\ 10 & 52 \\ 11 & 15 \\ 11 & 55 \\ 0 & 15 \\ P.M. \\ 0 & 33 \\ 0 & +9 \\ 1 & 12 \\ 1 & 36 \\ 2 & 4 \\ 2 & 23 \\ 2 & 42 \\ 3 & 0 \\ 3 & 16 \\ 6 & 34 \\ A.M. \\ 7 & 2 \\ 7 & 20 \\ 7 & 45 \\ \end{array}$	feet. + 61 0 61 4 61 7 62 3 62 3 62 3 62 8 63 6 63 6 64 4 64 4 64 9 65 3 65 7 66 5 66 5 66 5 67 8 68 5 69 3 69 6 7	29th 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 293 294 295 296 297 293 30th 299 300 301 302 303 304 305 306	6398 67396 7028 7777777777777777777777777777777777	$\begin{array}{c} h. \ m. \\ 8 \ 4 \ A.M. \\ 8 \ 25 \\ 8 \ 45 \\ 9 \ 5 \\ 9 \ 24 \\ 9 \ 43 \\ 10 \ 43 \\ 11 \ 2 \\ 11 \ 20 \\ 11 \ 40 \\ 11 \ 59 \\ 0 \ 20 \ P.M. \\ 0 \ 37 \\ 0 \ 58 \\ 1 \ 16 \\ 1 \ 36 \\ 2 \ 0 \\ 2 \ 20 \\ 2 \ 40 \\ 3 \ 0 \\ 58 \\ 1 \ 16 \\ 1 \ 36 \\ 2 \ 0 \\ 2 \ 20 \\ 2 \ 40 \\ 3 \ 0 \\ 58 \\ 1 \ 16 \\ 1 \ 36 \\ 2 \ 0 \\ 2 \ 20 \\ 2 \ 40 \\ 3 \ 0 \\ 58 \\ 1 \ 16 \\ 1 \ 36 \\ 2 \ 0 \\ 2 \ 20 \\ 2 \ 40 \\ 3 \ 0 \\ 58 \\ 1 \ 16 \\ 1 \ 36 \\ 2 \ 0 \\ 58 \\ 0 \\ 8 \ 20 \\ 8 \ 45 \\ 9 \ 6 \\ 9 \ 30 \\ \hline Total \ 40 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	<i>feet.</i> + 703 707 711 715 729 722 726 729 735 735 735 736 738 738 739 742 744 746 759 744 746 759 761 759 761 763 766 768 775 + 86152
7 on Car F 7 10th 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31	The y's Heig phe 27 28 90 12 23 45 67 89 00 12 23 45 67 89 00 12 12 12 12 12 12 12 12 12 12	advan brass a sht of termi 48 0 51 4 55 4 58 2 60 9 62 9 67 1 68 1 70 9 73 7 74 0 75 0 75 2 74 9	need-end of set scale with a pa set No. 306 al nal point of se 6 30 A.M. 8 3 8 29 9 2 9 23 9 45 10 45 11 6 11 27 11 46 0 5 P.M. 0 25 0 46 1 7	No. 306 ir of com cove Stat at No. 300 + 77.6 77.9 78.2 78.5 78.7 78.9 79.0 79.0 79.3 79.6 79.9 80.2 80.5 80.7 81.1	fell in def passes. ion $B =$ 6 was the 10th 321 323 324 325 326 327 11th 328 329 330 331 332 333 334	ect (i.e. 1 2 feed point c 75.8 76.2 76.5 77.0 75.3 75.7 48.2 49.1 52.3 53.9 55.2 57.3 58.2	South) of the f origin for se i 28 P.M i 47 2 8 2 30 2 50 3 10 3 35 6 36 A.M. 7 6 7 28 7 50 8 14 8 35 8 55	e dot deno et No. 307 + 81.4 81.7 81.9 82.3 82.5 82.8 83.1 83.3 83.5 83.7 84.0 84.3 84.5 84.8	ting station 11th 335 336 337 338 339 340 341 342 343 344 345 346 347 348	61.1 62.8 66.0 69.1 71.1 71.8 71.9 71.1 71.4 70.9 71.5 71.0 72.7 71.0	9 14 A.M. 9 33 9 54 11 6 11 25 11 49 0 9 P.M. 0 29 0 47 1 7 1 24 1 45 2 0 2 17	+ 85.0 85.3 85.5 85.8 86.1 86.3 86.5 86.8 87.1 87.4 87.6 87.8 87.9 88.0

(275) to (300) Light clouds. (328) to (348) Cloudy.

- -

¥II_₂₄

DETAILS OF THE MEASUREMENT

Extracts from the Field Book-(Continued.)

Jan. 1855	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Jan. 1855	No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Jan. 1855	No. of the Set Temperature of Air	Mean time of ending	Height of Set above origin
11th 3 3 3 12th 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4501 2334550 78 9001 233450 78 9001 233450 78 9001 78 90000 78 90000 78 900000000000000000	22019055555555556666666666666667777777777777	\hbar . m. 2 31 P.M. 2 46 3 1 3 19 6 40 A.M. 7 5 7 21 7 38 7 55 8 13 8 29 8 48 9 3 9 17 9 30 9 45 10 33 10 47 11 20 11 36 11 53 0 9 P.M. 0 33 1 53 2 9 2 24 2 40 2 55 3 9 2 24 2 40 2 55 3 9 3 23 A.M. 7 3 7 3 8 7 7 3 8 7 7 3 8 7 7 3 8 7 8 7 9 30 9 45 10 33 10 9 10 33 10 33 10 33 10 53 2 9 2 24 2 40 2 55 3 9 3 23 0 35 A.M. 7 3 7 3 7 3 8 7 7 7 9 30 9 45 10 33 10 47 11 20 11 36 11 53 9 9 2 24 2 40 2 55 3 9 3 23 0 35 10 47 1 7 3 9 2 9 2 24 2 40 2 55 3 9 3 23 0 35 1 8 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3	<i>feet.</i> 88'1 888'4 888'5 88'6 88'6 89'7 89'6 89'7 89'6 89'7 90'7 90'7 90'7 90'7 90'7 90'7 90'7 9	13th 15th	33333333333333333333333333333333333333	4455556666666777777777777777777777755555666 834207880177441205495680755689233718299 635666666667777777777777777777777777777	h. m. 7 23 A.M. 7 39 7 57 8 12 8 31 8 45 9 2 9 17 9 33 9 49 10 35 10 50 11 6 11 24 11 58 0 15 P.M. 0 29 0 40 1 2 1 18 1 33 1 52 2 8 2 23 2 40 2 55 3 10 3 25 4 0 A.M. 7 4 7 38 7 53 8 12 8 30 8 48 1 2 8 31 8 45 9 2 9 17 9 33 9 49 10 35 10 50 11 6 11 24 11 58 1 28 2 3 2 40 2 55 3 10 3 25 5 40 3 25 3 10 3 25 3 21 7 38 7 53 8 12 8 30 8 48 8 48	feet. + 97.7 98.2 98.5 98.6 98.9 99.1 99.3 99.5 99.8 99.9 100.2 100.4 100.6 100.8 100.9 101.1 101.3 101.5 101.7 102.2 102.2 102.5 102.8 103.1 103.4 104.4 104.8 105.2 105.4 105.9 100.0 106.2 106.2	15th 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43	3 4 5 6 8 9 9 1	h. m. h. m. $9 ext{ 6 A.M.}$ $9 ext{ 9 }$ $4 ext{ 9 }$ $4 ext{ 9 }$ $4 ext{ 10 }$ $5 ext{ 10 }$ $4 ext{ 9 }$ $1 ext{ 10 }$ $5 ext{ 11 }$ $6 ext{ 11 }$ $5 ext{ 11 }$ $6 ext{ 12 }$ $5 ext{ 11 }$ $6 ext{ 12 }$ $7 ext{ 0 }$ $8 ext{ 0 }$ $1 ext{ 25 }$ $5 ext{ 11 }$ $8 ext{ 0 }$ $1 ext{ 25 }$ $5 ext{ 11 }$ $8 ext{ 0 }$ $1 ext{ 25 }$ $5 ext{ 11 }$ $8 ext{ 0 }$ $1 ext{ 25 }$ $5 ext{ 11 }$ $8 ext{ 0 }$ $1 ext{ 25 }$ $2 ext{ 27 }$ $1 ext{ 26 }$ $2 ext{ 29 }$ $2 ext{ 29 }$ $2 ext{ 29 }$ $2 ext{ 29 }$ $2 ext{ 27 }$ $1 ext{ 7 }$ $5 ext{ 6 }$ $8 ext{ 41 }$ $2 ext{ 9 }$ $1 ext{ 29 }$ $1 ext{ 29 }$ $1 ext{ 29 }$ $1 ext{ 29 }$ $1 ext{ 27 }$ $1 ext{ 29 }$ $1 ext{ 27 }$ $1 ext{ 29 }$ $1 ext{ 27 }$ $1 ext{ 29 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 29 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ $1 ext{ 27 }$ 1 ext	feet. + 106.7 106.9 107.2 107.4 107.4 107.4 107.4 107.4 107.8 107.9 108.1 108.3 108.6 108.8 109.0 109.1 109.4 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.7 107.7 107.
sured	The on (Hei The	advar Cary's ght of termi	nced-end of se brass scale wi set No. 457 inal point of s	t No. 45% th a pair above Sta set No. 45	7 fell of com tion C 7 was	in depass $= 1^{\circ}$ the j	efect (1 es. 1 feet point o	.e. South) of of origin for s	the dot d set No. 45	enoting 8.	Station	C 0·1083 feet	t, as mea-
16th 4 4 4 4 4 4 4 4	458 459 460 462 463 464 465	76.8 75.8 75.8 78.0 79.1 79.4 79.8 81.0	II 27 A.M. II 51 0 19 P.M. 0 34 0 50 I 7 I 32 I 50	+ 112'9 112'8 113'0 113'2 113'2 113'3 113'7 114'3	17th	466 467 468 469 47° 47° 472 472	51.0 52.7 54.4 50.0 57.9 60.0 62.2 64.5	6 46 A.M. 7 13 7 32 7 49 8 5 8 20 8 37 8 51	+ 114.6 114.7 114.8 115.1 115.3 115.6 115.8 115.8	17th 47 47 47 47 47 47 47 47 48 48	74 66 75 68 76 69 77 71 8 75 9 76 8 75 8 71 8 75 7 75 8 75 7 71 8 75 7 75 8 75 7	2 9 6 A.M. 9 21 9 37 5 9 54 3 10 54 4 11 14 3 11 34 1 11 52	+ 116 ^{.2} 116 ^{.3} 116 ^{.3} 117 ^{.4} 117 ^{.6} 117 ^{.7} 118 ^{.2}

(349) and (350) Cloudy.

VII__25

۱

VII____26

Extracts from the Field Book-(Continued.)

h. m.feet.h. m.feet.h. m.feet.20th 572 693 1114+145248370400119253860772113305573709071414564857740011975305277401336557370907 P.M.145648576811512015315377401336557370907 P.M.146748676913012055325698111311577721044146448776913012055325698111341577721044146448977728112175336298551348560729136147549076222312205306499113505817221381475491782235122053064991135058172213814754937772311227539697163213555847172148249377733112275396971632135558471824414854947573 <th>ງ ອີກ 1855 ອີ ຊີ</th> <th>Temperature of Air</th> <th>Mean time of ending</th> <th>Height of Set above origin</th> <th>Jan. Jan. No. of the Set</th> <th>Temperature of Air</th> <th>Mean time of ending</th> <th>Height of Set above origin</th> <th>Jan. Jan. No. of the Set</th> <th>Temperature of Air</th> <th>Mean time of ending</th> <th>Height of Set above origin</th>	ງ ອີກ 1855 ອີ ຊີ	Temperature of Air	Mean time of ending	Height of Set above origin	Jan. Jan. No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin	Jan. Jan. No. of the Set	Temperature of Air	Mean time of ending	Height of Set above origin
	$17 \text{th} 482 \\ 483 \\ 484 \\ 485 \\ 486 \\ 487 \\ 488 \\ 489 \\ 490 \\ 491 \\ 492 \\ 493 \\ 494 \\ 18 \text{th} 495 \\ 496 \\ 497 \\ 498 \\ 499 \\ 500 \\ 501 \\ 502 \\ 503 \\ 504 \\ 505 \\ 507 \\ 508 \\ 509 \\ 511 \\ 512 \\ 513 \\ 514 \\ 515 \\ 516 \\ 517 \\ 518 \\ 519 \\ 520 \\ 521 \\ 522 \\ 523 \\ 524 \\ 525 \\ 526 \\ 527 \\ 528 \\ 526 \\ 527 \\ 528 \\ 526 \\ 527 \\ 528 \\ 526 \\ 527 \\ 528 \\ 526 \\ 527 \\ 528 \\ 526 \\ 527 \\ 528 \\ 526 \\ 527 \\ 528 \\ 526 \\ 526 \\ 526 \\ 527 \\ 528 \\ 526 $	8 9 4 4 8 9 3 7 2 2 7 7 7 7 7 8 4 7 3 1 2 7 6 0 4 1 7 0 3 4 9 8 0 7 0 5 4 8 5 0 2 1 4 3 6 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	h. m. o 8 P.M. o 22 o 40 o 56 f 15 f 30 f 50 2 24 2 38 2 24 2 38 2 24 2 38 2 24 2 38 2 24 2 38 2 24 2 38 2 37 3 23 6 42 A.M. 6 59 7 15 7 35 7	feet. + 118 6 118 9 119 2 119 7 120 1 120 7 120 7 121 3 121 5 122 0 122 3 122 5 122 7 123 0 123 2 123 6 123 8 124 2 123 6 123 8 124 2 124 6 125 7 125 9 126 5 126 6 126 8 127 1 127 6 127 8 128 7 128 7 128 7 128 7 129 1 129 4 129 1 129 4 129 1 129 4 129 1 129 4 129 7 129 1 129 7 129 1 129 7 129 7 129 7 128 7 128 7 128 7 128 7 128 7 128 7 128 7 128 7 128 7 128 7 129	19th 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 543 544 545 546 547 548 550 551 552 553 554 555 556 557 20th 558 556 563 563 563 563 563 563 563 563 563	44555566666666666666666666666666666666	h. m. 6 43 A.M. 7 2 7 21 7 40 7 55 8 11 8 26 8 41 8 55 9 10 9 27 9 44 1c 37 1c 52 11 8 11 26 11 41 11 58 0 35 0 53 1 11 1 25 1 42 1 59 2 17 2 31 2 48 3 32 3 38 6 40 A.M. 7 20 7 36 7 53 8 15 8 35 9 6 9 22 9 37 9 51 10 40 10 56	feet. + 132.6 132.9 133.2 133.6 133.8 134.1 134.5 134.6 135.2 135.2 135.5 135.3 136.7 136.7 136.7 136.7 136.7 137.5 137.8 138.8 139.5 139.8 139.5 139.8 139.5 139.8 139.5 139.8 139.5 139.8 140.6 140.9 141.5 142.6 142.7 142.9 143.5 144.6 144.6 144.6 144.6	20th 572 573 574 575 576 577 578 579 580 581 582 583 584 583 584 585 590 591 592 593 594 595 595 597 598 599 600 601 602 603 604 605 606 611 612 613	69.0777777777777777777777777777777777777	h. m. 11 14 11 32 11 49 0 7 P.M. 0 24 0 41 0 59 1 15 1 36 1 58 2 9 2 24 2 41 2 55 3 12 3 27 6 53 A.M. 7 16 7 34 7 52 8 9 8 31 8 46 9 0 9 16 9 33 9 51 10 45 11 35 11 5 0 9 P.M. 0 25 0 46 1 3 1 17 1 36 1 35 1 17 1 36 1 5 8 9 8 31 8 46 9 0 9 16 9 33 9 51 10 45 11 5 1 35 1 2 3 2 7 0 46 1 3 1 5 1 36 1 5 1 36 1 5 2 9 2 24 2 41 2 55 3 12 3 27 6 53 A.M. 7 16 7 34 7 52 8 9 8 31 8 46 9 0 9 16 9 33 9 51 10 45 11 35 11 5 0 9 P.M. 0 25 0 46 1 3 1 17 1 36 1 5 2 12 2 29 2 5 0 46 1 3 1 17 1 36 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	<i>feet.</i> + 145 ² 145 ⁶ 145 ⁶ 145 ⁶ 146 ² 146 ⁴ 146 ⁶ 147 ³ 147 ³ 150 ¹ 150 ¹ 150 ¹ 150 ¹ 150 ¹ 150 ¹ 151 ³ 152 ¹ 152 ² 152 ³ 152 ³ 152 ³ 153 ² 153 ³ 154 ³ 155 ³ 155 ⁵ 155 ⁵ 155 ⁵ 155 ⁶ 155 ⁷ 155 ⁷

The advanced-end of set No. 613 fell in defect (*i.e.* South) of the dot at North-End 3.0289 feet, as measured on **Cary's** brass scale with a beam compass. Height of set No. 613 above North-End = 1.1 feet. (527) to (587) Strong N.E. wind. (588) to (613) Strong N.E. wind; sunshine and clouds alternating; slight shower of rain in the morning.

Reduction to Mean Sea Level.

Let the sections into which this base-line is divided be denoted as follows;

South-End to Station A by Section I; Station B to Station C by Section III; Station A to ,, B by ,, II; ,, C to North-End by ,, IV. Then in the notation of (7) page I_{22} we have

H = 46; h = 1580; $\delta h = + 0.9$; Log. R = 7.31894; and n = 613.

			$\begin{bmatrix} h \end{bmatrix}_{1}^{p}$	a	n	dh	F	λ.	C_2	C_1	C
Section " "	I II III IV	•••	+ 2841 861 5 14503 21022	0 0 0 0	156 150 151 156	+ 0'2 0'2 0'3	+ 2857 8660 14579 21139	9829 9451 9514 9829	•0086 •0262 •0441 •0639		•0303 •0471 •0651 •0856

	M e	asured wi	t 1.			
Section	Compensated bars page VII_18	Compensated microscopes page VII21	Beam compass pages VII_23 VII_26	Reduction to sea level as above	Total Length	Log.
S. End to Stn. A	 9360.5140	468 ['] 0872	— 0°066g	—·o3o3	9828.5040	3 99248 7419
Stn. A to Stn. B	 9000.4942	450.0871	+ 0.1403	- ' 0471	9450.6745	3.97546 2805
Stn. B to Stn. C	 9060 [.] 4756	453.0928	+ 0.1083	• 0651	9513.0110	3 97834 5417
Stn. C to N. End	 9360.4913	468.0968	+ 3.0289	— ∙0856	9831.5314	3.99262 1171
S. End to N. End	 36781.9751	1839.3639	+ 3.2100	- '2281	38624.3215	4.28686 0863

Final length of the Base-Line and of its parts in feet of Standard A.

Lengths in feet of Standard A, between South-End and the *Posterity-Marks*, at the levels of measurement.

			Measur	ea with	
			Bars	Micros :	Total.
South-End to	Posterity-Mar.	k a	600.0319	30.0024	630.0383
"	"	e	1260.0605	03.0114	1323 0800
,,	"	f	2520.1383	120.0227	2646.1610
"	"	g]	5040.2768	252.0455	5292.3223

Digitized by Google

VII____27

Verificatory Minor Triangulation.

of gle					Distance	in	of gle
No. Trian	Name of Station	Corrected Angle	Log. Sine	Log. Distance	Feet	Miles	Error Trian
1	South-End of Base, Station A, ,, a	61 34 38 152 62 19 14 134 56 6 7 735 180 0 0 0 21	9'944215970 9'947218297 9'919095454	4:017607935 4:020610262 3:992487419	9828 [.] 5040	1.801	+0
2	Station $a \dots \dots \dots \dots$,, $A, \dots \dots \dots$,, $\beta \dots \dots \dots$	63 35 30.712 54 30 24.012 61 54 5.297 180 0 0.021	9'952137652 9'910722081 9'945536996	4*024208591 3*982793020 4*017607935			+0.180
3	Station A, " β " B,	63 10 23.889 53 12 13.315 63 37 22.817 180 0 0.021	9 [.] 950547695 9 [.] 903507804 9 [.] 952254785	4°022501501 3°975461610 4°024208591	9450'6485	1.200	-0.311
4	Station β ,, B, ,, γ	63 31 15'220 56 48 21'661 59 40 23'142 180 0 0'023	9'951870103 9'922632982 9'936090561	4 [.] 038281043 4.009043922 4.022501501			0. 60(
5	Station B, $\gamma \gamma \dots \dots \dots \dots$ $\gamma C, \dots \dots \dots$	59 34 15.631 53 21 2.708 67 4 41.682 180 0 0.021	9 [.] 935636976 9 [.] 904339326 9 [.] 964277349	4°009640670 3°978343020 4°038281043	9513.5591	1.802	— 0 . 201
6	Station γ " C, " δ	66 40 10.142 50 34 35.298 62 45 14.580 180 0 0.020	9 [.] 962954111 9 [.] 887883219 9 [.] 948925937	4`023668844 3`948597952 4`009640670			+ 1·460
7	Station C, ,, 8 North-End of Base,	62 20 41 793 55 26 49 951 62 12 28 278	9 [.] 947315061 9.915718417 9.946768974	4`024214931 3`992618287 4`023668844	9831.4661	1.863	— 1°372
		180 0 0.022		Sum	38624.1777	7.315	

NOTE.—Each side of a triangle is given in the same horizontal line with the angle which it subtends.

The angles of the verificatory triangulation were measured with Troughton's 3-foot Theodolite, read by 5 micrometer microscopes. At all the stations 3 measures were made on each of 10 zeros. The stations on the line are South-End, A, B, C and North-End. The auxiliary stations are α , β , γ and δ .

VII_29

Comparison in feet between the values computed by means of the verificatory triangulation and the measured value.

Of the entire line.

South-End to North-End by the measurement, page VII_27 386243215 4.586 860 863 in terms of South-End to Station A, page VII_28 Log. computed value — Log. measured value — 0.000 001 617

In terms of the entire line by measurement.

١											Computed	Computed Measured*
South-H	End	to	Station	A	•	•	•	•	•	•	9828·5406	+ ·0366
Station	A	to	Station	B	•	•	•	•	•	•	9450.6837	+:0092
,,	B	to	,,,	С	•	•	•	•	•	•	9513.5945	0121
,,	С	to	,,	No	orth-	En	d	•	•	•	9831.5027	0287
», "	B C	to to to	,» ,»	C No	• • orth-	En	d	•	•	•	9450 0837 9513:5945 9831:5027	'('(

			1	~	17	17
Ut each	section	ın	terms	ot	the	others.

	Sout to	h-West- Station	End A	Station A Station	A to B	Comp Meas	outed - ured	Station B to Station C	Computed Measured	Station C to North-End	Computed Measured
Measured lengths*	98	828.50	o40	9450.67	45	••		9513.6116		9831.5314	
Computed on base South-End to Station A	} .	•		9450.64	185	·o	260 '	9513-5591	0525	9831.4661	0653
Computed on base Station A to Station B	} .	•	•••	••	••	••		9513'5 ⁸ 53	- •0263	9831.4932	0382
Computed on base Station B to Station C	} .	•	••	••	••	••	••			9831.5204	0110

NOTE.—Since
$$\log_e(x + dx) = \log_e x + \frac{(dx)}{x} - \frac{(dx)^2}{2x^2} + \&c.$$

 $dx = \left\{ \log_{10} \left(x + dx \right) - \log_{10} x \right\} \frac{x}{\text{Modulus}} \text{ nearly, by which expression the required}$ variations in the foregoing natural numbers have been calculated.

Description of Stations.

SOUTH-END of KARACHI BASE, Lat. 24° 53' Long. 67° 12' is situated in the district of Karáchi, and within a few yards of the road from Karáchi to Tattah. It is about 2 miles from the halting ground called Jamadar-ka-Landi, and some 9 miles E.S.E. from Karáchi.

The station is marked by a tower 22.9 feet high. An arched passage at the level of the ground, and parallel to the base-line, runs through the tower. On this arch and in the centre of the tower is an isolated and perforated pillar rising to the level of the top of the tower. The continuation of this pillar into the basement of the tower, contains the mark-stones. These are three in number, the first being at the level of the passage-floor, the second and third 1.8 feet and 3 feet respectively lower down, and all in the same normal. The uppermost mark consists of a dot on silver let into a brass plug, the latter being embedded in a slab of stone. This dot was used in the measurement of the base-line. It is protected by a small brass plate and a masonry dome of some 6 inches internal radius : the entrances to the passage are closed with brick work.

The South-End was connected in 1860, by a double line of spirit levels with the mean sea level at Karáchi, when it was found that the height of the surface of pillar containing the ground-level mark-stone was 46.38 feet above this datum.

NORTH-END or KARACHI BASE, Lat. 24° 59', Long. 67° 15', is situated in the Karáchi district, and stands on an open plain entirely devoid of habitations.

The station is marked and protected similarly to the South-End of this base-line, the only difference being that the tower here is 18 4 feet high.

The North-End was connected similarly to the South-End with the mean sea level at Karáchi and it was found that the height of the surface of pillar containing the ground-level mark-stone was 204.40 feet above this datum.

STATIONS A, B, C. Are on the straight line from South-End to North-End of the base-line, and distant respectively 1.86, 3.65, 5.45 and 7.32 miles from the former.

The stations are marked by a dot on a silver pin let into a brass bar about 7 inches long embedded in atone, and covered over with a plate of brass; the stone is enclosed in an isolated pillar of masonry surrounded by a platform of stones and earth and has an earthen mound 12 or 15 feet in height raised over it.

POSTERITY-MARKS a, e, f, g. Are on the straight line from South-End to Station A, and distant respectively about 630 feet, $\frac{1}{4}$, $\frac{1}{4}$ and 1 mile from the former.

These points are marked in the same manner as Stations A, B, C, with the difference that there is no plat form here surrounding the pillar of masonry.

AUXILIARY STATIONS α , β , γ , δ . Are situated on suitable sites to the W. of the base-line.

The stations are marked by a central isolated pillar of masonry, surrounded by a platform of stones and earth about 14 feet square.

J. B. N. HENNESSEY.

VII_____30

VIII_2

The middle point of this base-line is in Latitude N. 17° 58', Longitude E. 83° 15'; the Azimuth of North-End at South-End is 199° 38', and the line is 6.59 Miles in length. The measurement was effected under the directions of Major J. T. Walker R.E. with the assistance of the following:

> Captain J. P. Basevi, R.E. Mr. J. B. N. Hennessey Captain B. R. Branfill Lieut. W. M. Campbell, R.E. Mr. H. H. Taylor , R. Clarkson , F. Ryall , J. Wood , J. W. Mitchell , J. R. L. O'Neill

٠

INTRODUCTION.

This base-line was measured on the plain between Waltair (near Vizagapatam) and Vizianagram in the Madras Presidency, the South-End of the line being some 17 Miles N.W. by North from the former place. The line was selected by Captain J. P. Basevi, R.E. assisted by Captain B.R. Branfill and the ground prepared under their supervision.

The measurement was commenced at South-End, bar-tongues pointing West, and was carried on *continuously* to the North-End, so that every succeeding set originated at the point marking the terminus of its predecessor. The line was divided into 3 sections by the subdividing points A and B to admit of verification by minor triangulation; and in addition four points called *Posterity-marks*, No. 1, No. 2. No. 3 and M were laid down in the measurement. Of these, the first named was fixed at the end of 6 sets or about 378 feet, the second at 12 sets or about 756 feet, and the third at 18 sets or about 1134 feet, all reckoned from the South-End. The point M was laid down at the end of the 173rd set from the same origin, near a site about the middle of the line suited for bar comparisons. It is also to be noticed that the South-End was connected by a single line of spirit levels, executed by Captain B. R. Branfill, with the tide gauge set up in the back water at Vizagapatam. The tidal observations for determining the mean sea level on the gauge were taken by Mr. R. Clarkson in November and December 1860.

The compensated bars were compared with the standard \mathbf{A} on three occasions, *i.e.* before the measurement near South-End, after set 173 near the Posterity-mark M and after the measurement near North-End. On all these occasions the comparing piers were set up parallel to the line and within a few feet of it, while the bar-tongues pointed West as they did during the measurement. The series of comparisons at South-End comprised 66 sets, that at M consisted of 80 sets and 90 sets were taken at North-End.

One of the comparing microscopes employed in the preceding bar comparisons was fitted with a micrometer, while the other had its wires (or lines) fixed.

The compensated microscopes were compared with their scales on 5 occasions including the comparisons taken prior and subsequent to the measurement.

In respect to time, the first set of bar comparisons was taken on the 8th December 1862, the last on the 4th of the following February.

The verificatory triangulation was made to consist for the first time of a double series of triangles, *i.e.* a series was projected on either flank of the line, forming in all a complete figure of 10 triangles. Of the stations involved, S. End, A, B and N. End were in the alignment, and the remainder were selected on suitable sites, 3 to the West and as many East of the line. The angles were measured by Captain B. R. Branfill with Troughton and Simm's 24-inch theodolite No.1 on 10 equidistant zeros; two measures were taken on each zero, so that 20 measures in all were made of each angle.

VIII_4

Comparisons	between	the	Standard	Bar	A a	and the	Compenso	ited	Bars A,	В,	C,	D,	Ε,	H,	made	at
		the	e South-En	nd of	the	base-l	ine, before	the	measure	men	t.					

	bserving A	uo	منا	rature of A		MICBO 1 Divisio	$\mathbf{M} \mathbf{E} \mathbf{T} \mathbf{E} \mathbf{E}$ $\mathbf{n} = \frac{1}{21572}$	B B A D	INGS I Inch [7.8],	N DIVI = 1.2870 m	81018 .y. of A		
1862 Decr	Mean of the times of o	No. of compari	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	н	Mean of the compensated bars	Remarks
8th	h. m. 9 28 A.M. 10 7 10 40 0 11 P.M. 0 42 1 7	1 2 3 4 5 6	72.3 73.6 75.5 77.9 78.3 70.5	67'92 69'67 71'17 75'37 76'57 77'55	+ 1109'9 1144'0 1169'1 1240'2 1263'0 1280'7	+ 1146·8 1144·4 1142·5 1140·7 1142·3 1148·0	+ 1141.4 1138.3 1129.3 1130.7 1134.0 1135.7	+ 1166.7 1163.0 1161.8 1164.8 1168.5 1164.6	+ 1177'4 1181'0 1177'3 1187'0 1192'3 1104'5	+ 1148.4 1153.2 1155.1 1174.7 1180.1 1177.6	+ 1150'3 1155'9 1159'5 1169'0 1168'5 1170'9	+ 1155.2 1156.0 1154.3 1161.2 1164.3 1165.2	Major Walker at the micrometer mi- croscope; Captain Branfil at the plain microscope.
	1 38 2 9 2 39 3 9 3 30 3 59	7 8 8 8 9 8 10 8 11 12	80.5 80.1 80.6 80.8 79.8 79.8 78.7	78.45 79.27 79.82 80.15 80.30 80.15	1301.5 1317.5 1329.1 1336.6 1339.2 1336.2	1152.3 1159.2 1169.7 1179.0 1187.7 1188.8	1139 ^{.8} 1150 ^{.8} 1155 ^{.0} 1163 ^{.5} 1171 ^{.7} 1180 ^{.0}	1178°0 1186°9 1185°6 1201°2 1207°0 1212°1	1201'1 1203'2 1211'7 1221'2 1227'2 1228'9	1182.0 1195.0 1186.7 1197.2 1202.6 1211.0	1181.0 1188.0 1184.6 1195.8 1202.1 1199.2	1172.4 1180.5 1182.2 1193.0 1199.7 1203.3	Observers chang- ed places.
9th	6 57 A.M. 7 37 8 12 8 44 9 24 9 58	13 (14 (15 (16 (17) 18)	52.4 53.9 56.1 58.5 71.2 72.9	63.55 63.07 63.37 64.15 65.67 67.35	1051.7 1054.8 1063.7 1080.7 1111.8 1135.5	1203.8 1199.8 1192.8 1186.3 1187.5 1176.7	1180°3 1187°4 1172°5 1179°0 1169°5 1162°6	1219.7 1219.2 1212.0 1204.0 1209.5 1183.0	1226·1 1233·3 1225·3 1215·1 1213·3 1207·9	1188.3 1204.7 1190.9 1187.5 1184.5 1188.8	1210'2 1195'5 1201'8 1197'0 1187'5 1189'7	1204'7 1206'7 1199'2 1194'8 1192'0 1184'9	Captain Branfill at the micrometer mi- croscope; Mr. Tay- lor at the plain mi- croscope. Observers chang- ed places.
	10 27 10 56 0 25 P.M. 0 57 1 28 1 52 2 21	19 7 20 7 21 7 22 7 23 7 24 8	76.3 78.8 79.6 79.9 30.0 30.6	70.62 75.65 76.97 78.07 78.72 78.95	1200.8 1202.8 1320.2 1342.4 1356.3 1366.2	1172 0 1177 5 1180 0 1192 0 1200 7 1212 0 1218 2	1171.8 1171.8 1181.3 1187.1 1193.2 1196.7 1201.2	1191 2 1195.8 1226.1 1229.8 1233.7 1241.9 1243.6	1204 2 1212'4 1245'2 1247'4 1251'2 1263'5 1263'7	1103 0 1190 2 1207 8 1215 0 1227 0 1237 1 1236 8	1100 5 1188 0 1200 9 1209 9 1218 8 1232 1 1231 5	1189.3 1208.0 1213.0 1220.9 1230.7 1232.5	Mr. Hennessey at the micrometer mi- croscope; Captain Basevi at the plain microscope. Observers chang-
10.1	2 49 3 13 3 35 3 56 4 17	26 8 27 8 28 7 29 7 30 7	30.6 30.2 79.5 78.1 76.1	79 [.] 50 79 [.] 77 79 [.] 77 79 [.] 72 79 [.] 72	1377 ^{.5} 1381 ^{.9} 1384 ^{.1} 1383 ^{.8} 1375 ^{.9}	1214'1 1224'8 1234'7 1237'7 1238'6	1207 ^{.8} 1214 ^{.2} 1218 ^{.9} 1223 ^{.1} 1229 ^{.2}	1248°0 1249°1 1258°0 1265°0 1265°3	1265 ^{.8} 1272 ^{.2} 1279 ^{.9} 1277 ^{.9} 1290 ^{.1}	1240·1 1246 [°] 0 1257 [°] 3 1257 [°] 1 1262 [°] 7	1241°0 1240°9 1244°8 1248°4 1255°4	1236.1 1241.2 1248.9 1251.5 1256.9	ed places. Observers chang- ed places.
luth	0 48 A.M. 7 13 7 33 7 55 8 22 8 42	31 5 32 5 33 6 34 6 35 6 36 6	9.8 9.8 1.3 2.3 4.6	01'42 60'77 60'45 60'40 60'35 60'92	1070'3 1061'4 1062'0 1062'2 1068'8 1081'2	1250.5 1250.9 1251.4 1246.0 1244.7 1238.3	1231.3 1229.0 1230.4 1228.8 1224.9 1222.1	1257.6 1257.8 1251.2 1252.3 1248.0 1250.2	1280.8 1280.7 1282.8 1278.2 1273.5 1272.6	1247'I 1248'9 1242'8 1241'3 1240'I 1241'2	1250 [.] 2 1252 [.] 9 1253 [.] 7 1246 [.] 1 1249 [.] 9 1248 [.] 0	1254'9 1253'4 1252'1 1248'8 1246'9 1245'4	Major Walker at the micrometer mi- croscope; Captain Basevi at the plain microscope. Observers chang- ed places.
	9 1 9 18 11 5 11 27 11 46 о бр. н .	37 0 38 6 39 7 40 7 41 7 42 7	9.4 5.2 6.1 6.7 7.4	61 52 62 2 5 68 82 70 0 5 71 0 5 72 10	1990-3 1111-6 1222-0 1245-4 1260-7 1277-8	1236.5 1225.5 1225.5 1229.0 1229.3	1215 1216 1213 1212 1208 1 1213 8	12500 1248.4 1255.0 1255.0 1248.7 1253.3	1272 7 1265.2 1271.1 1265.1 1274.3 1272.9	1240 0 1236 0 1239 9 1243 3 1245 1 1247 1	1243.3 1241.8 1229.2 1231.8 1238.7 1250.9	1244 1 1240 6 1238 2 1238 8 1240 7 1244 6	Captain Branfill at the micrometer microscope; Mr. Clarkson at the plain microscope.

December 8th, 9th, 10th. (1) to (42). Wind N.E. sky clear.

BAR COMPARISONS

Before the measurement-(Continued.)

	observing A	ison	. Air	rature of A		MIC I Divi	$\mathbf{BOMBTE}_{sion} = \frac{1}{21!}$	в Вел і <u>1</u> 572.76 Cary	DINGS 1 's Inch [7.8	IN DIVI], = 1.2870	SIONS m.y. of A		
1862 Decr.	Mean of the times of	No. of compar-	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	Е	H	Mean of the compensated bars	Bewarks
10th	h. m. о 27 Р.М.	43	7 ⁸ .0	° 73 [.] 10	+ 1295.5	+ 1224.3	+	+ 1256.5	+ 1272.2	+ 1260.8	+ 1251.2	+ 1247:2	
	0 47 1 11 1 33 1 55 2 15	44 45 46 47 48	78.9 80.1 80.6 80.6 80.6	73 [.] 90 74 [.] 70 75 [.] 55 76 [.] 40 77 [.] 07	1311.3 1330.9 1348.0 1364.3 1377.1	1233'0 1239'3 1249'0 1251'0 1257'1	1220.4 1230.8 1236.0 1243.2 1243.4	1257°1 1267°5 1271°3 1278°9 1282°2	1279 [.] 8 1289 [.] 2 1289 [.] 0 1295 [.] 0 1294 [.] 8	1252.7 1265.6 1267.0 1274.9 1276.8	1257.0 1260.5 1266.5 1273.5 1277.8	1250.0 1258.8 1263.1 1269.4 1272.0	Observers chang- ed places.
- - - -	2 34 2 53 3 13 3 32	49 50 51 52	80.0 80.2 80.0 80.1	77 [.] 52 77 [.] 95 78 [.] 37 78 [.] 65	1384'1 1393'6 1405'8 1411'4	1260.0 1259.6 1266.9 1272.0	1243°1 1244°3 1248°5 1251°2	1278·3 1286·2 1294·7 1294·4	1299.5 1305.3 1309.9 1312.0	1276.0 1280.9 1290.4 1288.2	1275.9 1283.3 1282.7 1285.0	1272°1 1276°6 1282°2 1283°8	
	3 55 4 18	53 54	79 [.] 6	70'95 79'02	14109.0	1272.1	1255 1	1297.3	13141	1296.3	1285.6	1285.4 1289.1	Observers chang- ed places.
llth	б 38 л.м. б 55 7 11 7 28 7 45	55 56 57 58 59	58·4 58·9 59·8 61·2 62·8	62.47 62.12 61.75 61.37 61.17	1147°0 1136°8 1128°5 1126°6 1128°0	1284.9 1292.0 1296.7 1295.8 1291.4	1278 [.] 5 1279 [.] 0 1276 [.] 1 1276 [.] 6 1268 [.] 3	1299'3 1303'0 1303'5 1301'8 1302'2	1324.7 1322.8 1324.5 1323.1 1320.6	1296.2 1302.7 1300.0 1297.8 1293.4	1302'2 1302'5 1292'5 1299'1 1303'7	1297.6 1300.3 1298.9 1299.0 1296.6	Captain Basevi at the micrometer mi- croscope; Captain Branfill at the plain microscope.
	8 5 8 23 8 42 9 3 0 23	60 61 62 63 64	64.5 66.1 67.5 68.9 70.0	61.62 61.92 62.42 63.12 63.05	1131.0 1136.0 1145.9 1157.7 1171.5	1287.7 1284.1 1281.5 1276.4 1276.1	1267 ^{.2} 1271 ^{.7} 1264 [.] 4 1262 ^{.1} 1258 [.] 6	1301'0 1302'0 1294'4 1289'8 1286'1	1318.0 1318.1 1319.7 1309.2 1308.7	1293'2 1292'4 1289'4 1279'7 1279'0	1296.9 1294.7 1291.8 1287.2 1285.8	1294.0 1293.8 1290.2 1284.1 1282.4	Observers chang- ed places.
I	9 42 10 0	65 66	71°1 72°7	64 [.] 77 65 [.] 27	1187.3 1202.4	1271°1 1269'7	1256·3 1256·8	128711 1286.4	1304.5 1301.0	1285 [.] 6 1284.0	1285.4 1280 [.] 6	1281.6 1279.9	Observers chang- ed places.
		Меал	18	70 [.] 81	1234.51	1225.35	1211.08	1245.42	1264.71	1239.35	1238.84	1237.56	

December 10th and 11th. (43) to (60) Wind N.E. Sky clear.

1

Before the measurement-(Continued.)

Let the mean length of the compensated bars minus the Standard A at 62° F be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = o;$$

Treating the preceding bar comparisons as shewn in this equation, we obtain the following series of results :---

	d			ď
$x - 5.92 (E_a - dE_a)$	(-45.3 = 0)	$x - 17.75 (E_a)$	$-aE_{o}$	$a) + 119 \circ = 0$
x — 7 [.] 67 "	-12.0 = 0	x+ 0.28	"	-184.6 = 0
<i>x</i> - 9 [.] 17 ,,	+ 14.8 = 0	x + 1.23	,,	-192.0 = 0
x-13.37 "	+ 79.0 = 0	x + 1.55	"	-100.1 = 0
x —14·57 "	+ 98.7 = 0	<i>x</i> + 1.60	,,	-186.6 = 0
x —15.55 "	+115.5 = 0	x + 1.65	,,	-178.1 = 0
x —16·45 "	+129.1 = 0	x + 1.08	"	-164.3 = 0
x-17.27 "	+137.0 = 0	<i>x</i> + 0.48	,,	-147.6 = 0
x-17.82 "	+146.9 = 0	x — 0.25	1 2	-129.0 = 0
x -18.15 ,,	+143.6 = 0	x - 6.82	,,	-16.5 = 0
x -18.30 ,,	+139.5 = 0	x - 8.05	,,	+ 6.6 = 0
<i>x</i> -18.15 "	+132.9 = 0	x— 9.05	,,	+ 20.0 = 0
x— 1.55 "	-153.0 = 0	x — 10.10	,,	+ 33.5 = 0
x— 1.07 "	-151.9 = 0	<i>x</i> -11.10	"	+ 48.3 = 0
x — 1·37 "	-135.5 = 0	x -11.90	"	+ 61.3 = 0
x-2.15 ,,	-114.1 = 0	x -12.70	,,	+ 72.1 = 0
x -3.67 "	-80.2 = 0	x-13.55	,,	+ 84.9 = 0
x - 5.35 "	- 49 [.] 4 = 0	<i>x</i> -14.40	,,	+ 94.9 = 0
x - 6.97 "	-13.4 = 0	x -15.07	,,	+ 105.1 = 0
x — 8.62 ,,	+ 11.5 = 0	x-15.52	,,	+112.0 = 0
x -13.65 "	+ 84.8 = 0	x -15.95	,,	+117.0 = 0
x-14.97 "	+100.0 = 0	x —16·37	,,	+123.6 = 0
x -16.07 "	+121.5 = 0	x-16.65	,,	+127.6 = 0
x-16.72 "	+125.6 = 0	x -16.95	"	+125.5 = 0
x -16.95 "	+133.7 = 0	x-17.02	"	+110.0 = 0
x-17.50 "	+141.4 = 0	x - 0.47	,,	-150.6 = 0
x-17.77 "	+140.7 = 0	<i>x</i> - 0.13	,,	-163.5 = 0
x-17.77 "	+135.5 = 0	x + 0.25	,,	-170.4 = 0
x-17.72 »	+132.3 = 0	x + 0.63	"	-172.4 = 0

VIII_6

.

BAR COMPARISONS

Before the measurement—(Continued.)

x +	0.83 (Ea-	$-dE_a$	-168.6 =	0 <i>a</i>	I.]	12 $(E_a -$	$-dE_a$	d 	= 0
<i>x</i> +	0.38	, w,	-163·0 =	0 <i>x</i> -	• 1.6	95	,,	-110.0	= 0
x +	0.08	,,	-157 ^{.8} =	• <i>x</i> -	- 2.	77	,,	- 94'3	= 0
<i>x</i> —	0.43	,,	-144.3 =	o <i>x</i> -	· 3.2	27	,,	- 77.5	= 0

And from the mean of these results,

$$x = \frac{d}{3.05} + 8.81 (E_a - dE_a);$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.615,$$

and $x = 158.24 - 8.81 dE_a = 203.65 - 8.81 dE_a = L - A$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading 1237.56, page VIII____5.

Comparing this reading with the mean reading of each compensated bar given on the same page we obtain the following:----

In terms of	A - L	B – L	C - L	$\mathbf{D} - \mathbf{L}$	E - L	H - L
Micrometer divisions.	-12.31	-25 ^{.88}	+ 7 [.] 86	+ 27 ^{.15}	+ 1.79	+ 1·28
Millionths of a yard.	-12.31		+ 10 [.] 12	+ 34 [.] 94	+ 2.30	+ 1·65

Also combining the values in this table with the equivalent of L-A above determined, there result,

$$\begin{array}{ll} \mathbf{A} - \mathbf{A} = \mathbf{146^{\circ}03} - 8.81 \, dE_a = \mathbf{187^{\circ}94} - 8.81 \, dE_a & \mathbf{D} - \mathbf{A} = \mathbf{185^{\circ}39} - 8.81 \, dE_a = \mathbf{238^{\circ}59} - 8.81 \, dE_a \\ \mathbf{B} - \mathbf{A} = \mathbf{132^{\circ}36} - & ,, & = \mathbf{170^{\circ}34} - & ,, & \mathbf{E} - \mathbf{A} = \mathbf{160^{\circ}03} - & ,, & = \mathbf{205^{\circ}95} - & ,, \\ \mathbf{C} - \mathbf{A} = \mathbf{166^{\circ}10} - & ,, & = \mathbf{213^{\circ}77} - & ,, & \mathbf{H} - \mathbf{A} = \mathbf{159^{\circ}52} - & ,, & = \mathbf{205^{\circ}30} - & ,, \\ \mathbf{and} \ \mathbf{6} \ \mathbf{x} = \mathbf{1221^{\circ}9} + \mathbf{52^{\circ}9} \ dE_a. \end{array}$$

VIII_8

VIZAGAPATAM BASE-LINE

•

Comparisons	between	the	Standa	rd Bar	• A (ind t	he (Compensate	d Bars	A, I	3, C,	D,	Е,	H,	made	0 n
	a	site	selected	at the	cent	re of	the the	base-line,	after s	et No	. 266	3.				
				•												

	beerving A	UQ	Air	rature of A		MIC: 1 Di	$\mathbf{R} \mathbf{O} \mathbf{M} \mathbf{B} \mathbf{T} \mathbf{E}$ ivision = $\frac{1}{21}$	R REAI	DINGS I 's Inch [7.8]	N DIVI , == 1.2869 n	1810NB n.y. of A		
1863 Jany.	Mean of the times of o	No. of comparis	Temperature of	Corrected mean tempe	Mean A	A	В	С	D	E	H	Mean of the compensated bars	BEWARKS
7th .	h. m. 11 44 A.M. 0 37 P.M. 0 56 1 9 1 21 1 39 1 54 2 7 2 21 2 35 2 50 3 5 3 18 3 33 3 47	I 2 3 4 5 0 7 8 9 10 11 12 13 14	82.6 84.8 84.3 84.5 82.7 82.7 82.7 82.7 82.7 82.7 82.7 82.7	80°10 82°25 82°80 83°15 83°35 83°55 83°55 83°52 83°52 83°52 83°52 83°55 83°55 83°55 83°55 83°55 83°55 83°55 83°55 83°55 83°55 83°55	+ 703.4 743.5 754.4 759.8 768.8 768.6 769.9 775.3 765.2 765.2 765.2 764.3 754.1 743.6	+ 536.0 536.8 551.9 552.4 562.1 566.8 563.8 564.5 563.6 569.3 569.3 564.6 563.3 564.6 563.3 564.6	+ 522.0 526.2 527.8 542.4 544.8 562.5 562.4 549.8 552.6 548.5 549.5 549.7 5549.9 540.8	+ 577.5 580.2 581.1 589.1 594.1 597.3 597.5 607.0 601.1 601.8 594.8 593.8 593.8 595.2 588.7	+ 583'1 592'1 595'2 599'8 611'8 603'0 608'0 608'0 603'0 608'0 603'0 603'0 603'0 603'0 605'2 605'8 595'8 595'8 595'8	+ 557.8 561.2 574.6 585.3 587.8 583.7 583.7 583.7 583.7 583.7 583.7 583.7 586.1 575.1 575.1 575.3 578.8 578.8 573.9	+ 538'3 553'1 557'2 505'2 571'3 509'0 570'7 507'9 509'5 572'7 50'9 509'5 572'7 50'9 509'5 572'7 50'9 50'5 572'7 50'5'2 50'5'5 50'5'5 50'5'5 50'5'7 50'5'5 50'5'7 50'5'5 50'5'7 50'7'7 50'7'7 50'7'7 50'7'7 50'7'7 50'7'7 50'7'7	+ 552.5 558.3 564.6 572.4 578.7 580.4 581.8 582.3 580.4 580.3 580.4 580.3 575.0 575.5 575.5 575.5	Mr. Hennessey at the micrometer mi- croscope ; Captain Branfli at the plain microscope ; Sky clondy. Observers chang- ed places.
8th	4 3 7 1 A.M. 8 20 8 50 9 16 9 41 11 29 11 43 11 56 0 9 P.M. 0 20 0 31 0 43 0 54 1 4	10 17 18 19 20 21 22 23 24 25 26 27 28 20 27 28 20 27 28 20 27 28 20 20 21 20 21 20 21 20 21 20 21 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	78.8 66.1 72.3 74.1 75.6 76.7 83.6 83.1 83.2 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	82.15 66.87 66.82 67.82 68.97 70.32 76.05 76.75 77.35 77.35 78.45 79.15 79.55 70.82	747 4 490 · 1 478 · 0 499 · 6 52 1 · 2 542 · 5 629 · 8 648 · 6 654 · 1 658 · 6 677 · 0 662 · 6 693 · 1 709 · 6	570.4 576.0 547.8 540.8 540.5 540.3 519.7 534.0 531.8 527.0 537.8 532.7 534.8 532.7 534.8 532.7 534.8 545.2	559.8 547.8 536.5 525.0 522.0 504.0 511.3 504.5 506.7 516.5 518.1 511.2 518.1	588.4 579.2 554.5 557.0 548.0 544.3 553.5 553.2 552.8 554.9 554.9 550.7 548.0 562.3 5.57.1 566.8	600.0 606.4 577.6 573.0 567.5 560.8 567.2 565.8 565.8 565.8 565.8 565.8 567.2 1 557.8	575.6 566.6 553.1 549.0 549.7 550.5 546.0 541.8 548.0 544.1 536.5 539.3 547.8 548.8 548.8 548.8 548.8	558.8 572.6 554.0 549.0 550.4 551.0 517.1 521.2 530.7 525.6 529.6 529.6 536.3 540.6 540.0	575'5 574'8 553'9 550'1 546'9 544'8 534'6 538'9 538'9 538'9 538'9 535'6 535'7 537'3 543'2 543'2 544'1 551'3	Major Walker at the micrometer mi- croscope; Lieut. Campbell at the plain microscope. Sky clear. Captain Branfill at the micrometer mi- croscope; Mr. Hen- nessey at the plain microscope.
	1 15 1 310 1 499 1 58 2 17 2 28 2 39 2 48 2 58 2 58 3 8	31 8 32 8 33 4 8 35 8 35 8 35 8 35 8 35 8 35 8 35 8 35 8 35 8 37 8 39 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34.7 34.7 34.7 34.4 3.4 3.4 3.4 3.3 3.4 3.3 3.4	80.07 80.55 80.77 80.90 81.05 81.37 81.37 81.47 81.57 81.65 81.67 81.70 81.75	715.0 715.6 715.8 719.0 724.2 729.0 733.6 734.1 734.9 733.7 727.5 729.3	542-1 544-2 540-9 541-2 551-0 536-8 547-3 545-1 554-6 550-8 550-8 556-4 554-6	52222 5188 5218 5324 5257 5337 5257 5299 5290 5283 5288 5320	570-7 567-4 564-0 572-7 564-4 570-3 574-2 575-9 569-7 571-6 576-3 571-3	573.8 577.7 577.7 586.3 582.8 582.2 585.6 587.8 584.6 579.4 592.0 582.4	5507 562.4 560.6 559.8 565.6 558.4 565.0 566.2 558.4 555.6 558.4 555.6 558.4 555.6 558.4	5510 5444 5454 5454 5537 5486 5538 5507 5487 5462 5590 5462 5590 5636	551.8 551.5 550.7 556.2 557.2 558.1 558.8 555.8 555.8 555.8 551.5 552.6	Observers chang- ed places

BAR COMPARISONS

After set No. 266-(Continued.)

	obeerting A	f Air rature of A		MICH I Divi	$\mathbf{son} = \frac{1}{2157}$	R READ	ING 5 I 1 Inch [7.8], =	T DIVIS = 1.2869 m.;	IONS y. of A		
1863 Jany	Mean of the times of No. of compar	Temperature of Corrected mean tempe	Mean A	A	В	С	D	E	н	Mean of the compensated bars	BBWABKS
8th	h.m. 3 18 P.M. 43 8 3 33 44 8 3 45 45 8	o o 3'4 81'75 3'1 81'80 2'8 81'80	+ 733 ^{.8} 729 ^{.5} 731 ^{.3}	+ 55 ^{6•} 1 559 ^{•2} 554 [•] 3	+ 538·3 538·2 543·0	+ 579°6 579°7 586°0	+ 57 ^{8•} 4 585•9 585 [•] 2	+ 569°4 561°3 569°1	+ 564:9 5 ⁶ 9:7 5 ^{60:} 7	+ 564*5 565*7 566*4	Observers chang- ed places.
9th	7 3 л.н. 46 6 7 30 47 6 7 50 48 6 8 12 49 6 8 32 50 6	1.7 62.67 4.2 62.30 6.1 62.35 7.2 62.60 8.5 63.02	407 ^{.8} 411 ^{.6} 415 ^{.4} 420 ^{.8} 430 ^{.9}	552°5 565°0 562°1 553°9	550°3 551°0 543°0 542°0 545°0	580.5 579.4 587.1 574.2 564.6	581.4 592.0 591.8 581.8 575.7	560°2 566°2 569°6 561°2 555°2	578°0 570°0 572°7 565°7 567°9	567:2 570:6 571:5 564:5 560:4	Mr. Taylor at the micrometer micro- scope; Mr. Clarkson at the plain micro- scope.
	8 51 51 70 9 15 52 72 9 34 53 73 9 50 54 74 10 7 55 70	0°1 63°72 1°5 64°60 3°1 65°65 4°5 66°62 5°1 67°55	444 9 460 9 478 5 496 8 51 1 • 1	548.7 546.2 537.4 538.3 539.8	530°6 529°4 529°9 524°5 522°8	560.0 554.8 554.0 552.5 546.8	572'9 574'0 567'8 570'0 570'4	557'3 558'8 556'2 553'8 555'4	557 ^{.7} 558 ^{.1} 556 ^{.7} 554 ^{.4} 549 ^{.1}	554*5 553*6 550*3 548*9 547*4	Sky clear.
	Jo 27 50 77 o o P.M. 57 84 o 21 58 85 o 39 59 85 o 57 60 85	7°2 08°87 4°1 75°15 5°1 76°40 5°6 77°27 5°8 78°20	520.9 629.9 655.1 672.3 688.2	531.0 529.0 527.6 536.2 538.5	521°5 514°5 516°9 522°1 525°0	549 [•] 4 558 [•] 1 554 [•] 9 555 [•] 0 557 [•] 0	564.3 566.5 565.9 573.9 577.8	556.4 540.2 556.0 552.9 557.0	552.7 536.0 549.9 541.2 544.0	545°9 540°7 545°2 547°1 549°9	Observers chang- ed places.
	1 14 01 8 1 34 62 82 1 54 63 8 2 13 64 8 2 31 65 8	4'9 79'75 5'6 80'50 5'5 81'15 5'2 81'52	715°1 724°9 727°3 741°8	542 0 542 0 542 0 548 2 553 8	519 7 530·1 533·9 542·2 543·0	5590 571.2 569.5 568.3 572.8	581.2 587.9 583.6 585.9	5595 5552 5749 5809 5778	568.7 561.0 566.5 564.8	5510 558·1 561·7 565·0 566·4	
	3 9 67 84 3 26 68 84 3 48 69 82 4 5 70 81	1 8 82.02 1 82.32 6 82.40 9 82.40	7539 7539 7492 755 4 755 5	563.9 571.3 573.8 568.9	5405 5460 5510 5597 5557	586.5 588.1 588.7 596.4	5921 588.9 596.9 609.6 607.8	574°5 583°2 590°1 590°1	573 5 572 5 573 1 581 4 581 0	572°1 577°3 583°9 583°3	Observers chang- ed places. Sky clear.
10th	6 53 A.M. 71 60 7 15 72 61 7 33 73 63 7 49 74 65 8 6 75 67	06 62.90 08 62.50 07 62.25 02 62.17 02 62.27	426·2 416·8 415·8 419·3 424·0	586.8 579.8 578.2 571.6 574.9	558.8 560.6 565.8 560.4 552.8	591°6 583°8 587°0 584°0 582°8	601°7 599`2 599`7 598`6 595`0	577 ^{.8} 576 ^{.4} 578 ^{.4} 575 ^{.0} 573 ^{.2}	576°2 573°7 578°2 576°5 575°5	582.2 578.9 581.2 577.7 575.7	Major Walker at the micrometer mi- croscope; Captain Basevi at the plain microscope. Sky clear.
	8 25 76 69 8 41 77 70 8 57 78 71 9 14 79 73 9 28 80 73	·9 62·27 ·7 62·85 ·7 63·55 ·1 64·30 ·8 65·02	432.7 444.6 457.3 470.2 484.7	569 ^{.2} 569 ^{.1} 565 ^{.5} 567 ^{.0} 560 ^{.0}	504.4 555.1 549.0 548.8 548.0	570.8 566.5 568.5 564.9 563.0	591.0 589.2 579.0 585.2 583.0	569 °0 574°6 559°2 568°6 573°2	572°0 575°9 562°6 566°1 561°9	572.7 571.7 564.0 566.8 . 565.0	Observers chang- ed places.
	Means	75.67	637.60	552.31	536.32	572.82	584.90	565.12	557'91	561.22	

VIII___9

After set No. 266-(Continued.)

As on page VIII_6 we have

 $x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = \circ;$

and from the preceding bar comparisons, we obtain the following series of results :--

		d			d
$x - 18.10 (E_a$	$- dE_a$) + 150.9 = 0	$x - 18.90 (E_a$	$-dE_a$) + 162.8 = 0
x -20.25	"	+1852 = 0	x-19.05	"	+ 167.0 = 0
x -20.80	,,	+189.8 = 0	x-19 [.] 27	"	+174.0 = 0
x -21.15	,,	+ 187.4 = 0	x-19.47	,,	+175.5 = 0
x -21.35	"	+100.1 = 0	x-19.57	"	+175.0 = 0
x -21.65	"	+188.5 = 0	x—19 [.] 65	"	+176.1 = 0
x -21.80	"	+188.1 = 0	x -19 [.] 67	"	+177.9 = 0
x -21.87	"	+193.0 = 0	x —19.70	"	+160.0 = 0
x -21.92	"	+ 194.5 = 0	x-19.75	"	+166.7 = 0
x-21.85	"	+190.5 = 0	x -19.75))	+169.3 = 0
x-21.72	,,	+191.5 = 0	x -19.80	"	+163.8 = 0
x -21.65	"	+191.5 = 0	x -19.80	"	+ 164.9 = 0
x-21.45	,,	+188.4 = 0	x — 0.67	"	-159.4 = 0
x -20.97	"	+178.6 = 0	<i>x</i> - 0.30	"	-159°0 = 0
x -20.60	,,	+170.7 = 0	x - 0.35	"	-156·I = 0
x -20.15	"	+ 171.9 = 0	x - 0.60	"	-143.7 = 0
x - 4.87	,,	-84.7 = 0	x - 1.02	,.	-129.5 = 0
x - 4.82	"	- 75 [.] 9 = 0	x — 1.72	"	-109.6 = 0
x - 5.82	,,	-50.5 = 0	x — 2.60	"	-92.7 = 0
x - 6·97	"	- 25·7 = 0	x— 3 ^{.65}	"	-71.8 = 0
x - 8.32	"	-2.3=0	<i>x</i> - 4 [.] 62	"	-52.1 = 0
x —14.05	,,	+ 95.2 = 0	x - 5 [•] 55	"	-36.3 = 0
x -14.75	"	+109.7 = 0	x - 6.87	"	-19.0 = 0
x -15.35	"	+115.2 = 0	x -13.15	"	+ 89.2 = 0
x -15.97	"	+123.0 = 0	<i>x</i> -14.40	"	+109.9 = 0
x —16·45	"	+134.7 = 0	x -15.27	"	+125.2 = 0
x -16,80	"	+139.7 = 0	<i>x</i> -16.30	"	+138.3 = 0
x -17.15	"	+139.4 = 0	x-17.00	"	+148.0 = 0
x -17.55	"	+149.0 = 0	x -17.75	"	+157.0 = 0
x -17.82	"	+158.3 = 0	x —18.50	"	+163.2 = 0
x —18.07	"	+163.2 = 0	x -19.15	"	+162.3 = 0
x -18.55	"	+101.1 = 0	x -19.52	"	+175.4 = 0
x - 18.77	••	+165.1 = 0	x - 19.72	••	+187.7 = 0

VIII_10

BAR COMPARISONS

After the set No. 266-(Continued.)

$x - 20.02 (E_a -$	$-dE_a$	<i>d</i> + 181·8	= 0	<i>x</i> -	0 [.] 17 (<i>E</i> _a -	– dE _a)	$d^{d} - 158.4 = 0$
x-20.32))	+171.9	= 0	<i>x</i>	0.32	"	-151.7 = 0
x-20.40	,,	+ 171.2	= 0	<i>x</i> -	0.22	,,	-1400 = 0
<i>x</i> -20.40	"	+172.3	= 0	<i>x</i> —	0.82	"	-127.1 = 0
x - 0.90	,,	- 156.0	= 0	<i>x</i> —	1.22	"	-106.5 = 0
x - 0.50	,,	- 162.1	= 0	<i>x</i> —	2.30	"	-96.6 = 0
a — 0·25	"	- 165.4	= 0	<i>x</i> -	3.02	"	-80.3 = 0

And from the mean of these results,

$$x = -76^{\circ}05 + 13^{\circ}67 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.616,$$

and
$$x = 164.76 - 13.67 dE_a = 212.03 - 13.67 dE_a = L - A_a$$

Proceeding as on page VIII_7 we obtain :----

In terms of	$\mathbf{A} - \mathbf{L}$	B - L	C – L	D - L	$\mathbf{E} - \mathbf{L}$	H - L
Micrometer divisions.	— 9 [.] 34	-25 [.] 23	+ 11.27	+ 23·35	+3.57	-3 ^{.64}
Millionths of a yard.	—12 [.] 02	-32 [.] 47	+ 14.20	+ 30·05	+4.59	

Also the following,

 $\mathbf{A} - \mathbf{A} = 155.42 - 13.67 \, dE_a = 200.01 - 13.67 \, dE_a$ = 179.56 -= 226.53 - = 242.08 -" " ,, " " ,, = 216.62 -,, ,, = 207.35 -,, ,, and $6 x = 1272^{\circ}2 - 82^{\circ}0 dE_a$.

VIII_12

VIZAGAPATAM BASE-LINE

Comparisons	between	the	Standard	Bar	A	and	the	Compensated	Bars	A,	Β,	C,	D,	E,	H,	made
	at	the	North-End	l of	the	base	-line	, after the n	easure	mer	ıt.					

1869	berving A	BOD	Air	rature of A		MICRO: 1 Divisi	$m B T B B$ $on = \frac{1}{2163}$	B B A D I B 5 ⁻²⁵ Cary's L	f & S IN nch [7.8], —	DIVISI : 1·2631 m.y.	ONS of A		
Jany. and Feby.	Mean of the times of c	No. of compari	Temperature of	Corrected mean temps	Mean A	A	В	С	D	E	H	Mean of the compensated bars	Bewarks
31st	h. m. 7 29 л.м.	1	66.7	65.57 65:52	+ 817.1 816.2	+ 919'4	+ 902 '9	+ 929.9 024.3	+ 952.1	+ 917.0	+ 010.1 +	+ 923.4	Mr. Hennessey at the micrometer mi-
	8 5	2	68.2	65.67	818.0	014.1	002.1	023.3	046.8	018.0	010.0	020.7	croscope : Lieuten-
	8 10	ت لا	60.3	65.00	823.4	010.0	805:3	023.8	945'7	010'2	012.8	010'4	plain microscope.
	8 35	5	69.8	66.27	832.3	911.3	898.0	<u>918</u> .0	941.2	920.7	918.2	917.9	
	8 58	Ğ	72.0	67.00	846.7	905.7	887.4	ð 18.1	941.4	913.9	9149	913.0	Observers chang-
1	9 17	7	73.1	67.60	863.2	905.3	890.0	924.0	939'9	922.0	922.5	917.3	or herer
	9 36	8	74.7	68.37	875.9	911.2	888.2	018.0	941'1	918.1	920.3	010.5	
	9 53	9	70.7	09.33	884'2	000. 0	885.0	920-1	938.3	910.2	921.1	915.0	
		10	77.0	70'02	090.3	904'3	871.2	923 3	9350	9130	919.9	913.0	Observers obeng-
	11 42	11	84.4	75 27	10110	88c·8	878.4	010.3	042.8	014.1	008.8	007.2	ed places.
	0 8pw	12	85.6	78.62	1043.2	001.3	885.3	027.8	94-8	028.1	017.0	010'3	
	0 20	- 5 IA	81.5	80.07	1068.6	805.2	803.8	042.6	961.0	030.0	026.4	9-9-	
	° 59	15	83.1	81.47	1092'9	912.0	905.3	940.7	963.7	940'1	934.8	932.9	
	1 23	ığ	83.4	82.07	1101'2	915.0	905.4	950.9	968.0	943'3	932.9	935.9	Observers chang-
	I 42	17	84.0	82.37	1105.7	921.1	010 .0	952.1	970'1	946.2	9 33`5	938.8	eu places.
i i	2 I	18	83.4	82.62	1105.0	917.6	907.3	955.9	900.0	937'3	932.1	936.1	
	2 21	19	82.3	82.70	1107.1	925.0	908.3	952.2	972.0	944'9	930'0	938.7	Light clouds scat-
	2 43	20	81.2	82.02	1100.3	920.1	9157	9470	970-0	945 9	934.9	940'0	
	34	21	80.7	02 JU 82.22	1103'0	028.1	025.0	058.3	076.0	044'2	037.3	9394	Observers chang-
Ι.,	5		607	<i>co</i> .		920 -	y - y -	9 5		211	557 5	JTT J	ed places.
2nd	0 59 л.м.	23	65.7	08.73	872.2	9177	909.3	931.3	949'4	924.0	927.8	920.4	Major Walker at the micrometer mi-
	7 21	24	07'0	68.30	8 6 10	922.7	909°0	0200	949 0	923 /	922 7	920.3	croscope; Lieut.
	7 40	25	005	67.05	878.0	0107	900 J	026.0	040.0	021.2	0220	022.0	plain microscope.
	7 59 8 TO	20	703	68.07	862.6	0175	807.5	022.8	041 ' 2	017.8	021.3	010.4	
	8 47	28	73.0	68.55	874.0	005.2	803.0	015.8	942'1	918.7	913.7	014.0	Observers chang-
	9 7	20	75.4	60.30	886.2	902'4	880.0	910 [.] 4	937.8	912.8	912.2	910.0	ed places.
	9 25	só	77.2	70.00	898.4	903.5	886.6	914'9	933.2	911.5	908 · 3	0.00G	
	9 43	31	78.7	70.85	912.4	895.4	879.4	906.3	929'7	907.2	906.3	904.0	
	10 0	32	80.2	71.72	926.7	892.3	877.5	902.8	623.8	<u> </u>	905°I	001.3	
	11 19	33	85.2	76.80	1009.8	885.0	872.0	904.2	932.0	894.8	890.1	890.4	Mr. Taylor at the
Į	11 41	34	87'1	78.20	1035.5	880.3	804.2	908.9	929.0	903.9	800.8	090.5	scope ; Mr. Clarkson
	о зр.м.	• 35	87'0	79.52	10500	887.0	870.4	9100	933 0	9100	005.0	002.4	at the plain micro-
ł	0 25	30	80.8	82.00	1100.0	887.0	872.7	008.0	031.0	012.2	004.0	002.0	
1	- + I IO	28	8o.₹	83.05	1130.1	000.0	877.0	013.0	937.4	917'0	911.2	900.4	Observed chang-
	I 42	30	80.7	84.82	1146.3	892.5	886.0	<u> 6</u> 18.9	938.0	927.0	918·8	913.5	ed places.
1	2 2	40	89.2	85.57	1156.3	901.0	887.2	923°5	946.0	918 .8	0 51.0	916.3	
1	2 19	41	88·8	86.17	1163.2	903.0	890.0	922.5	948.8	926.5	931.0	918.8	
I	2 35	42	87.9	86.55	1170.1	9°8 ' 4	892.5	926.0	943.0	926.0	921.0	919.2	
1	2 51	43	87.3	86.72	1172.8	912.0	904.0	930'0	954'2	931.0	924°8	927'1	
	3 11	44	07.3	80.02	1173.0	910.4	901.9	930'2	952.3	920.7	920.9	920.4	Do. do.
1	3 27	45	86.	86.70	11734	010.0	903.2	940 9	934 1	933 /	943 # 020"7	02100	Do do
1	3 40	40	00.1	00.70	1170.3	910.0	905.2	9370	9021	9 54 0	y"y /	9510	μο. αο.

BAR COMPARISONS

After the measurement-(Continued.)

observing A ison Air mature of A	Mirc 1 Di	ISIONS			
Mean of the times of compari- Temperature of Corrected mean tempe.	Mean A A	B C	DE	H Mean of the compensated bars	B B W A B E S
h. m. orghtarrow 3rd 6 54 A.M. 47 63'6 66'22 7 15 48 65'3 65'75 7 36 49 67'3 65'50 7 56 50 69'0 65'50 8 13 51 70'7 65'70 8 38 52 73'8 66'22 8 57 53 75'7 66'90 9 13 54 77'1 67'62 9 29 55 78'8 68'45 9 40 50 79'9 69'50 11 16 57 86'8 75'90 11 33 58 88'4 77'10 11 49 59 89'1 78'27 0 27 P.M. 60 90'6 80'3'0 11 49 59 89'1 78'27 0 27 P.M. 60 90'6 80'27 2 1 63	++ $813'1$ 904'9 $806'0$ 900'0 $801'3$ 904'5 $805'0$ 805'1 $802'7$ 895'0 $806'5$ 894'3 $814'9$ 889'6 $828'7$ 880'0 $844'7$ 877'0 $860'1$ 872'9 $874'2$ 873'2 $977'0$ 848'0 $996'8$ 848'3 $1017'3$ 851'0 $106'0$ 864'0 $105'0$ 86'14 $1122'3$ 86'70 $115'0$ 86'14 $1122'3$ 86'70 $116'0'2$ 875'5 $1182'8$ 881'0 $193'2$ 876'0 $120'1'1$ 891'3 $120'1'1$ 893'8 $855'6$ 902'8 $859'2$ 903'5 $869'8$ 905'0 $852'7$ 897'3 $859'2$ 903'5 $869'8$ 896'2 $883'3$ 900'7 $850'7$ 895'8 $1030'1$ 870'4 $1044'7$ 873'4 $1062'1$ 870'1 $105'8$ 861'6 $1124'2$ 869'9 $1130'5$ 861'6 $1124'2$ 869'9 $1160'1$ 872'3	+ + 894'2 9200 889'0 9198 885'5 9068 885'5 9058 885'5 90508 875'0 9020 875'0 9020 863'8 893'1 860'3 896'0 858'6 892'1 844'0 884'4 843'0 879'0 856'5 887'0 855'5 887'0 857'2 894'5 874'2 902'3 873'5 904'5 874'2 902'3 853'6 893'0 855'8 897'4 856'8 893'6 855'7 859'6 855'7 859'7 856'7	++ $932:5$ $913:6$ $938:2$ $905:5$ $936:5$ $904:9$ $933:5$ $904:9$ $927:8$ $899:2$ $927:8$ $899:2$ $927:8$ $897:9$ $917:1$ $892:9$ $917:1$ $892:9$ $915:4$ $87:1$ $906:4$ $885:1$ $909:2$ $874:2$ $905:4$ $880:4$ $907:3$ $881:3$ $912:0$ $895:9$ $917:2$ $895:7$ $912:3$ $895:7$ $912:9$ $895:9$ $917:2$ $897:0$ $914:0$ $906:0$ $914:7$ $896:7$ $921:8$ $900:3$ $922:2$ $905:7$ $935:5$ $905:2$ $937:6$ $900:9$ $932:4$ $906:0$ $935:5$ $905:2$ $937:6$ $900:9$ $925:9$ $904:4$ $936:5$ $908:4$ $932:2$ $905:7$ $936:5$ $908:1$ $925:7$ $908:0$ $922:7$ $897:0$ $92:7$ $897:0$ $92:7$ $890:1$ $92:7$ $890:0$ $92:7$ $890:1$ $92:7$ $897:0$ $92:7$ $890:0$ $92:7$ $897:0$ $92:7$ $890:0$ $92:7$ $897:0$ $92:7$ $897:0$ $92:7$ $897:0$ $92:7$ $897:0$ $92:7$ $897:0$ $92:7$ $897:0$ $92:7$ $897:0$ $92:7$ <	+ + 911.4 912.8 9000 910.3 908.4 907.8 904.0 905.9 901.1 901.9 895.4 890.9 893.4 890.0 893.4 890.0 891.1 885.8 884.0 883.2 861.5 870.2 877.0 872.2 877.9 873.6 882.2 881.2 893.0 885.2 893.0 885.2 893.0 885.2 893.0 885.2 893.0 890.0 900.2 890.1 898.7 890.0 900.2 890.1 898.7 890.0 903.7 900.1 896.7 900.2 898.7 900.1 905.0 909.3 907.0 910.6 905.8 906.1 905.7 900.2 901.7 908.8 913.8 908.4 912.8	Major Walker at the micrometer mi- croscope Lt. Camp- bell at the plain mi- croscope. Mr. Taylor at the micrometer micro- scope; Mr. Clark- son at the plain mi- croscope. Observers chang- ed places. Major Walker at the micrometer mi- croscope. Observers chang- ed places. Decryster chang- od places. Decryster chang- od places. Decryster chang- od places.
I 47 90 93'3 87'65 Means 76'69	1180 [.] 2 879 [.] 2 1000 [.] 92 893 [.] 68	868.6 902.2 882.14 914.16	921.7 903.6 935.14 910.59	899'I 895'7 908'I8 907'32	

VIII_13

1

After the measurement-(Continued.)

As on page VIII_6 we have

 $\boldsymbol{x} - (t^{\circ} - 62^{\circ}) (E_{a} - dE_{a}) - \delta = \circ;$

and from the preceding bar comparisons, we obtain the following series of results :---

		đ			d
x - 3.57 (E _a	$- dE_{e}$	-106.3 = 0	$x - 9.72 (E_{c})$	$a - dE_a$) + 25.5 = 0
x— 3.22	"	-104.3 = 0	x-14.80	"	+113.4 = 0
x - 3.67	"	-102.7 = 0	x -16.30	"	+139.0 = 0
x - 3.90	,, , , , , , , , , , , , , , , , , , ,	- 96·0 = 0	x-17.52	,,,	+157.9 = 0
x - 4.37	> #	-85.6 = 0	x -18.80	"	+177.7 = 0
e – 5.00	"	- 66·9 = 0	x -20.05	"	+ 198.0 = 0
a — 5 [.] 60	,,	- 54 [·] 1 = 0	x-21.92	"	+220.7 = 0
x - 6.37	,,	- 40.3 = 0	x-22 .82	"	+232.8 = 0
e 7.22	"	-30.8 = 0	x -23.57	"	+240.0 = 0
<i>x</i> - 8.02	"	-15.5 = 0	x-24.17	"	+ 244.9 = 0
x-13.37	"	+ 84.0 = 0	x -24.55	"	+250.6 = 0
x —14.90	"	+104.5 = 0	x-24.72	"	+245.7 = 0
x -16.62	"	+124.3 = 0	x -24.95	"	+246.6 = 0
x -18.02	35	+143.4 = 0	x 25:00	"	+244.7 = 0
x -19.47	"	+160.0 = 0	x -24.70	,,	+239.3 = 0
x-20.07	"	+165.3 = 0	x - 4.22	"	- 99.7 = 0
x -20.37	"	+166.9 = 0	x- 3.75	,,	-104.3 = 0
x -20.62	"	+169.8 = 0	x - 3.20	"	-106.5 = 0
x -20'70	"	+168.4 = 0	x - 3.20	"	-103.2 = 0
x —20 [.] 62		+166.3 = 0	x - 3.70	"	- 95 ' 4 = 0
x -20.20	21	+164.4 = 0	x - 4 ^{.2} 2	"	- 82.0 = 0
x-20.33	"	+158.7 = 0	a - 4.90	"	- 63·8 = 0
x — 6.72	"	-54.2 = 0	x - 5.62	"	- 45.3 = 0
x — 6·30	"	-66.3 = 0	x — 6·45	"	- 25 [.] 7 = 0
x — 6·05	"	-68.1 = 0	x - 7.50	"	- 9·o = o
x - 5 [.] 95	"	-65.9 = 0	x -13.90	"	+106.8 = 0
e 6.07	"	-57.1 = 0	x -15.10	,,	+124.6 = 0
x - 6.55	"	- 40.0 = 0	x-16.27	"	+143.7 = 0
x— 7.20	"	-24.7 = 0	x -18.87	,,	+ 184.1 = 0
x - 8.00	"	- 11'2 = 0	x -20.00	23	+ 204°I = 0
x— 8·85	,,	+ 8.4 = 0	x -21.07	,,	+210.8 = 0

BAR COMPARISONS

After the measurement-(Continued.)

	177	đ			đ
$x - 22.10 (E_a$	- dE ₄	(1) + 232.3 = 0	$x - 7.80 (E_{c})$	dE_a) - 25.1 = 0
x -23.17	"	+250.5 = 0	x— 8·52))	- 10.5 = 0
a -24.27	"	+265.2 = 0	x-16.82	"	+ 138·9 = 0
x-25.17	"	+273.9 = 0	x—17.65	"	+154.3 = 0
x-26.25	"	+285.8 = 0	x-18.60	"	+171.6 = 0
x -26.95	"	+293.1 = 0	* 1 9·55	,,	+ 189 ·3 = 0
x -27.35	"	+297.6 = 0	x -20.32	"	+202.6 = 0
x -27.75	"	+302.5 = 0	a -21.10	"	+221.6 = 0
x- 7.15	"	-53.7 = 0	x-22.12	"	+235.6 = 0
x - 6.72	"	-60.8 = 0	x-22°92	"	+247·6 = 0
z - 6.55	"	-55.3 = 0	x-23.65	"	+259.8 = 0
x— 6.20	"	-51.8 = 0	x-24.35	**	+269.8 = 0
z — 6.67	"	-51.0 = 0	x-25.02	"	+275.8 = 0
x - 7.12	> >	-390 = 0	x —25 [.] 65	"	+284.5 = 0
nd from the		- C 41			

And from the mean of these results,

$$x = -93.60 + 14.69 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.668,$$

and $x = 165.94 + 14.69 dE_a = 212.92 - 14.69 dE_a = L - A.$

Proceeding as on page VIII_7 we obtain :--

In terms of	A - L	B - L	$\mathbf{C} - \mathbf{L}$	D - L	E – L	H - L
Micrometer divisions.	-13.64	- 25.18	+ 6.84	+ 27.82	+3.527	+ 0.86
Millionths of a yard.	-17.20	-32.31	+ 8.78	+ 35.70	+4.30	+ 1.10

Also the following,

Final deduction of the total length measured with the compensated bars.

-	37777 J	•				~	m.y
From page	$VIII_7$ the expression of th	xcess of	the 6 compensated	bars abo	ove 6 times A before the measurement	}=	$1221.9 - 52.9 dE_a$
"	VIII_	"	"	"	<i>after</i> set No. 266	=	$1272^{2} - 82^{\circ} o dE_{a}$
"	VIII_15	,,	"	,,	after the measurement	=	$1277.5 - 88.1 dE_a$
Therefore (the mean excess	of	8 رر	pplicabl	e to sets Nos. 1 to 266	=	$1247.1 - 67.5 dE_a$
and	"	"	"		Nos. 267 to 552	=	$1274.9 - 85.1 dE_a$
Also the m correcte	ean length of a ed for error* in	set of 6 the ther	compensated bar : readings, applica	s in feet able to s	of the standard, ets Nos. 1 to 266 = 6	0.003	$35005 \frac{A}{10} - 64.0 \ dE_a$
and	ŗ	,	applicab	le to set	is Nos. 267 to $552 = 60$	o.003	5839 $\frac{A}{10}$ - 81.6 dE_a

Hence the total lengths measured with the compensated bars

				feet of A		
in sets Nos.	1 to 173	•••••	7	10380.6056 .	– 11072 d	E_a
,,	174 to 266	•••••	=	5580.3255 -	– 5952 d	E_a
"	267 to 359	•••••	=	5580.3333 -	– 7589 d	E_a
. در	360 to 552	••••	=	11580.6917 -	– 15749 d	Ea
in sets Nos.	1 to 552	••••••	=	33121.9561	— 40362 d	E_a

Now the mean temperature of A during the bar comparisons before the measurement and after set No. 266 was $62^{\circ} + \frac{64^{\circ} \cdot \circ}{6} = 72^{\circ} \cdot 7$, for which temperature the corresponding expansion of A from page (19) = 21.714 m.y. Also the mean temperature of A during the bar comparisons after set No. 266 and after the measurement was $62^{\circ} + \frac{81^{\circ} \cdot 6}{6} = 75^{\circ} \cdot 6$, for which temperature the corresponding expansion of A from page (19) = 21.732 m.y. Comparing these values of expansion with the original value = 22.67 m.y., used in the foregoing; it is found that $dE_a = +0.956 \text{ m.y.}$, for sets Nos. 1 to 266, and = +0.938 m.y., for sets Nos. 267 to 552. Substituting for dE_a respectively these numerical values, there result,

Total lengths measured with the compensated bars

in sets Nos.	1 to 173 or S. End, to Station $A =$	feet of (10380 [.] 6056 — ^{.0} 318)	A = 10380.5738
"	174 to 359 or Station A, to Station $B = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	5580.32550171	= 11160.6203
.00	360 to 552 or Station B, to N. End $=$	(11580.69170443)	= 11580.6474
"	1 to 552 or S. End, to N. End =	(33121.9561 – .1146)	= 33121.8415

* It is shewn in Appendix No. 8 of this volume, that a correction of $-0^{\circ}.59$ is due to the mean thermometer readings of the Standard Bar A at the Vizagapatam base-line. The linear value of this correction for a set of 6 bars = -6×0.59 ($E_a - dE_a$) = $-0.002408 \frac{A}{10} + 3.5 dE_a$.

Digitized by Google

VIII_17

Comparisons between the Compensated Microscopes and their 6-inch brass scales	during the
measurement, and provisional determination of Microscope errors with resp	ect to the
6-inch brass scale A, expressed in millionths of an inch (m.i.)	

	When	compared	.e.	d with.	npera-	2° Fah. 3″ scale 25 m.i.	Micros Microscop	cope e Scale.	e - ∡, h.	Micros : — at 62°	Scale A, Fah.
			licroscol	compare	cted ten ture.	tion to θ sion of $($ E = 62	Ubserved terms	value in of	a : Scale t 62° Fa		er.
	18	362-63		Scale	Corre	Reduc Expan	Divisions 10000 = 1".	m.i.	Micro	978.8.	Reference
December	12th	Before the measure- ment.	T M O N R P S	T M P N R P S	80'90 80'33 80'47 79'76 81'03 80'40 80'85	+ 1181 1146 1154 1110 1189 1150 1178	$ \begin{array}{r} $	$ \begin{array}{r} & & & \\ & & & 6_{13} \\ & & 777 \\ & & 1177 \\ & & 320 \\ & & 580 \\ & & & 827 \end{array} $	$ \begin{array}{r} - & 97 \\ & 21 \\ + & 350 \\ & 363 \\ & 93 \\ & 350 \\ - & 75 \end{array} $	+ 1084 512 727 296 962 920 1930	1 2 3 4 5 6 7
"	17th	Between sets No. 24 and 25.	U	U	75.23	+ 827	0.00	0	+ 283	+1110	8
33	30th	Between sets No. 173 and 174.	R T M N O U S	R T M P U S	82.77 83.21 87.41 82.11 82.40 83.56 82.03	+ 1298 1326 1588 1257 1275 1348 1252	$ \begin{array}{r} - 2.10 \\ 0.00 \\ 4.77 \\ 14.07 \\ 9.70 \\ 6.13 \\ + 5.57 \end{array} $	- 210 0 477 1407 970 613 + 557	$ \begin{array}{r} + & 93 \\ - & 97 \\ - & 21 \\ + & 363 \\ & 35^{\circ} \\ & 283 \\ - & 75 \\ \end{array} $	+ 1181 1229 1090 213 655 1018 1734	9 10 11 12 13 14 15
January	7th	Between sets No. 266 and 267.	R T M N O U S	R T M P U S	73.82 75.41 73.73 68.54 74.04 73.90 76.20	+ 739 838 733 409 753 744 888	$\begin{array}{c} + & 1.38 \\ & 2.95 \\ & 1.50 \\ - & 10.70 \\ & 8.70 \\ & 0.00 \\ + & 7.03 \end{array}$	+ 138 295 150 - 1070 870 0 + 703	$ \begin{array}{r} + & 93 \\ - & 97 \\ 21 \\ + & 363 \\ 350 \\ 283 \\ - & 75 \end{array} $	$ \begin{array}{c} + 970 \\ 1036 \\ 862 \\ - 298 \\ + 233 \\ 1027 \\ 1516 \end{array} $	16 17 18 19 20 21 22
"	10th	"	T	T	65.35	+ 209	+ 14.00	+ 1400	- 97	+ 1512	23
"	16th	Between sets No. 358 and 359.	N	N	83.35	+ 1334	-12.87	-1287	+ 363	+ 410	24
"	17th	>>	R T M O U S	R T M P U S	70°08 71°17 69°88 70°68 70°68 70°89 71°65	+ 505 573 493 543 556 603	$ \begin{array}{c c} + & 1.67 \\ + & 6.10 \\ - & 5.60 \\ - & 5.97 \\ 0.00 \\ + & 8.70 \end{array} $	$ \begin{vmatrix} + & 167 \\ & 610 \\ & 560 \\ - & 597 \\ & 0 \\ + & 870 \end{vmatrix} $	$ \begin{array}{c c} + & 93 \\ - & 97 \\ & 21 \\ + & 350 \\ & 283 \\ - & 75 \\ \end{array} $	+ 765 1086 1032 296 839 1398	25 26 27 28 29 30
"	19th	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N	N	82.34	+ 1271	- 17.00	-1700	+ 363	- 66	31
37	30th	After the measure- ment.	T R M N O U S	T R M N P U S	70 ^{.85} 70 ^{.60} 71 ^{.28} 70 ^{.61} 70 ^{.99} 71 ^{.31} 74 ^{.29}	+ 553 538 580 538 562 562 768	$ \begin{array}{c} + 7.70 \\ 0.00 \\ 3.60 \\ - 10.00 \\ 8.67 \\ 0.00 \\ 8 + 8.87 \\ \end{array} $	+ 770 360 -1000 867 + 887	$ \begin{array}{r} - & 97 \\ + & 93 \\ - & 21 \\ + & 363 \\ 350 \\ 283 \\ - & 75 \\ \end{array} $	$ \begin{array}{r} + 1226 \\ 631 \\ 919 \\ - 99 \\ + 45 \\ 865 \\ 1580 \end{array} $	32 33 34 35 36 37 38

Digitized by Google

.

.

Microscope Comparisons-(Continued.)

The required combinations of individual microscope errors taken from page VIII_17 are expressed as follows;

					Ref	eren	ce n	umb	ers.						m.i.		me	an tem	p :					
<i>e</i> ₁ =	=	1	+	2	+	3	+	4	+	6	+	<u>.5+7</u> 2	= -	ł	4985	at	(62	+ 18	·47)			before th	e mea	surement.
e ₂ =	=	I	+	2	+	3	+	4	+	8	+	<u>5+7</u> 2	= -	ŀ	5175	at	(62	+ 17.0	61)		betwee	en sets 24 &	25, 1	and do.
e ₃ =	=	2	+	3	+	4	+	5	+	8	+	$\frac{1+7}{2}$	= -	F	5114	at	(62	+17.0	62)		"	do.		do.
e_ =	=	10	+	11	+	12	+	13	+	6	+	$\frac{9+15}{2}$	= -	⊦	5565	at	(62	+ 20.0	99)	``	"	173 &	174,	and do.
e ₅ =	=	10	+	11	+	12	+	13	+	14	+	$\frac{9+15}{2}$	= -	⊦	5663	at	(62	+21.	52)		"	do.		
e ₆ =	-	9	+	11	+	12	+	13	+	14	+	$\frac{10+15}{2}$	= -	⊦	563 9	at	(62	+21.	48)	9	"	do.		
e ₇ =	=	17	+	18	+	19	+	20	+	21	+	$\frac{16+22}{2}$	= -	⊦	4103	at	(6 <u>2</u>	+11.	44)	s mad	"	266 &	267	
e ₈ =	=	18	+	19	+	20	+	21	+	23	+	$\frac{16+22}{2}$	= -	⊦	4579	at	(62	+ 9	76)	urison	,,	do.		
e ₉ =	= :	23	+	16-	+ 22 2	-							- +	-	2755	at	(62	+ 8.	18)	sompe	"	do.		
<i>e</i> ₁₀ =	-	19	+	20	+	2 I	+	16	+ 2	2			= +	ŀ	2205	at	(62	+ 10.5	87)	rom	"	do.		
<i>e</i> ₁₁ =	= :	24	+	26	+	27	+	28	+	29	+	$\frac{25+30}{2}$	= +		4745	at	(62	+ 10.8	31)	Ξ.	"	358 & 359, 8	und 3	59 & 360
e ₁₂ =	=	24	+	28	+	29	+	25	+3 2·	-			= +	•	2627	at	(62	+ 1 I G	55)		"	do.		do.
<i>e</i> ₁₃ =	= :	26	+	27	+	28	+	29	+	31	+	$\frac{25+30}{2}$	= +	•	4269	at	(62	+ 10.6	54)		,,	do.		
e ₁₄ .=	= :	25	+	27	+ .	28	+	29	+	31	.+	$\frac{26+30}{2}$	= +		4108	at	(62	+ 10.3	55)		"	do.		
<i>e</i> ₁₅ =	= .	26	+	25-	+ 30 2	-							= +	-	2168	at	(62	+ 9.0	D2)		,,	359 & 360, a	nd af	ter meast :
<i>e</i> ₁₆ =	= .	32	+	34	+	35	+	36	+	37	+	$\frac{33+38}{2}$	= 1	-	4062	at	(62	+ 9	25)		after t	he measurem	ent.	
<i>e</i> ₁₇ =	= .	33	+	34	+	35	+	36	+	37	+	$\frac{32+38}{2}$	= +	-	3764	at	(62	+ 9.2	23)			do.		

And from the foregoing, we obtain the following equations for the microscope errors per set (or *m.e.*); where dE expresses the error in the adopted value of the expansion for the 6-inch scales.

$(m.e.)_1 = \frac{e_1 + e_1}{2} = + \frac{m.i.}{5275} - 6 \times 1973 dE$	applicable to sets Nos.	1 to 24
$(m.e.)_2 = \frac{e_3 + e_6}{2} = + 5377 - 6 \times 1955 dE$	" set No.	25
$(m.e.)_3 = \frac{e_2 + e_3}{2} = + 5419 - 6 \times 1957 dE$	" sets Nos.	26 to 173
$(m.e.)_4 = \frac{e_0 + e_7}{2} = + 4871 - 6 \times 16.46 dE$	»» »»	174 to 266
$(m.e.)_5 = \frac{e_0 + e_{15}}{2} = + 246_2 - 2 \times 860 dE$	" set No.	3111
$(m.e.)_6 = \frac{e_{10} + e_{12}}{2} = + 2416 - 4 \times 11.41 dE$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	311 ₃
$(\dot{m}.e.)_7 = \frac{e_8 + e_{11}}{2} = + 4662 - 6 \times 10^{-29} dE$	" sets Nos. {	267 to 310 and 312 to 359
$(m.e.)_8 = \frac{e_{13} + e_{16}}{2} = + 4166 - 6 \times 9.95 dE$	»	360 to 484
$(m.e.)_9 = \frac{e_{14} + e_{17}}{2} = + 3936 - 6 \times 9.89 dE$	· · · · · · · · · · · · · · · · · · ·	485 to 552

Digitized by Google

Microscope Comparisons—(Continued.)

Hence the total microscope errors are as follows,

In sets Nos.	1 to 173 :	$= \begin{cases} 24 & (m.e) \\ 1 & (m.e) \\ 148 & (m.e) \end{cases}$	$a_1 = + 1260$ $a_2 = + 500$ $a_3 = + 8020$	500 — 284 377 — 11 512 — 1737	dE = + $dE = +$ $dE = +$ $dE = +$ $dE = +$	·0106 ·0004 ·0668	2841 dE 117 dE 17378 dE
					sum = +	0778 -	20330 <i>a</i> E
In sets Nos. 1	174 to 359 =	$= \begin{cases} 93 \ (m.e), \\ 1 \ (m.e), \\ 92 \ (m.e), \end{cases}$	= + 4530 = + 2400 = + 24000 = + 428000	503 — 918 462 — 1 416 — 40 504 — 5680	5 dE = + $7 dE = +$ $6 dE = +$ $0 dE = +$	·0378 — ·0002 — ·0002 — ·0357 —	9185 dE 17 dE 46 dE 5680 dE
•					sum = +	•0739 —	14928 <i>dE</i>
In sets Nos. 3	560 to 552 :	$= \begin{cases} 125 \ (m.e), \\ 68 \ (m.e), \end{cases}$	g = + 520 g = + 2670	750 — 746 648 — 403.	$\begin{array}{rcl} 3 & dE &= & + \\ 5 & dE &= & + \\ \hline & & & \\ \end{array}$	·0434 — ·0223 —	7463 dE 4035 dE
					sum = +	·0657 —	11498 dE

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally; *i.e* in terms of the 6-inch brass scale A. But from page (31), we have $2A = 1.0000192 \frac{A}{10}$, value in 1835. Also the coefficient of expansion for brass, has been taken at .000,010,417 in the foregoing reductions, whereas it appears from page (17) that .000,009,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (*m.e*) we have,

Total lengths measured with the compensated microscopes

 $\begin{cases} feet of A & feet of A \\ In sets Nos. I to 173 \\ or S. End to Stn. A \\ , Nos. 174 to 359 \\ or Stn. A. to Stn. B. \\ , Nos. 360 to 552 \\ or Stn. B. to N. End \\ \end{cases} \dots = \begin{cases} 186 \times 3 + 0778 \\ 173 \times 3 + 0778 \\ 173 \times 3 + 0778 \\ 173 \times 3 + 0778 \\ 173 \times 3 + 0778 \\ 14928 \\ dE = (519 \cdot 0878 - 0057) \\ 519 \cdot 0878 - 0057 \\ 14928 \\ dE = (558 \cdot 0846 - 0042) \\ 558 \cdot 0804 \\ 193 \times 3 + 0657 \\ 11498 \\ dE = (579 \cdot 0768 - 0032) \\ 579 \cdot 0736 \\ 1656 \cdot 2492 - 0131 \\ 1656 \cdot 2361 \\ 1656 \cdot$

VIII_19

DETAILS OF THE MEASUREMENT.

Disposition of the bars and microscopes during the measurement.

The following typical illustrations show the permutations and combinations of the bars and microscopes during the measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set; and the numbers assigned to the illustrations, will be found employed in the tables of "Extracts from the Field Book &c."

Bar Illustration.	Microscope Illustration.
$\begin{array}{c c} \underbrace{No. 1}{A} & \underbrace{No. 2}{A} & \underbrace{No. 3}{C} \\ B \\ C \\ D \\ E \\ H \end{array} \\ \end{array} \begin{array}{c} \underbrace{No. 2}{A} & \underbrace{No. 3}{C} \\ D \\ B \\ H \end{array} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Statement.	Statement.
No. 1 occurs in sets Nos. 1 to 310, 312 to 316 and 317 to 552. No. 2 ,, set No. 3111. No. 3 ,, No. 3112.	No. 1 occurs in sets Nos. 1 to 24. No. 2 ,, Nos. 26 to 310, 312 to 316 & 317 to 484. No. 3 ,, Nos. 25 and 485 to 552. No. 4 ,, set No. 3111. No. 5 ,, No. 3112.

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin. Adopted heights above mean sea level.

> South-End (origin) = $310^{\circ}6$ feet. North-End (terminus) = $180^{\circ}8$ feet.

	the Set	ure of Air	Mean time of	oars used	Set above gin	Nun shev arra mer	neral wing nge- nt of		the Set	me of Air	Mean time of	ars used	Set above gin	Num shev arra: mer	ving nge- it of
1862	No. of	Temperat	ending •	No. of 1	Height of ori	Bars.	Micros :	1862	No. of	Temperatı	ending	No. of h	Height of . ori	Barn.	Micros :
13th Dec. 15th "	1 2 3 4 5 0 7 8	85.5 87.5 85.8 85.6 60.7 66.3 76.0 82.3	h. m. o 35 г.м. 1 56 2 56 3 45 6 50 д.м. 7 54 10 0 o 15 г.м.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	feet + 0.9 - 0.5 1.4 2.5 3.6 4.8 7.1 9.0		I I I I I I I I I	15th Dec. 16th "	9 10 11 12 13 14 15 16	85.4 86.5 82.3 62.3 69.5 73.5 77.3 82.7	<i>h. m.</i> 1 0 Р.М. 2 35 6 30 А.М. 8 15 9 3 9 45 11 40	000000000	<i>feet</i> 10.9 12.4 13.9 14.8 15.9 17.4 18.3 19.4		I I I I I I I

Norz.-The rear-end of set No. 1 stood exactly over the dot at South-End.

VIII____20

DETAILS OF THE MEASUREMENT.

1862	the Set.	ture of Air	Mean time of	bars used	f Set above igin	Nun shev arrs mer	neral wing nge- nt of	1862	the Set.	ure of Air	Mean time of	ars used	Set above gin	Nun shev arra mer	neral ving nge- nt of
	No. of	Temperat	enung	No. of	Height of or	Bars.	Micros:		No. of	Temperat	ending	No. of h	Height of ori	Bars.	Micros:
16th Dec. 17th "	1890122222222223333333334444444444444444444	E 0.76 51 32 578 78866120 11 378 712 3166 737 758 886 51 378 788 86 51 378 71 2 316 6 737 758 51 50 51 51 51 51 51 51 51 51 51 51 51 51 51	h. m. 0 20 P.M. 1 0 2 51 3 28 6 40 A.M. 7 16 7 46 8 20 8 49 9 45 11 15 11 46 0 16 P.M. 0 48 1 27 1 56 2 32 3 8 3 37 6 25 A.M. 7 6 7 45 8 12 8 46 9 12 11 10 11 43 0 16 P.M. 0 54 1 28 1 54	A A A A A A A A A A A A A A A A A A A	^a H <i>feet.</i> 23 ² 2 25 ² 2 26 ⁷ 7 28 ⁹ 9 31 ⁰ 2 33 ³ 99 35 ⁹ 5 38 ⁹ 4 41 ³ 9 44 ³ 4 45 ⁴ 4 45 ⁴ 4 45 ⁴ 4 45 ⁴ 4 45 ⁴ 5 45 ⁴ 6 55 ⁵ 6		IIIIIIII322222222222222222222222222222	20th Dec. 22nd "	4 678697127374567789812234856888999999999999999999999999999999999	LeL • 3 5 8 1 8 8 3 4 7 7 3 3 2 2 3 4 7 2 7 0 5 3 2 4 0 3 4 9 4 7 4 • 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 6 6 6 6	h. m. II 49 A.M. 0 21 P.M. 0 54 I 25 I 57 2 33 3 6 6 37 A.M. 7 15 7 44 8 14 8 41 9 12 9 38 10 7 II 30 0 5 P.M. 0 35 I 40 2 14 2 43 3 13 6 39 A.M. 7 20 7 45 8 11 8 39 9 9 9 34 10 52	x	in feet. 58.8 58.8 58.8 58.8 58.8 59.7 59.7 59.2 58.8 59.2 59.5 59.2 59.5 50		Mic With a a a a a a a a a a a a a a a a a a a
19th " 20th "	490123455758901234550 55555555001234550	6576 7077 78.4 78.3 79.5 79.5 79.5 79.5 79.5 79.5 79.5 79.5	δ 45 A.M. 7 18 8 20 8 52 9 50 11 30 0 32 1 12 1 47 2 16 2 55 6 51 7 24 8 14 8 43 9 18 9 52 11 9	00000000000000000000000000000000000000	5508 5508 580 580 580 580 580 580 580 58		222222222222222222222222222222222222222	26th ",	978 989 1001 1012 103 104 105 106 107 108 109 110 1112 113 114 115 116	1948 82'8 85'4 86'5' 88'5'4 88'5'4 88'5'4 73'4'3 77'7'7 75'3'9'3 77'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'	11 24 11 53 0 20 P.M. 0 47 1 25 1 55 2 25 3 1 6 50 A.M. 7 25 7 53 8 26 8 52 9 17 9 40 11 2 11 32 0 2 P.M. 0 37	00000000000000000000000000000000000000	6338 6387 6377 6211 6288 646 648 647 660 673 691 719 725 735 741 742 742 742 744 747		

Extracts from the Field Book-(Continued.)

December 20th. Drizzling rain the whole day.

Digitized by Google

VIII__22

181

182

183

185

186

187

188

1st Jan. 184

60.0

88.2

88.7

61.4

66.3

66.7

67.7

68.6

2 43 6

3

3

б 34

7 I

27

6

б

6

б

6

6

б

6

83.4

83.2

84.0

84.5

84'1

84.9 85.8

8ŏ.3

2

2

2

2

2

2

2

2

I

I

I

1

I

I

I

I

īģ

197

198

199

200

102

202

B1.4

82.7

83.3

84.9

85.3

83.0

81.2

203 81.2

11 48

ο 14 P.M.

0 39

I I

2

2 34

6

6

6

б

б

б

6

6

91.0

91.0

91.

91.0

92.6

93'9

95°3 96°2

I

1

I

I

I

I

I

2

2

2

2

2

2

2

2

Numeral Numeral Air Åir above above shewing shewing med used Set Set arrange-ment of 5 Temperature of arrangeof Set origin of Set a origin the Temperature . 5 E Se ment of the Mean time of Mean time of 1862-63 1862-63 б ending ending Ъ Ч ы ы Height Micros: Height Ro. No. Micros Bars. Bars. No. No. h. m feet. h. m. feet. 29th Dec. 147 148 71.1 26th Dec. 117 80.0 78[.]3 I 8 P.M. 6 6 74'2 I 2 11 52 A.M. I 2 118 78.0 б 2 81.8 0 16 P.M. 6 74[.]9 76[.]5 I 35 I 71.0 I 2 6 6 83.5 б 119 78.3 I 57 I 2 149 o 43 71.0 I 2 б 84.3 2 76.2 I 2 150 1 7 71.2 120 77'9 27 I 2 58 77.6 85[.]3 86[.]1 2 б I 2 151 1 29 б 121 73.9 71.9 I 2 54 6 б 3 6 152 I 2 1 122 77'3 33 74.3 72.5 I 2 86.7 27th " 6 б 2 123 69.2 40 **A.X**. I 153 2 20 72.3 74'3 I 2 87'4 87'6 7 7 8 б I 2 154 2 4 I б 124 69.6 10 73.0 I 73.7 2 155 156 125 126 б 72.6 2 8 б I 3 71.3 50 72.0 τ 2 87.4 58.2 3 29 6 28 **л.н**, 6 2 6 71.8 72.0 15 I 73.4 I 2 30th " 6 157 158 б 74.8 8 73[.]9 74[.]6 127 42 69.7 1 2 I 2 128 9 io 9 35 б 56 б 77.7 б 68.3 I 2 57.8 1 2 79[.]6 84[.]3 б 67·5 159 160 59.5 61.7 7 25 7 47 8 10 6 129 2 I 74'5 I 2 6 6 6 2 130 11 10 1 75.1 I 2 63.7 6 191 74.8 131 84.5 11 40 66.6 I 2 10 I 2 65·3 67·7 132 87.2 ο 10 P.M. б 68.3 I 2 162 8 3 T б 75'4 I 2 163 88.2 б 8 б 0 35 2 53 75[.]7 76[.]7 133 70.0 1 I 2 6 6 164 6 69.9 87'0 2 134 I 50 71.3 I 9 14 I 2 165 166 135 85.2 2 28 72.2 I 2 71.1 9 39 76.0 I 2 77^{.5} 79^{.8} 81^{.7} 136 83.8 6 11 5 б 2 59 72.3 2 77.0 I I 2 76.0 6 6 167 JI 29 б 83.2 2 137 3 6 I 32 715 I 2 29th " 168 б 138 11 59[.]8 30 A.M. 70.8 I 2 51 77:2 r 2 169 83.3 б 139 ŏ1'3 7 I б 71'1 I 2 ο 13 P.M. 77.7 I 2 84'4 б 72.9 170 ο б 79'1 78'4 140 64.2 I 2 1 2 7 8 32 41 60.4 85.4 6 б 2 J 141 171 5 3 72.4 I I 2 86.0 8 30 6 1 25 142 69.6 73.1 I 2 172 79'4 I 2 8 б 74'I 72'0 2 173 87.3 I 6 79.8 143 72.3 59 I 47 I 2 9 25 6 2 73[.]5 7<u>7</u>.5 144 1 9826.0 10 54 б 2 Total -1 145 72:3 2 146 78.5 11 21 б 71'1 I The dot denoting Station A was fixed exactly in the normal at the advanced-end of set No. 173. Height of set No. 173 above Station A = 1.7 feet. The terminal point of set No. 173 was the point of origin for set No. 174. The dots denoting Posterity-Marks Nos. 1, 2 and 3 were fixed exactly in the normal at the advanced-ends respectively of sets Nos. 6, 12 and 18. 1st Jan. 189 69.8 31st Dec. 174 81.6 80.0 8 31 A.M. II 45 A.M. 6 87'2 2 6 I 1 2 8 88.1 б 84.2 0 23 P.M. 6 81.1 I 2 190 71.4 53 1 2 175 176 85.3 0 49 б 81.1 I 2 191 9 11 б 87.8 72.4 I 2 8<u>0</u>.0 77'3 78'5 10 32 J77 1 10 6 81.8 2 192 б 88.6 I I 2 178 86.8 10 52 б 89.4 6 81.0 2 193 1 32 I I 2 79'7 81'2 88.3 6 б 179 1 82.5 I 2 194 11 12 89 2 53 I 180 **68**.8 б 82.5 11 31 б 2 17 I 2 195 **90**.0 1 2

Extracts from the Field Book-(Continued.)

DETAILS OF THE MEASUREMENT

VIII_23

Extracts from the Field Book-(Continued.)

the Set	ure of Air	Mean time of	ars used Set above	N sh ar D	imeral lewing range- ent of		the Set	ure of Air	Mean time of	ars used	. Set above igin	Num shev arran men	neral ving nge- it of
1863 _{ใช} ชื่ ห	Temperat	ending	No. of h Height of	Bars.	Micros:	1863	No. of	Temperat	ending	No. of 1	Height of or	Barrs	Micros :
1st Jan, 204 205 2nd ,, 206 209 210 211 213 214 215 216 217 218 219 220 221 223 224 225 5th ,, 226 230 231 232 233 234 235 236 237 238 239 240 241 243 244 245 6th ,, 247 250 251 252 251 252 253	88000000000000000000000000000000000000	h. m. 2 56 P.M. 3 20 6 33 A.M. 7 0 7 24 7 46 8 5 8 25 8 46 9 7 9 26 10 47 11 12 11 31 0 3 P.M. 0 34 1 38 2 32 3 10 3 36 A.M. 7 25 7 46 8 8 8 31 0 33 10 33 10 33 10 33 10 35 11 19 11 41 0 1 F.M. 0 21 0 43 1 30 1 55 1 19 1 41 0 1 55 1 19 1 41 0 21 0 43 1 51 2 11 2 32 3 30 A.M. 6 56 7 21 7 41 8 2 8 2 8 2 8 31 0 33 10 33 10 35 11 19 11 41 0 1 F.M. 0 21 0 43 1 30 1 30 2 32 3 30 A.M. 6 56 7 21 7 41 8 2 8 22 8 44	fe 99 90	t ¹ 9 ⁸ 0 ¹ 4 ⁴ 7 ² 8 ⁷ 7 ³ 5 ⁵ 8 ¹ 9 ⁴ 8 ⁹ 9 ³ 9 ³ 5 ³ 3 ³ 1 ¹ 3 ⁹ 5 ⁸ 8 ⁰ 0 ¹ 0 ¹ 4 ⁰ 4 ⁷ 2 ¹ 4 ⁴ 0 ⁵ 2 ¹	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6th Jan. 12th "	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0778888888888886666677778888888888888666666	\hbar m. 9 6 A.M, 9 27 10 52 11 16 11 36 11 58 0 24 P.M. 0 46 1 7 1 31 1 52 2 14 2 46 3 3 A.M. 7 26 8 0 8 27 8 0 8 27 8 0 3 2 9 19 10 57 11 18 11 41 0 5 P.M. 0 32 1 47 2 19 2 41 3 6 3 29 0 40 A.M. 7 17 7 39 8 7 8 33 8 56 9 21 10 42 11 0 11 34 11 55 0 19 P.M. 0 44 1 13 1 40 2 7 2 29 2 52 3 23	, , , ,	feet. 125.6 125.6 125.6 125.7 126.5 125.7 126.5 125.7 126.5 125.7 126.5 127.7 126.8 127.7 128.6 129.2 130.5 131.2 130.5 131.5 131.5 133.7 133.7 133.5 135.7 135.8 135.7 136.8 135.7 136.8 135.7 136.8 137.9 136.8 137.9 138.7 138		

* The advanced-end of set No. 266 fell in excess (*i.e.* north) of the dot denoting Posterity-Mark M 0.6552 feet, as measured on Cary's brass scale with a beam compass.

VIII_24

.

.

.

VIZAGAPATAM BASE-LINE

Extracts from the Field Book-(Continued.)

,

1069	the Set.	ture of Air	Mean time of	bars used	f Set above igin	Nun shev arrai men	neral ving nge- t of	1000	the Set.	ure of Air	Mean time of	bars used	' Set above igin	Nun shev arra me	neral wing inge- nt of
1803	No. of	Tempera	enaing	No. of	Height of or	Bars.	Micros :	1003	No. of	Temperat	ending	No. of	Height of or	Bars.	Micros:
14th Jan	- 304 3007890112 31145012322345078901312 315314501232233220789013 3123145012322332233333333333333333333333333333	6770144002778888888888888886666666778880 677014400277888888888888888888888888888888888	h. m. 6 34 A.M. 7 1 7 27 7 54 8 18 8 43 9 4 9 34 10 46 11 11 13 32 11 52 0 14 P.M. 0 36 1 11 1 48 2 17 2 37 2 59 3 20 6 35 A.M. 7 10 7 34 7 56 8 15 8 42 8 59 9 24 10 55 11 14	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	feet. 139'4 140'1 139'7 139'6 140'9 140'9 141'5 141'9 143'1 143'1 143'1 143'1 144'1 145'0 145'9 145'5 145'4 146'7 146'3 145'6 146'8 147'6		2 2 2 2 2 4 2 2 2 2 5 2 2 2 2 2 2 2 2 2	15th Jan. 16th "	- 333 334 335 337 337 334 344 344 344 344 35 35 35 35 35 35 35 35 35 35 35 35 35	824356 83456517236231077358757326733 8899885224707358757326733 8855231077358757326733 8886733 888888888888888888888888888	$\hbar.$ m. 11 35 A.M. 11 59 0 27 P.M. 0 51 1 14 1 37 2 4 2 34 2 55 3 22 0 37 A.M. 7 55 8 25 8 52 9 11 7 56 8 25 8 52 9 11 9 32 10 50 11 9 11 31 11 52 0 11 P.M. 0 32 0 54 1 18 6 55 A.M. Total	– < < < < < < < < < < < < < < < < < < <	feet. 147.5 149.3 150.8 151.0 149.9 150.0 149.7 150.0 151.5 153.0 155.0 155.0 155.0 155.0 155.0 155.0 155.0 150.7 150.3 150.3 150.3 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.7 150.5 151.0 155.0 150.7 150.9 15		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Th Hi 19th Jan.	332 332 332 eight 360 361 362 363 364 365 364 365 366 365 366 367 368 369 379 372	80.7 denotion of set ninal 63.6 64.6 66.6 68.2 71.6 73.6 73.6 75.3 82.4 83.2 84.2 84.2 85.1 86.2	11 14 ing Station B No. 359 abov point of set N 6 34 A.M. 7 5 7 29 7 52 8 14 8 38 8 58 9 26 11 23 11 47 0 10 P.M. 0 30 0 50	6 was e St o. 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1476 fixed ext ation B 59 was t - 1495 1494 1492 1501 1499 1506 1507 1506 1502 1512 1512 1510 1508	I actly in = 1.2 he point I I I I I I I I I I I I I	2 h the m feet. nt of a 2 2 2 2 2 2 2 2 2 2 2 2 2	ormal at t origin for a 19th Jan. 20th "	he ad set No 373 374 375 376 377 378 379 380 381 382 383 384 385	vanced 86.8 87.0 88.2 89.3 89.3 89.7 88.3 65.4 67.5 68.6 69.5 71.5	I II P.M. I 29 I 49 2 13 2 36 2 55 3 17 6 35 A.M. 7 13 7 37 8 0 8 22 8 45	6 - 6 6 6 6 6 6 6 6 6 6 6 6	59. 59. 59. 59. 51. 52. 52. 52. 52. 52. 52. 52. 52		222222222222222222222222222222222222222

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	ars used	Set above gin	Nun shev arra men	neral ving nge- it of			the Set	ure of Air	Mean time of	oars used	Set above gin	Num shev arra men	neral ving nge- t of
1863	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros :	1863	3	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:
20th Jan. 21st ,,	. 3878 90 1 2 3 4 50 78 90 1 2 3 4 50 78 90 1 1 2 3 4 50 78 90 1 2 3 4 50 78 90 1 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	027798888888888888888866666677778888888888	h. m. 9 14 A.M. 10 40 11 4 11 24 11 46 0 9 P.M. 0 29 0 50 1 17 1 40 2 22 2 42 3 21 3 50 6 37 A.M. 7 9 7 40 8 25 8 46 9 10 9 32 10 40 11 28 11 49 9 7 40 8 25 8 46 9 10 9 32 10 40 11 28 11 49 9 7 40 8 25 8 46 9 10 9 32 10 40 11 28 11 49 9 7 40 8 25 8 40 9 11 28 11 49 9 7 40 8 25 8 40 9 11 28 11 33 1 55 2 15 2 38 3 25 A.M. 7 3 7 40 8 32 3 25 A.M. 7 3 7 40 8 32 3 25 4 49 1 49 1 49 1 55 2 38 3 25 4 49 1 14 1 33 1 55 2 38 3 25 4 49 1 14 1 33 1 55 2 15 2 38 3 25 4 49 8 32 3 25 4 49 1 49 1 14 1 33 1 55 2 15 2 38 3 25 4 40 8 32 3 25 4 40 8 32 3 25 4 5 8 32 3 25 4 6 8 32 3 25 8 32 9 14 10 35 10 35 10 35 11 30 11 30	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	feet. - 158.6 159.9 159.9 159.6 159.6 159.6 160.7 160.6 161.8 161.8 162.2 162.2 162.7 163.7 163.7 163.7 163.7 163.7 163.7 163.7 163.7 163.7 163.7 163.7 165.3 165.3 165.5 166.5		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22nd J 23rd -	Jan. ",	44444444444444444444444444444444444444	889888899886666666777788888888888888888	h. m. o P.M. o 23 o 46 i 5 i 26 i 50 2 13 2 34 2 55 3 20 6 42 A.M. 7 7 7 28 7 47 8 8 8 27 7 7 28 7 7 7 28 7 47 8 8 8 27 3 9 16 10 39 11 26 11 44 0 5 P.M. 0 25 i 55 2 38 3 3 22 47 8 8 27 7 7 28 7 7 7 28 7 9 16 10 39 11 2 2 55 2 38 3 3 22 40 A.M. 7 12 8 26 8 517 10 35 9 17 10 35 10 59 11 22 11 43 0 3 7 10 35 10 59 11 27 157 10 57 10 57	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	feet. feet. 162.8 162.4 162.4 162.4 162.4 162.4 162.4 162.4 162.2 163.3 163.3 165.3 165.2 166.5 166.5 166.5 166.5 166.5 172.2 173.8 172.2 173.8 174.6 177.2 173.8 174.6 177.2 173.8 174.6 177.2 177.3 177.2 177.3 177.2 177.3 177.2 177.3 177.4 177.2 177.2 177.3 177.4 177.2 177.3 177.4 177.4 177.4 177.5 177.4 177.5 177.4 177.5 177.4 177.5 177.4 177.5 177.4 177.5 177.4 177.5 177.4 177.5 177		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

VIII____26

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	ars used	Set abore gin	Nun shev arra mer	ne ral wing nge- nt of		the Set	ure of Air	Mean time of	oars used	Set above gin	Nur shev arra mer	neral wing nge- nt of
1863	No. of	Temperat	ending	No. of h	Height of ori	Bars	Micros :	1863	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:
26th Jan. 27th ,, 28th ,,	4856 4856 4856 4856 4856 4856 4856 4856	88877777778888888888888888888777777778888	h. m. 2 22 P.M. 2 47 3 20 6 40 A.M. 7 12 7 39 8 4 8 30 8 52 9 15 10 32 10 52 11 33 11 55 0 17 P.M. 0 39 0 59 1 22 1 42 2 4 2 27 2 50 3 13 6 37 A.M. 7 25 7 54 8 23 8 47 9 13 10 30 10 49 11 12	, , , , , , , , , , , , , , , , , , ,	<i>feet.</i> 176'5 175'9 176'4 174'2 173'6 172'4 172'0 172'6 172'0 175'5 166'1 165'5 164'3 160'9 159'1 158'5 156'5 155'5 156'0 155'1 158'5 156'5 155'4 154'1 154'1 154'0 152'7 153'2 152'7 152'7 153'2 152'7		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	28th Jan 29th "	521 522 522 522 522 522 522 522 522 522	88.8 88.8 88.7 88.8 87.5 88.7 5.5 68.9 68.9 77.5 77.7 88.8 88.8 88.9 99.9 88.8 99.9 98.8 85.5 68.9 77.5 77.5 77.5 83.4 66.9 88.9 99.9 98.8 85.5 66.9 92.5 77.5 77.5 77.5 77.5 77.5 77.5 77.5 77.5 77.5 77.5 77.5 7.5	h. m. 0 12 P.M. 0 30 0 54 1 16 1 39 2 1 2 22 2 47 3 9 3 35 6 31 A.M. 6 54 7 17 7 37 8 3 8 29 8 51 9 11 10 30 10 49 11 11 32 11 54 0 20 P.M. 0 43 1 49 2 12 2 35 2 56 6 30 A.M. 6 56 F	00000000000000000000000000000000000000	feet. 149'7 149'5 149'5 149'5 147'9 147'2 146'3 145'2 146'0 145'8 145'2 144'7 144'0 143'4 141'3 140'8 140'8 140'8 140'8 140'7 138'5 138'5 138'5 138'5 137'0 137'0 137'1 135'9 135'7 133'5 132'7 132'2 132'2 132'2		333333333333333333333333333333333333333
	518 519	85.2 85.2	11 30 11 50	0 6	151.2 150.4	I	3 3				Total	- 3			

January 27th. Sky covered with clouds througout the day. The advanced-end of set No. 552 fell in defect (*i. e.* south) of the dot at North-End 0.6438 feet, as measured on Cary's brass scale with a beam compass. Height of set No. 552 above North-End = 1.5 feet.

Reduction to Mean Sea Level.

Let the sections into which this base-line is divided be denoted as follows;

South-H	End	to	Station	A by	Section	Ι
Station	А	to	•,	в	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Π
"	В	to	North-	End	,,	111

Then in the notation of (7) page I_{22} we have

H = 311; h = -1298; $\delta h = +39$; Log. R = 731845, and n = 552.

			$\begin{bmatrix} h \end{bmatrix}_1^p$	a	n	dh	${oldsymbol{F}}$	λ -	C_2	C_1	C
Section "	I II III	•••	9827 23200 30657	0 +142 0	173 186 193	+ 1·2 1·3 1·4	9723 22713 30038	10900 11719 12160	+ •0294 •0687 •0909	•1628 •1751 •1817	•1334 •1064 •0908

		M e	asured wi	th			
Section		Compensated bars page VIII_16	Compensated microscopes page VIII	Beam compass pages VIII_22 to VIII_26	Reduction to sea level as above	Total Length	Log.
S. End to Stn. A	•••	10380.5738	519.0821	'0000	- 1334	10899.5225	4-03740 7472
Stn. A to Stn. B	•••	11160.6203	558.0804	.0000	<u>— • 1064</u>	11718.5943	4.06887 5519
Stn. B to N. End	•••	11580.6474	579.0736	+ .6438	- •0908	12160.2740	4.08494 3360
S. End to N. End	•••	33121.8415	1656.2361	+ '6438	- •3306	34778.3908	4.54130 9483

Final length of the Base-Line and of its parts in feet of Standard A.

Lengths in feet of Standard A, between South-End and the Posterity-Marks, at the levels of measurement.

	Bars	Micros :	Beam compass.	Total.
Mark No. 1	<u>3</u> 60°0199	18.0027	.0000	378.0226
No. 2	720.0398	36°0056	.0000	756.0454
No. 3	1080'0597	54.0083	•0000	1134.0080
M	15960.8823	798.1220	- 0552	10758.3497
	<i>Mark</i> No. 1 No. 2 No [.] 3 M	Mark No. 1 360.0199 No. 2 720.0398 No. 3 1080.0597 M 15960.8823	Mark No. 1 360'0 199 18'0027 No. 2 720'0398 36'0056 No. 3 1080'0 597 54'0083 M 15960'8823 798'1226	Mark No. 1 360.0199 18.0027 '0000 No. 2 720.0398 36.0056 '0000 No. 3 1080.0597 54.0083 '0000 M 15960.8823 798.1226 6552

VIII_28

VIZAGAPATAM BASE-LINE.

Verificatory Minor Triangulation.

No. of Triangle		Corrected Angle	Log. Sine	Log. Distance	Distance in		of gle
	Name of Station				Feet	Miles	Error Trian
1	South-End of Base, Station A, Nandi H.S.,	69 48 37'728 54 27 38'889 55 43 43'413 180 0 0'030	9 [.] 972460259 9 [.] 910473937 9 [.] 917180162	4'092687569 4'030701247 4'037407472	10899.5225	2.064	-0.010
2	Station A, Nandi H.S., Ganiwada H.S.,	61 36 16.513 34 40 54.750 83 42 48.757 180 0 0.020	9`944327989 9`755127086 9`997380644	4`039б34914 3`850434011 4`092б875б9			+ 0.220
3	Station A, Ganiwada H.S., Station B,	63 56 5.035 79 34 16.716 36 29 38.269 180 0 0.020	9'953418535 9'992765959 9'774325756	4`029526790 4`068874205 3`850434011	11718.5588	2.310	+0.030
4	Ganiwada H.S., Station B, Dasalapalam T.S.,	50 47 9.316 57 44 57.795 71 27 52.909 180 0 0.020	9`889183537 9`927227675 9`976866950	3 [.] 941843377 3 [.] 979887515 4 [.] 029526799			—0'560
5	Station B, Dasalapalam T.S., North-End of Base,	85 45 20 [.] 897 57 5 42 [.] 844 37 8 56 [.] 289 180 0 0 [.] 030	9'998807391 9'924059321 9'780957408	4`159б933б0 4`084945290 3`941843377	12160.3280	2.303	+2'010
6	South-End of Base, Station A, Gumru H.S.,	59 3 28.303 73 50 28.975 47 6 2.752 180 0 0.030	9'933328810 9'982495074 9'864838428	4*105897854 4*155064118 4*037407472	10899.5225	2.064 •	+0.280
7	Station A, Gumru H.S., Raipili P.S.,	52 58 29.416 55 0 18.957 72 1 11.657 180 0 0.030	9'902204812 9'913392450 9'978255312 /	4`029847354 4`641034992 4`105897854			-1.400
8	Station A, Raipili P.S., Station B,	53 11 1.172 67 4 13.504 59 44 45.344	9'903394154 9'964252253 9'936413041	4'008016105 4'068874204 4'041034992	11718.5588	2.310	+0.640

.

•

4
VIZAGAPATAM BASE-LINE

Verificatory Minor Triangulation.

of gle					Distance	in	of gle
No. Trian	Name of Station	Corrected Angle	Log. Sine.	Log. Distance	Feet	Miles	Error Trian
9	Raipili P.S., Station B, Alamanda H.S.,	48 39 16.603 65 58 38.467 65 22 4.950 180 0 0.020	9 ^{.8} 75490171 9 [.] 960653681 9 [.] 958565677	3°924940599 4°010104109 4°008016105			1 ["] 060
10	Station B, Alamanda H.S., North-End of Base,	54 16 39 ^{.227} 82 25 29 ^{.951} 43 17 50 ^{.842} 180 0 0 ^{.020}	9 [.] 909478428 9 [.] 996193328 9 836188640	3`998230387 4`084945287 3`924940599 Sum	12160°3279 	2°303 6°586	-0.320

NOTE.-Each side of a triangle is given in the same horizontal line with the angle which it subtends.

The angles of the verificatory triangulation were measured with Troughton and Simms' 2-foot Theodolite No. 1, read by 5 micrometer microscopes. At all the stations 2 measures were taken on each of 12 zeros. The stations on the line are S. End, A, B, and N. End.—The auxiliary stations are Nandi H.S., Ganiwada H.S., Dasalapalam T.S., Gumru H.S., Raipili P.S., and Alamanda H.S.

Digitized by Google

VIII.....30 Comparison in feet between the values computed by means of the verificatory triangulation and the measured value.

Of the entire line.

South-End to Nort	h-End by the measurement, page VIII_ 27 $34778^{\cdot}3908$	<i>Log.</i> 4 ·541 309 483
>>	computed in terms of South-End to Station A, page VIII_29	4.541 309 714
	Log. computed value $-$ Log. measured value $=$ -	- 0.000 000 531

In terms of the entire line by measurement.

	Computed	Computed Measured*
South-End to Station A	10899.5167	-0.0028
Station A to Station B	11718-5526	-0.0412
" B to North-End	12160.3215	+0.0475

Of each section in terms of the others.

South-End to Station A	Station A to Station B	Computed Measured	Station B to North-End	Computed Measured
Measured lengths* 10899.5225	11718.5943		12160-2740	
Computed on base South-End to Station A }	11718.5588	0322	12160.3280	+•0540
Computed on base Station A to Station B $\left. \begin{array}{c} & & \\ & & \\ \end{array} \right\}$		•••	12160.3648	+•0908

Note.—Since $\operatorname{Log}_{\theta}(x + dx) = \operatorname{Log}_{\theta}x + \frac{(dx)}{x} + \frac{(dx)^2}{2x^2} + \&c.$ $dx = \left\{ \text{Log}_{10} (x + dx) - \text{Log}_{10} x \right\} \frac{x}{\text{Modulus}}$ nearly, by which expression the required

variations in the foregoing natural numbers have been calculated.

VIZAGAPATAM BASE-LINE

VIII_31

Description of Stations.

SOUTH-END or VIZAGAPATAM BASE, Lat. 17° 56', Long. 83° 14', is situated in the Pedagadi tálúk of the Vizagapatam district, on the northern slope of the rocky ridge running East and West between Gumrukonda and Nandimetta. The village of Bulgottam lies about $\frac{1}{4}$ of a mile to the E.N.E., that of Kotevalsa being about 3 miles distant.

It was built in the first instance as a simple platform station, with 3 circular markstones each 38'' in diameter, and 6" thick placed vertically over each other, the lowest stone resting on hard clay 2 feet below the surface of the ground, with a 4-inch layer of masonry between the bottom and middle stone and a 9-inch layer between the middle and top stone. Subsequently a wall of cut stone masonry $1\frac{1}{2}$ feet thick and forming an enclosure 5' 10" square, was built round the markstones to the depth of 4 feet below the ground for the better protection of the marks and to serve as a foundation for the dome erected over the station. The mark as usual is represented by a dot on silver in a brass plug let into the stone. Each of the 3 stones has this mark, the two upper ones being carefully plumbed over the lowest. The uppermost mark is the one to which the measurement was referred; it is protected by a brass plate about 1" in diameter carrying a coarser mark for the signallers to plumb over. A pyramidal stone about 20" square by 15"high, hollowed out at the base, is placed as a cap over the mark and a cut stone masonry dome rises to the height of about 12 feet over the station. The dome is without any opening so to prevent access to the marks.

The South-End was connected in 1863, by a single line of spirit levels with the mean sea level at Vizagapatam, when it was found that its height was 310.57 feet above this datum.

NORTH-END of VIZAGAPATAM BASE, Lat. 18° 1', Long. 83° 16', is situated in the Bonengi tálúk of the Vizagapatam district, about $\frac{1}{2}$ miles S.E. of the village of Rambudrapuram-Agraharum, and nearly 2 miles N.W. from Alamanda H.S.

The foundation of the station is a solid mass of rubble masonry 9 feet square, and 4 feet deep below the ground level, resting on a hard bed of gravel. In the foundation, but isolated from it by an annulus, there are 3 circular markstones, 38" in diameter by 6" thick, the lowermost resting about 2 feet from the bottom, and the two others in order vertically, at intervals of 3" apart. Above the ground level there is a platform of cut-stone masonry, 8' square and 1' high reaching to the edge of the annulus; there is also a fourth markstone, resting over the others and separated from the nearest by a 6-inch layer of masonry. In the lowest markstone a dot surrounded by a circle has been engraved on the stone, on the others the mark is the usual dot on silver in a brass plug 1" square by 2" deep let into the stone. The three upper marks were carefully plumbed over the lowest one. A pyramidal stone cap about 20" square by 15" high protects the uppermost mark, and a cut-stone masonry dome similar to that at South-End is erected over it. The uppermost mark is the one to which the measurement was referred.

STATION A. This station is on the straight line from South-End to North-End, and 2.1 miles from the former.

It is marked by a stone 27 inches square at base, 15 inches square at top and 5 feet 3 inches in length which has been sunk to a depth of 3 feet 9 inches below the surface of the ground and is embedded in a block of masonry 8 feet square and $6\frac{1}{4}$ feet deep. There are two marks on the upper surface of the stone-slab; the Posterity-Mark (or P_a) is a dot on silver let into a brass plug 6" long and 1" square sunk into the *middle* of the stone; the mark made at the termination of the 173rd set (or Station A) is on a brass plug $\frac{1}{4}$ " in diameter and $1\frac{1}{4}$ " deep let into the stone and is situated N. of the mark $P_a 4.829$ inches. The theodolite was plumbed over A when the angles of the verificatory minor triangulation were measured. The marks are protected by a cap of stone surmounted by a solid pyramidal pillar of cut stone masonry about 8 feet in height and 6' square at base.

STATION B. This station is on the straight line from South-End to North-End and 2.3 miles from the latter.

It is marked and protected in the same manner as Station A with the difference that there is only one brass plug carrying a dot at this station : the plug is about 3" N. of the centre of the stone.

POSTERITY-MARKS Nos. 1, 2, 3, are on the straight line from South-End to Station A, and distant respectively about 378, 756, and 1134 feet from the former.

These points are marked by a dot on a brass plug let into a large granite boulder which is embedded in a 4 feet deep foundation of rubble masonry, over which a pyramidal block of the same materials has been erected.

VIZAGAPATAM BASE-LINE

Description of Stations—(Continued.)

POSTERITY-MARK M, is on the straight line from South-End to Station B and 3.2 miles from the former.

It is marked on a stone 27" square at base, 15" square at top and 5' 3" in length which has been sunk to a depth of 3' 9" below the surface of the ground and is embedded in a block of masonry 8 feet square and 64 feet deep. There are two marks on the upper surface of the stone-slab; the Posterity-Mark (or M) is a dot on silver let into a brass plug 6" long and 1" square runk into the *middle* of the stone; the mark made at the termination of the 266th set is on a brass plug let into the North edge of the stone and is situated N. of the mark M 7.863 inches. The marks are protected by a cap of stone surmounted by a solid pyramidal pillar of cut-stone masonry about 8' in height and 6' square at base.

GUMRU AUXILIARY HILL STATION, Lat. 17° 56', Long. 83° 17', is situated in the Vizagapatam district, on the summit of the highest group of low hills lying between the great range and the sea. It is about 16 miles to the South-West of the town and cantonment of Vizianagram, and is well known in the neighbourhood by its name of Gumrukonda. The small village of Sonkerpalam is about 1 mile W. of the station.

The station is marked by an isolated masonry pillar surrounded by a platform of stones and earth. There are two mark-stones in the pillar, one embedded in the hill and the other 1 foot $10\frac{1}{2}$ inches above, on a level with the surface of the pillar.

RAIPILI AUXILIARY PLATFORM STATION, is situated in the Vizagapatam district, on the high ground about $\frac{1}{3}$ of a mile E. of the village of that name, and little less than half-way from Alamanda H.S. to Gumru H.S. The village of Katkapili lies about $\frac{1}{3}$ mile to the S. and the hills of Kudipallam about the same distance North.

The station is marked by an isolated masonry pillar surrounded by a platform of stones and earth. There are two mark-stones in the pillar, one embedded in the rock *in situ*, and the other on a level with the surface of the pillar.

ALAMANDA AUXILIARY HILL STATION, is situated in the Vizagapatam district, on the summit of the small hill S. of the village of that name and close to that part of Vizianagram road which runs between Bhimsingi and Kotevalsa travellers' bungalows.

The station is marked by an isolated masonry pillar surrounded by a platform of stones and earth.

DASALAPALAM AUXILIARY TOWER STATION, is situated in the Vizagapatam district, close to and E. of the village of that name, and about 3 miles W. of Alamanda H.S. The station is marked by a tower 12 feet in height.

GANIWADA AUXILIARY HILL STATION, is situated in the Vizagapatam district, on the highest part of a small rocky ridge S.W. of the hamlet of the same name.

The station is denoted by an isolated pillar surrounded by a platform of stones and earth. There are two marks in the pillar; one on its upper surface and the other on the rock in situ.

NANDI AUXILIARY HILL STATION, is situated in the Vizagapatam district, on the summit of an isolated hill of that name and about 4½ miles in a direct line W. from Gumru H.S. The village of Ganga Pude is immediately below the N.E. shoulder of the hill.

The station is marked by an isolated masonry pillar surrounded by a platform of stones and earth. There are two marks, one engraved in the rock *in situ*, and the other on a stone embed ded flush with the surface of the pillar.

J. B. N. HENNESSEY.

VIII_32

.

•

.

•

.

.

•

•

.

The middle point of this base-line is in Latitude N. 13° 3', Longitude E. 77° 40'; the Azimuth of North-East-End at South-West-End is 224° 31' and the line is 6.83 Miles in length.

The measurement was effected under the directions of Mr. J. B. N. Hennessey with the assistance of the following:

Lieut. J. Herschel, R.E.

" W. M. Campbell, R.E.

- " M. W. Rogers, R.E.
- Mr. A. W. Donnelly
- " G. Anding
- " J. W. Mitchell
- " A. Christie
- " O. V. Norris
- " J. Bond
- " C. D. Potter

INTRODUCTION.

This base line was measured on the high undulating land North of the cantonment of Bangalore in the province of Mysore, the South-West-End being distant from St. John's Church 2.5 miles at an azimuth of 125°. It was originally intended that this line, measured under the orders of Colonel J. T. Walker, R.E., should coincide with Colonel Lambton's base in this vicinity; but as a railway now runs across the latter the intention was necessarily relinquished. The South-West-End of Colonel Walker's line is about 5 miles West of the North-End of Colonel Lambton's base. The former line, under notice, was selected by Lieutenant W. M. Campbell, R.E.

The measurement was commenced at South-West-End, bar-tongues pointing North-West, and was carried on *continuously* to the North-East-End, so that every succeeding set originated at the point marking the terminus of its predecessor. The line was divided into 3 sections by the sub-dividing points A and B to admit of verification by minor triangulation; and its South-West-End was connected with the Bench-Mark at the Railway Station in Bangalore by means of a double line of spirit levels executed by Mr. A. W. Donnelly. This Bench-Mark had been connected by the Railway Engineers with "Colonel D'Haveland's B.M." near Fort St. George Madras, the height of the latter B.M. above mean sea level being known.

The compensated bars were compared with the standard \mathbf{A} on three occasions, *i.e.* before the measurement near South-West-End, after set No. 287 about the middle of the base, and after the measurement near North-East-End. On all these occasions the comparing piers were set up parallel to the line and within a few feet of it, while the bar-tongues pointed North-West as they did during the measurement. The series of comparisons at South-West-End comprised 50 sets, that after set No. 287 consisted of 80 sets and 76 sets were taken after the measurement.

The same comparing microscopes hitherto employed for bar comparisons at base-lines were used on this occasion, with the improvement that the eye end of the microscope with fixed wires was removed and a micrometer substituted in its place, so that both microscopes were now adapted for making micrometrical measurements.

The compensated microscopes were compared with their scales on 6 occasions including the comparisons taken prior and subsequent to the measurement.

In respect to time, the first set of bar comparisons was taken on the 6th January 1868, the last on the 10th of the following March.

The verificatory triangulation was made to consist of a double series of triangles, *i.e.* a series was projected on either flank of the line, forming in all a complete figure of 10 triangles. Of the stations involved, South-West-End, A, B, and North-East-End were in the alignment, and the remainder were selected on suitable sites, 3 to the North-West and as many South-East of the line. The angles were measured by Lieut. M. W. Rogers, R.E., with Barrow's 24-inch theodolite No. 2 on 10 equidistant zeros; three measures were taken on each zero, so that 30 measures in all were made of each angle.

IX_3

IX_4

	beerving A			ature of A	MICEOMETER READINGS IN DIVISIONS 1 Division of $K = \frac{1}{21739 \cdot 02}$ Inch [a.b] on steel foot ==							
1868 6 Jany.		mparison	ure of Air	rature of Air ed mean tompe	Z	fean A		A		В		С
	Mean of	No. of co	Temperat	Corrected	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K
	h. m.					т	<u>т</u>	+	+	+	+	Ŧ
6th	8 33 A.M.	I	6°.9	60 [°] 85	118·1 174·0	294.7	240.2 227.4	469.9	232.3 208.0	442.4	246·5 245·0	494'0
	9 22	2	63.5	60.83	112°0 178°0	291.8	251.9 203.9	457.8	200 [.] 6 236.8	439.8	240 [.] 9 245 [.] 0	488.4
	9 58	3	66.3	61.33	155.4 151.4	. 308 . 3	220°I 239°I	461.6	173 °5 267°1	443'3	218.8 266.1	487.6
	о 4.Р. М.	4	72.9	66.23	200'4 187'3	389.0	222.5 202.0	426.5	213 [.] 8 210 [.] 8	426.7	272·2 203·9	478.1
	o 43	5	74'7	67.82	239 [.] 3 180 [.] 8	421.9	249 . 9 185.0	436.8	231°8 195°5	429'3	216 [.] 1 260 [.] 5	479'2
	1 29	6	76.1	69.63	198 [.] 4 258 [.] 9	459'9	184.9 263.3	450.8	283.8 158.4	443.8	232.8 261.4	496.8
	22	7	76 [.] 8	70.88	211 ^{.7} 269 [.] 9	484.3	239 .9 218 .3	460.4	227°0 223°I	452.3	290°0 206°2	49 ⁸ '3
	2 31	8	77.7	73.85	224 [.] 2 276 [.] 5	503.2	252°G 209°4	464.1	201°0 250°5	454'0	256·8 245·9	505.2
	35	9	78.1	72.87	255·3 266·6	524.0	264·8 207 ·3	474*2	208.1 252.2	462.8	254.0 256.0	512.0
7th	7 зб⊾.ы.	10	61.3	б2.31	163.5	335'7	225°1 2580	485.7	202.8 262.8	468 ·2	257 . 2	518.3
	8 13	11	62.2	61.90	185.8	329.7	255 ^{.8} 227 .4	485.5	256.6 205.0	463.7	275'0 237'0	514.4
	8 47	12	64.2	61.96	177.0	333.8	249 ^{.8} 225 ^{.8}	477'9	248 [.] 2 206.4	456.7	225.9 281.1	509.8
	9 ¹ 4	13	66.0	62.31	162 .4 177.6	341.8	229 [.] 2 241.1	472.7	201.2	453*5	253.8 243.0	499'2
	9 39	14	57.7	62.88	137 ° 4 209'4	348.9	202.0 201.4	465.4	246.7	444.6	234·8 253·2	· 490 · 5
	10 3	15	69.2	63.60	155.4 203.2	360.0	238.4 217.6	458.2	240 [.] 8 105 [.] 6	438.4	246 [.] 6 236 [.] 8	4 85 [.] 8
1	11 59	ıq	75°0	68.12	220°5 221°7	444'4	220°0 215°9	438'1	235 [.] 8 104°0	431.2	255 ° 4 228°0	4 ⁸ 5'7
	о 2бр.м.	17	76 · 0	69.69	225.3 238.1	465.8	228.6 206.9	437.0	247 ' 4 180 ' 0	4 38·3	229 ·4 256 ·8	488 [.] 8
	o 43	18	75 . 7	70.32	199.5 276.8	479°1	209 [.] 6 228 [.] 0	439'9	215.9 222.0	441.0	216·3 276·1	495'2
	o 57	19	76 . 1	7°'93	221.9 266.8	491'4	245°2 198°0	4 45 ' 2	258.7 181.3	441.8	332.4 162.0	496.0
	1 14	20	76.9	71.20	235 .7 263.6	501.9	218.4 231.0	451.2	229 [.] 9 217 [.] 9	45000	232.3 266.1	201.0

Comparisons between the Standard Bar A and the Compensated Bars A, B, C, D, E, H,

made at the South-West-End of the base-line, before the measurement.

	٢	бісвоме == 1·27	TER REA 1772 m.y. of					
No. of comparison	D K+L K in terms L of K] K L	E in terms of K] K L	H K + L in terms of K	Mean of the compensated bars	Rewarks
				•	·		· · · · · · · · · · · · · · · · · · ·	
т	201.Q	+ r26.8	+	+	+	+	+	Mr. Hennessev at micrometer K
-	232.0	3300	233 3 247 0	4037	101.0	4/00	403 0	Lieutenant Campbell " L.
2	229.0	532.0	231.4	476.8	330.4	474'7	478.3	Sky completely clouded ; fog in the distance.
	300.0		243.0		142.9	_		
3	242.0	532.0	207.4	479 ' 0	217.9	477.6	480'3	Observers changed places.
4	278.1	528.1	2009	471.6	23/1	461.0	1600	Lieutenent Herschel at misromater K
Ŧ	247.5	J 2 0 I	182.0	4/1 0	232.8	4010	4053	Rogers L.
5	241 0	532.2	237.8	479'4	251.8	460.2	471'I	,,, ,,
	288.0		239.2		215.2	.,	17	
6	237.6	544'4	2 56 . 4	491.2	241.2	482.5	485.0	Observers changed places.
_	303.0	.	233.0		238.4			
7	2500	544 o	207.0	494'9	252.7	491.9	490'4	
8	204.3	555.7	2249	204.1	273.2	400'T	407.1	
	258.8	0007	270.1	J-++	223.7	+99 -	49/ *	
9	257.2	560.3	191.Q	512.9	236.2	503.0	504'4	
	300.0		318.1		265.0		• • •	
TO	0 7 0 19			5081T		40.016		
10	2790	333 0	2497	300 1	2430	500.0	500.0	Lieutenant Herschel at micrometer K;
11	268.0	554.0	272'I	497.3	277.8	401'4	501.2	, nogers , E.
	283.8	551	223.0		214.5	т түт	50-7	
12	271.8	550 [.] 6	255.0	491'4	283 [.] Ő	494.7	496.9	
	276.0		234.1	.0	209.0			
13	251.4	53 9 ° 4	200'0	482.9	201.7	482.1	488.3	Observers changed places.
TA	2051	525.4	284.5	480.3	2102	478.0	18014	
·+	265.1	JJJ -	103.8	400 -	223.0	4/0 2	402 4	
15	213.2	529.2	240.2	478.4	222.0	474.5	477.5	
	214.2		235.8		250.0		1775	
16	303.5	548.0	294.5	4 79 [•] I	274.8	467 [.] 7	475.2	Mr. Hennessey at micrometer K ;
	243.0	550.0	195.9	180.8	101.0		0-	Lieutenant Campbell ,, L.
17	-202.1 202.1	<u> </u>	2329 2276	4020	2104	403.2	478'0	row agat carr non normal.
18	246.4	553.2	248.6	487 <u>°3</u>	254.0	476.0	482.1	1
-	303.8	0.00	236.3		219.2	7/00		1
19	311.0	5550	283.8	491.1	275.5	480'8	485 .0	
	241'0		205.2		203.3			
20	258.3	559'3	² 54'9	498.1	203.3	485.1	490'9	
	290.0		240 0		199.0			
								1

.

Before the

$\begin{array}{c c} & & \\ & &$												
1868 Jany.	f the times of	omparison	ture of Air	d mean tempe	M	евп А		A		В		С
	Mean of	No. of c	Tempora	Correcte	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K
	h. m.		0	۰,	+	+	+	+	+	+	+	+
7th	I 31 P.M.	21	77.2	72.00	233°0 277°0	512.8	256.0 108.1	45 ^{6•7}	244 ` 4 200`I	455.6	239°5 262°0	504.1
	1 49	22	79 ' 1	72.64	237·0 286·3	526.3	233.7	464.0	234 [.] 8	462.1	238·4	512.3
	27	23	79 '9	73.27	267.3	539'4	260.8	472'1 .	288.8	464.2	277.8	219.1
	2 32	24	.79 ° 0	74 ^{.0} 3	257.2	554.7	258.3	476.0	221.7	471.0	2309	520.7
	2 53	25	79'I	74.29	204°0	565.3	210'I 223'4 260'0	486 [.] 9	240'8 185 '0	478.3	230°7 178°0 218°2	529.8
	3 13	26	79° I	75.05	233.8	573.5	279°6	4 ⁸ 9 [.] 9	158.1	481.2	269.4	532.0
	3 30	27	78 ·8	75.40	250.4	582.3	264.3	490.9	247.0	48 5 . 7	260.5	534.5
	3 47	28	7 8 •7	75.69	233.7 350.2	587.4	219.0 277.0	498.8	2303 212.4 271.1	486.3	256.0 278.2	537*0
8th	7 27 A.M	29	60·8	62.57	217.0	358.0	186.3	489.8	272°G 204°4	479 °0	29 7.0 227.3	526 ·6
	7 50	30	60.3	62.22	221.1	349'9	284.8	493'1	311.1	476.0	279.6	525.3
	8 8	31	60.4	62.01	212.5	344*3	257.4	492.9	275.0	477.0	238.0 282.4	523 .2
	8 25	32	61.Q	61.86	207.8	339'7	2332	491.8	251.6	473'4	270.9	518.1
	8 42	33	63.1	61.49	130.0	337'2	201°0 201°4	4 ⁸ 9'7	320.4	467.5	312.8	516.4
	94	34	64.2	61.84	141.0	335.1	258.3	486.3	275·3	460.1	270.8	512.3
	9 21	35	65.8	62.00	-575 197 . 4	338 [.] 6	228.1 228.1	479·5	346.4	454'9	287.8	506.0
	9 36	36	67.3	62.38	194.9	344.0	286.3	471.0	294 [.] 8	455'2	292.4	501.0
	9 50	37	68.1	62.66	14/0 170 .4	350.2	245.0	469 [.] 8	273°0	454.7	280.9	49 ^{8•1}
1	05	38	68.9	63.11	171.8	358 .9	248.4	470.0	227.0	448.9	230.4	49 ^{6.0}
נ	11 42	39	75'9	67.21	233.8	436.8	191.8	4 57 ° 4	180.0	4 47 ' 3	262.3	498.1
	о і Р. М.	40	76.2	68.11	201°0 219°3 227°6	449'2	203°0 270°8 179°1	451.2	203°8 232°2 213°5	447'8	241.8 251.0	495 '3

IX_6

٠,

measurement—(Continued.)

•

.

	I	бісвоме = 1.27	TEE REA 772 m.y. of A					
comparison	D		E		н		of the meated ars	REMARKS
No. of	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	Mean compe	
	+	+	+	+	+	+	<u>т</u>	
21	250.4 306.6	560.1	226.6 271.5	500.8	222.7 265.0	490.4	494 [.] 6	
22	243 [.] 9 318 [.] 5	<u>5</u> 65 .0	237.2 265.6	505.2	249'9 244'0	496.3	501.0	
23	257 . 4 309.0	569.5	244'4 262'8	509.8	296.5 202.0	500.2	505.9	
24	270.4 300.7	574'1	269.4 245.2	517.3	301.2	507.0	511.3	Observers changed places.
25	257°6 318°1	57 8 .9	255.4 261.8	522.8	262'2 248'0	513.0	518.4	
26	254.6 326.7	584.0	262.0 262 I	526.2	252.8 262.1	517.2	522.0	·
27	252.0	584.0	287.0 225.4	524.8	312.Q	522.1	523.7	
28	232.8 352.9	589.2	247.5 279.6	529 '9	2074 217.6 301.3	521.9	527.2	
29	268°0 305°6	576.7	288.0	516 .9	258·6	516.0	517.7	Lieutenant Campbell at micrometer K ; Mr. Hennessey at
30	258.0	573.3	247°0 263°2	512.8	242.9 260.7	515.3	516.0	
31	224°0 345°3	572.8	243.0 268.0	513.2	237.5 268·1	508.3	514.2	
32	265 ^{.8}	569.2	249.0 260.1	511.2	242.6 264.2	509'4	512.3	
33	274'3 287'I	564.3	251.0 253.6	507.1	234.0 266.4	503.7	508.1	
34	292.8 260.1	555.5	298.0 105.3	495 '9	301.7	4 94'3 '	500.7	Observers changed places.
35	281.8 268.0	553'4	307.2 186.4	495 °5	289'8 100'0	490 [.] 8	496.7	
36	287.6	547 °2	280.4	491.2	279'9 207'0	489.0	49 ² '7	
37	277'4 265'1	545.2	271.2	492.3	288·7	486.2	491'1	· ·
38	216.7	541.9	242.5	489 . 0	232.Q	486 · 3	488 8	
39	260.0	547'9	181.8	489.9	249.9	472'3	485.5	Lieutenant Herschel at micrometer K ;
40	230 [.] 6 318 [.] 0	551.8	251°3 236 [°] 8	490.2	214.6 262.5	479 °7	4 ^{86•1} .	99 AUGERTS BU 99 Le.
	318.0		236.8	J J	262.5	7171	····	

IX___7

.....

Before the

.

	observing A			rature of A		М 1 с 1 1	BOMBTE	$\mathbf{E} \mathbf{R} \mathbf{E} $	NGB IN I nch [a. b] on St) I V I S I O N ceel Foot ==	8	
1868 Jany.	the times of	omparison	ture of Air	l mcan tempe	Me A	an		A	В			С
	Mean of	No. of c	Temper	Correcte	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K
	h m		_		+	+	+	+	+	+	+	+
8th	0 20 P.M.	4 I	76 [°] 9	69.06	210.9	469.1	218.3	454.1	203.3	445.5	220°G	505.6
	o 38	42	77'3	69 [.] 92	2550	488.4	2335 239'1 218'1	459'4	2.39 0 202 [.] 7 248 [.] 6	453.8	268.2 237.4	508 [.] 0
	• 57	43	78.2	70 [.] 80	216.2 283.1	502•4	183.7 270.4	46 <i>5*</i> 9	221.2	456-4	240°6 267°0	510.3
	1 19	44	78·8	71 ^{.80}	243 ` 4	519.0	220.0	471'1	229.0	461.2	254.4	513.9
	1 51	45	80 [.] 0	73.10	280.5	550.4	230.4	. 476'9	238.5	470'8	282.1	525 . 7
	2 12	46	80.2	73 [.] 91	278.8 283.1	564.7	231°4 231°4	485.7	230.2	475.8	245°3 281°2	529.3
	2 34	47	80 [.] 4	74.66	280°3	580 [.] 8	237.5	491 '1	252.3	483 [.] 6	270.5	536 [.] 3
	2 58	4 8	80'2	75:36	297.5	597 [.] 4	240.Q	497 .3	2590 258.2	493 '0	278.2	547'0
	3 20	49	80.1	75 ^{.8} 7	308.3	605.3	250.0	504.7	258.8	497°1	2001	549'9
	3 39	50	80.1	76.24	294.9 314.7	612.2	263°1 247°0	512.0	233 9 234 9 261 0	498.5	263 9 267 8 283 5	554.1
			Means	68.18		447'73		471.18		459.70		510.23
								A	bout the	middle	of the	base-line,
Feb.	h. m.		0	o								
11th	9 ол.м.	İ	72.0	62.11	213.3	345.2	206·8 272·3	481.8	242 ` 4 200 ` 0	4 53 ° 4	268·8 233·2	504*3
	11 35	2	78 · 6	<u>6</u> 9.11	214.0	452.0	266.7 180.5	449'0	237 [.] 9 100 [.] 2	430'0	282.4 106.7	481.0
	11 54	3	79 [.] 1	70.12	222.6	469.7	214·8 220·7	447.8	233.4	432.3	284.9	487.2
	0 10 P.M.	4	79.5	71.02	270.0	481.9	228.3	4 49'2	200.4	428 [.] 6	243.1	481.7
	1 11	5	82.3	73'99	328.0	564.0	237.8	482.7	230.2	464.2	259.3	516.3
	I 24	б	82.3	74.59	300 ^{.5} 271 ^{.4}	574.6	236·9 241·8	481.1	232 [.] 2 231 [.] 7	466 [.] 2	~345 306:4 211:8	520.3

IX_8

measurement-(Continued.)

241.0

2280 234^{.8} 241^{.8} 258^{.5} 251^{.6} 251^{.0}

]	MICEОМЕТ == 1.2777						
to. of comparison	D K + L K in terms L of K		ĸ	E K + L in terms	H L K + ms K in tern		Mean of the compensated bars	Remarks
41	+ 283·8 268·2	+ 554 [.] 7	+ 234 0 260 0	+ 49 ^{6.} 6	+ 245·3 238·5	+ 486 [.] 2	+ 490 [.] 5	
42	251.1	560.3	233°0	503.9	222.8	489.7	495.8	
43	284 [.] 8 270 [.] 6	558° t	257.0 244.5	503.9	204 3 243 9 246 0	49 2 . 4	497.8	
44	284.2 278.3	565.3	242.3	507.4	255.5	49 ^{8.} 9	503 .0	
45	313 [.] 2 263 [.] 0	578.8	278 [.] 8 230 [.] 2	520.4	262· , 247·8	513'0	514.3	Observers changed places.
46	286.5 202.7	583.1	256.3	524 .2	258.9	514.2	518.8	
47	300 ^{.8} 286 ^{.2}	589 [.] 9	257.9 269.3	5 29 9	253 I 257.8 263.1	523.5	525.7	
48	276·5 311·0	591.2	275.9 260.3	538.8	258.8 270.0	531.2	533.2	
49	315.0	600.0	279°6	545.7	265.8	532.0	538.3	
50	294°0 304°1	601.1	263 8 276 0	542.0	275°2 264°4	542.3	541.9	
Means	1	559'75		502.28		495'71	499.86	
after	set No.	287.			l Division	$\mathbf{K} = \frac{\mathbf{l}}{21732\cdot71}$	Inch [a.b.] on	Steel Foot = 1.27810 m.y of A = .9903 × 1 Division L
I	312 .8 236.2	551.3	253 .4 242 . 7	498.5	266.1 254.0	493*2	497.1	Mr. Hennessey at micrometer K; Lieutenant Campbell "L.
2 •	324°3 195°8	522.0	242·8 218·0	463 ·8	273 [.] 9 200 [.] 0	475 ' 9	470'3	Mr. Hennessey , K; Lieutenant Herschel , T.
3	303.6	518.9	259.0 201.8	465.8	293.8	476.2	471.4	,
4	277.7	523.9	228.6	465.7	261.0	482.7	472.0	
5	278.7	557.0	234 0	502.8	219.5 232.6	510.1	505.0	
6	270°2 316°6	560.0	258.5 251.6	505.1	274.8 276.0	510.8	507.3	

232.5

IX______

IZ⁻¹⁰

BANGALORE BASE-LINE

About the middle of the base-line,

MICEOMETER READINGS IN DIVISIONS 1 Division of $K = \frac{1}{21732.71}$ Inch [a.b] on Steel Foot =							8 X () =					
1868 Feby.	he times of o	mparison	ure of Air	mean temper		Mean A		A		В		С
	Mean of t	No. of co	Temperat	Corrected	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K
	h. m.				+	+	+	+	+	+	+	
11th	I 37 P.M.	7	82.6	75 [°] 13	204.8	585.0	208.8	485.5	246.0	466 [.] 3	303.8	523.2
	1 53	8	82•7	75.81	318.0	600.0	219.8	485.4	212.9	470'0	21/3	529.5
	29	9	83.2	76 [.] 36	279.9 326.6	609.8	238.0	486 [.] 0	223.2	471.4	233.2 303.2	529.0
	2 23	10	83.8	76.89	280° g 354° g	ο 6το·7	245.0 256.7	400'0	245.8 237.2	47c-8	224.2 298.0	\$30.0
	2 35	11	84.2	77.24	262.2	626.0	231.0	401'5	231·3 232·8	475.8	229.7 207.0	52.1.2
			96	77 54	288.7	6010 Y	245.8	J TYT J	240°G	+75 0	234.9	554 4
	2 49	12	83.0	77.80	339.0	o o34.3	306.2	492'4	2039	478'0	297°0 234°2	533.5
	36	13	83.2	78.30	294 9 343 0	о б41·3	260.7 230.3	493'3	266.7 214.2	483 .0	269°0 265°6	537.2
	3 21	14	84.3	7 ^{8.} 75	304.0	649.1	233.2	49 <i>5</i> °5	236.9 245.1	484.4	230.5 202.5	541.4
	3 33	15	83.7	79.11	304°0 347°5	655.5	249.3 244.0	496 · 3	252.6 227.2	482.0	278·8 260·8	542 .2
12th	7 28 A.M.	ıq	63.2	63.88	245.9 132.2	379`4	219.1	500.1	247.8	472.2	284 . 0 242.8	530.2
	7 44	17	64.3	63.79	187.4	3780	252.9	505.1	251.1	4 75 ' 7	263.1	532.7
	7 58	18	64.8	63·76 [•]	177.9	378.3	249 0	497.8	249.7	476.8	262.2	530.3
	8 13	19	65.2	63.76	186.9 198.9	379'3	255°0 244°8	496 [.] 2	224 · 9 273·5	477.0	205 [.] 5 270 [.] 8	531.9
	8 35	20	66.0	63.88	180.9 190.3	378.0	249.0 249.0	494 [.] 6	201°5 225°9	47.5 6	258.6 256.0	531.0
	8 c1	21	67.0	61.05	196.4 171.5	282.1	243 . 2 261.0	402.8	247 [.] 3 214 [.] 1	474.6	273.2	5270
	- بر - م	۲ نم م	60	~+ ~j	200.5	,00 -	230.5	193 U	258.0	4/4 0	276.7	J~/ 0
	95	22	08.3	04.52	207.7	388.3	228.9	4000	239.2	471-1	205°0 259°4	520.9
	11 58	23	79'2	70.10	241°2 231°2	474'7	209'7 241 ' 4	45 3 °5	184 . 4 254.6	441.2	222 .2 263.0	487 · 8
	о 15 р.м.	24	79.0	70.90	207.5	491.0	208 [.] 0 210.2	459 [.] 6	198.8 210.1	441.3	248.0 237.2	4 ⁸ 7'5
	0 32	25	80.4	71.76	275.8	505.8	225.2	460.5	204.2	441.3	247.0	49°'7
	o 44	26	81.0	72'41	22/8 279 2 234.4	515.9	233 0 222°0 235°0	459'3	2347 209.8 227.6	439 [.] 6	241 3 255 · 8 231 ·4	4 ⁸ 9°5

after set No. 287-(Continued.)

	М	ICBOME	TEE REA					
		= 1.3	7810 m.y. of 📕					
i								_1
f comparison		D		Е		Н		Remarks
No. 0	K L	K in terms K L of K I		K + L in terms of K	K L	K + L in terms of K	Met	
	+	+	+	+	+	+	+	
7	362.4	565 .0	268.4	507.2	279.0	515.1	510.4	
8	313.3	566.1	230 5 286 9 227 8	516.9	233.8 274.8 226.8	5139	513.0	Lieutenant Herschel at micrometer K ;
9	358.7	574.0	276·8 235·6	514.7	296.7 218.8	517.0	5157	Mr. Hennessey » L.
10	348.2 225.0	575 '4	265.0 250.8	518.3	276·1 242·2	520.7	5177	
11	350°6 223°6	576.4	271.0 244.2	517.0	282·3 236·4	521.0	519.9	
12	335.0	577.1	289.8 228.3	520.3	216.5	522.9	520.7	
13	267.7 311.1	581.8	255°1 265°4	523.1	263.7 258.2	524.4	523.8	
14	304°2 281°7	588.7	262.7 260.0	526.5	2б9°2 253°б	525.3	526.9	· ·
15	287·3 295·7	585 .9	277 [.] 9 245 [.] 6	525.9	255·8 264·8	523.2	525.9	
ıq	285.3	570.8	280 · 2	516.2	293.3	515.4	517.0	Lioutenant Herschel at micrometer K;
17	289.4 282.0	574.2	273°3	513.8	269.3	514.7	519.4	17
18	284·8 285·2	572.8	266 8 213.7	512.9	266'o	514.4	517.2	•
19	296°0 276°6	575-3	264.7 240.6	516.2	266.7	513 .8	518.5	
20	274 ·4 293 2	570.2	258.6 254.5	515.0	264.5	516.0	517.4	Observers changed places,
21	283.6 283.7	570.1	238.7 276.2	517.0	264.7 240.1	516.5	516 .0	
22	260.0 301.2	564.2	263.0 248.8	514.2	254.7	514.4	512.9	
23	273.7 253.4	529.0	223 4 246 4	472.2	237·0 249·4	4 88 ·8	478 [.] 9	Lieutenant Campbell at micrometer K; Mr. Hennessey
² 4	284.4 243.2	530.0	232.0 238.1	472'4	256·4 227·6	486.2	479 ° 5	······································
25	282.4 251.3	536 . 2	205.7 266.4	474'7	218.0 266.4	587.0	481.7	
26	302.0 230.7	535.0	240.7 233 . 4	476.4	260 .4 226.2	4 88·8	481.4	

IX______

IX______i2

BANGALORE BASE-LINE

About the middle of the base-line,

•

	observing A			rature of A		M 1 (CROMETE Division of F	$\mathbf{E} \mathbf{E} $	NGSIN Inch [a.6] or	DIVIBIO Steel Foot ==	N S :	
1868 Føby.	the times of	omparison	ure of Air	d mean tempe	Me F	an		A	-	В		С
	Mean of	No. of c	Temperat	Corrected	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K
	h. m.		-		+	+	+	+	+	+	+	+
12th	0 55 P.M.	27	80 [°] 8	72 [.] 93	281.2	524.9	234.0 232.6	45 ^{8.8}	226.8	439.5	272.6	490.9
	ı 7	28	80 [.] 8	73 [.] 47	272.7	533.3	218.9	462.1	186.1	439' 0	234.9	495 [•] 7
	1 19	29	81.3	74 [.] 03	2501	542.7	240 [.] 8 215 [.] 2	460 °0	250.4 208.1	442.2	258.3 252.0	495.6
	1 31	30	81.2	74.55	250°3 300'8	553-3	242.4 200.1	461.4	232°1 199°9	441.8	241.2 248.0	499 [.] 7
	1 56	31	82.8	75.01	250°0 310°5 240°2	562.1	252.8 238.8 212.0	454.8	239 [.] 6 219 [.] 6 218.0	439•7	249'3 274'8 217'0	494 [.] 8
	2 6	32	83.3	76.02	333.3	570.0	213.7 242.6	45 ^{8.} 7	185.0	44 °'9	260.9 230.1	499'3
	2 17	33	83.4	76 [.] 45	338 . 1	577*3	245.1	460.9	200.0	442.3	267.4	498.6
	2 29	34	83.0	76·88	2309 335°1 240°4	586.9	192°0 265°6	460.3	2540 172 . 4 267.0	442'0	281.8 210.0	500.2
	2 40	35	83.1	77.26	345.0 245.1	592.2	226.9 224.0	463.2	204°6 236·4	443'3	272.9	49 ^{8.} 6
	2 50	36	82.8	77.60	351.7	5 9 5'7	232.8	462.3	208.7	44 ² '4	282.3	502.9
	3 0	37	83.0	77 [.] 94	358.9	602.4	226°6	462.6	209.5	443.5	260.3	500.2
	3 13	38	83.0	78 [.] 38	372 ·8 230 [·] 1	605.3	219 [.] 6 241.0	463 · 0	213.9 228.5	444 [.] 6	276°6 227°0	505.8
13th	7 58 л.м.	39	66•3	64.96	182°2	359.1	243.0 210.1	4 55 ·8	188.8 250.2	440'9	266 . 1 224 . 4	492.7
	8 18	40	67.4	65.01	180°9 179°8	362.2	211.7 251.2	4 65 • 4	217 [.] 8 219 [.] 0	438.9	248 [.] 1 242'0	492.2
	8 33	4 I	68.1	65.15	183.0 180.3	362.1	223°1 234°4	459.8	225.7 210.3	438 [.] t	246 [.] 6 243 [.] 3	492*3
	8 51	42	69.3	65.43	207 ^{.0} 158.4	367.0	225°5 227°0	454 ` 7	239'9 190'0	431.8	243 Ó 238 4	4 ⁸ 4'3
l l	96	43	70.2	65.23	220'3 152'4	374.2	206 [.] 6 244 . 0	453.0	217.4 213.2	432'7	228 [.] 8 250.2	481.2
	9 19	44	71.3	66.08	210 [.] 3 170 [.] 2	382.2	244°2 200°2	446.4	239°2 188°2	429'2	231.9 248.3	482.0
}	9 32	45	71.9	66 [.] 48	188.1 188.1	390.0	207°2 235°2	4 44`7	225°6 196°0	423.2	232.5 242.0	47 ^{6•} 9
	11 15	46	77'4	69.93	227°5 209°5	439 [.] 1	178.4 251.8	432.7	181.3 231.2	414.8	238.0 238.8	479'1

•

after set No. 287-(Continued.)

	M	LICBOME = 1.37	TER REA (810 m.y. of A	. DINGS I . = .9903 × 1	N DIVIS Division of L	IONS		
o. of comparison	D K	K + L in terms	F	K + L in terms	F	H K + L in terms	Mean of the compensated bars	Remarks
8	L	of K	L	of K	L	of K		
		,			1			
27	318.9 210.4	540.2	244 . 4 233.1	+ 479 [.] 8	− 250°0 236°1	4 ^{88.} 4	483°0	
28	264·8 273·1	540.0	191°5 287°4	481.7	191 . 4	485.4	484.1	
29	311.1	544.3	243 [.] 9 226 [.] 2	482.4	256.7	489.8	485.8	
30	282.7	543.2	215°1 267°2	484.9	230'0	489.5	486·8	
31	302.6	540'9	262.2	486 [.] 2	240.9	486.3	483.8	Observers changed places,
32	279°9 250°6	542.0	235.8	489.3	239.2	484.3	485 [.] 8	
33	315.7	543.9	245.5	4 ⁸ 9 . 4	232.8	485.1	4 86·7	
34	312.0	546.9	253.4 236.1	491.8	238.4	486.8	488.0	
35	335.2	546.5	248.4	491.5	240.4 240.4	489.2	488 [.] 6	
36	343 [.] 4 203 [.] 0	54 ^{8.} 4	260.7 225.4	488.3	258°0 220°0	495.3	489.1	
37	319°0 225°3	546.2	252.8 237.0	492.1	244.0 246 8	493.2	4 ⁸ 9 [.] 7	
38	320.0 221.0	549 ·8	257.3 232.3	491.9	260.0 228.9	491.1	491.0	
39	310.5	537.6	264.2	486 [.] 2	241.8	478-2	481.9	Lieutenant Herschel at micrometer K ;
40	268.9 265.0	537 *4	247°2	485.3	233.2	477.4	482.8	Mr. Hennessey _n L.
41	270'0	533.4	235.8 235.8 247.8	486 . 0	2268	474.4	480.7	
42	254.4	530.3	236.7	478.0	230.5	473 [.] 1	. 475 ' 4	Observers changed places.
43	252.4	529.5	246.4 225.8	474'4	248 . 4 222.0	472.6	474'0	
44	265.3	529.4	246 [.] 8 223 ^{.7}	472.7	227.8	471.3	471.9	
45	258.1	525.8	237 [.] 6 226 [.] 0	465.8	244.4	471.8	468.1	
46	249 ^{.8} 258 ^{.0}	510.3	227'5 227'1	456 [.] 8	223 ^{.5} 237 ^{.0}	462.8	459'4	Lieutenant Campbell at micrometer K; Lieutenant Herschel "L.
]		/ 1		-37 0			Lacutuant nerotuca ,, L.

IX_₁₃

About the middle of the base-line,

observing A			rature of A	MICROMETER READINGS IN DIVISIONS 1 Division of $K = \frac{1}{21732 \cdot 71}$ Inch [a, b] on Steel Foot ==									
1868 5 Feby.	mparison	ture of Air	l mean tempé	M	ean A		A		В		С		
Mean of	No. of œ	Tempera	Corrected	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K		
h. m.		o	o	+	+	+	+	+	+	+	+		
13th 11 28 A.M.	47	78.5	70.24	232°6 216°0	4 5° '7	201.Q 231.1	435.0	176 .9 238.1	417.3	240 [.] 3 227.4	469.9		
JI 42	48	79'5	71.12	227 [.] 6 233 [.] 2	463.1	210.2 210.2	431.2	225 .4 188.2	415.4	231.0 236.2	469.5		
11 54	49	79 [.] 6	71.75	246 [.] 0 222 [.] 0	471.1	208.3 210.2	429 [.] 6	207 · 4 204·2	413 [.] 0	228·6 236·3	467.2		
0 7 P.M.	50	80.3	72.32	260 ^{.2} 217.8	480'1	217.0 212.2	431.3	211'0 199'3	412.3	235·I 227·0	465.2		
o 38	51	81.Q	73'72	242°I 250°3	494'9	215.0 208.0	425.0	213.5 191.4	406.8	227·8 234·2	464.3		
0 50	52	82.0	74.33	250.4	505.3	202.9 220.5	425.0	201°0 204°0	407.0	239.2 222.0	4 63 ·4		
II	53	81.8	74 ^{.71}	245°I 265°O	512.7	212°0 207°2	421.3	222.8 183.0	408.5	235.2 236.1	463.2		
• ^{I 14}	54	81.2	75.18	250.7	520.3	211.9	424'7	207 [.] 7 200 [.] 0	409.7	225.2 237·I	464 .0		
1 26	55	82'4	75.63	264 .0 261.0	527.0	205.5 215.1	4 23 '0	205.7 201.8	409.2	235.2 230.2	467.7		
24	56	83.2	77.07	266 [.] 5 276.2	545 '4	200.0 211.4	419.2	202°9 205°8	410.2	242.0 210.2	460'3		
2 19	57	83.2	77.52	277 [.] 3 275 [.] 7	555 .7	219 [.] 2 202.8	424'0	195°6 216°2	413'9	241.5 220.3	464 .0		
2 33	58	83.8	77 '9 5	284.2 278.6	565.2	205°0 218'8	425.9	209'0 205'3	416.3	232 . 4 232.0	466.7		
2 54	59	84.4	78.26	291°7 279°8	574.3	208.1 210.5	426.3	198.0 213.0	413.2	228·9 240·4	4 7 1 .7		
3 6	бо	84.9	78.88	292°1 284°5	579 ' 4	208.8 208.8	427.4	211.0 203.0	416·0	242°I 227°2	47 ¹ .5		
3 18	бı	84.8	79°24	289 [.] 2 293 [.] 9	586.0	209 [.] 2 220 [.] б	4 32 .0	201.3 212.1	418.5	236.2 234.0	4 72 ° 5		
14th 7 OA.M.	62	61.8	64 [.] 66	185.Q	318.0	255 ' 4 168'0	425 .0	246.5 161.0	409.1	244 ' 0 215'0	462.0		
7 10	63	62.3	64.53	193°0 124°5	318.7	227 [.] 2 105 [.] 0	424°T	219.4 187.1	408 ·3	212.7 247.0	462.1		
7 20	64	62.9	64.40	101.0 515.3	317.3	208.8 216.4	4 ² 7 [•] 3	224.7 181.0	408 . 4	224.2 234.0	460.5		
7 29	65	63.0	64.32	200.8	315.8	225.4 108.6	425 ' 9	230.4 125.0	407'1 ·	226.8	462.1		
, 38	66	64.0	64.27	170'9 146'0	318.3	244 [.] 6 182 [.] 1	428.5	234 · 9 171·0	407 [.] 6	2164 2439	462.7		
		·		146.0		182.1	-	171.0		243.9	-		

IX_14

after set No. 287-(Continued.)

	Д	Гісвомв == 1.97	TEB REA 7810 <i>m.y.</i> of ,	A == .8808 × 1	In Division of	SIONS L		
comparison	I)		E		Н	n of the pensated bars	- Bemabus
No. of	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	Mea	
		т	· . 上	-			. 1.	
47	247'I 261'0	510.2	231.2 224.0	457 °4		т 464 ·2 .	т 459 [.] 1	
48	264.0 246.0	512.4	231.0 223.2	45 ^{6•} 4	229.1 232.2	4 63 . 6	458.1	
49	269.0 240.0	512.0	22Ğ·I 228·7	4 57 ° 0	238.0 223.8	4 64 .0	457'2	
50	252°0 257°2	511.2	223.0	456 [.] 6	218·8 230.0	460.1	456.3	
51	244.9 263.5	511.0	223.8 225.0	451 °0	236.0	453 . 1	451.9	Observers changed places.
52	261.0 247.2	510.0	218.7 232.5	453 °5	233.3	452°1	4 52 .0	
53	253°0 253°0	508.2	228.9	4 47 ' I	231.2	451.0	450.0	
54	247'9 258'3	50 8.7	220'2 225'0	448 .0	235.7	451.8	451.3	
55	256.3 252.0	510.8	229.2 222.6	4 54 '0	225 . 2	452.3	452.9	
56	244.0 201.1	507.7	216.0	4 54 '0	215.7	4 49 '0	45 ° 2	
57	252 [.] 8 254 [.] 8	210.1	236.0 218.1	456.5	227 °4 222°1	451.7	4 53 °3	
58	257°6 253°5	513.0	229 [.] 8 222.4	4 54 ° 4	221°5 220°5	4 53 ·2	4550	
59	254 [.] 8 259 [.] 7	517.0	221.8 235.0	459'1	228.8 225.4	456 '4	457 °4	Lieutenant Campbell at micrometer K;
бо	255.7 259.0	517.2	22Ő.0 229.4	457 °6	224·8 228·1	455°I	457 °5	Lacuscularity fileraction po
61	259.0 259.5	521.0	222.8 233.1	4 58 ·2	230'4 224'8	457'4	4 59 '9	
62	261.8	495° I	243.0	447 * 4	249 [.] 6	· 440°6	44 ^{6.} 5	Mr. Hennessey at micrometer K :
63	231'0 211 '1	508.2	201.8 214.6	450.5	189.1 214.4	441.0	449'2	Lieutenant Campbell " L.
64	294.2 219.8	509.0	233 [.] 6 217 . 4	446.5	225.3 222.2	442'1	449'1	
65	287.0 231.8	5°9'7	226 .9 216.7	447 [.] 6	217·8 233 [.] 8	444'2	449'4	
66	275.2 268 .8	505.3	228.7 212.2	448'1	208·4 222·б	443.5	440'3	
	234.3		233.0		218.8	ע ערד	נ עדד	

IX_____15

1X_₁₆

•

•

.

BANGALORE BASE-LINE

About the middle of the base-linc,

serving A	u	of Air	Corrected mean temperature of A	MICROMETER READINGS IN DIVISIONS 1 Division of $K = \frac{1}{21732\cdot71}$ Inch [a.b] on Steel Foot ==								
न्व 1868 रु Feby. मा	o. of comparis	mperature of 1		Ma	ean		A		В		С	
Mean of t	×	Ĕ		K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	
h. m.			•	₊	+	+	+	+	+	+	+	
14th 7 47 A.M	. 67	64 [.] 8	64.24	164.7	318.5	22 0 0	423.9	235 ° 4	406.9	229 . 9	456.3	
8 21	68	68.8	64.42	180.0	327.1	237 [.] 6 182 [.] 8	422.2	236.7	404 [.] 6	222.9	460.2	
8 32	69	69.4	64.62	169'4	329.0	215.7	420°5	200.0	403.1	236.0	456.2	
8 43	70	70.1	64.86	171.2	333.7	204.0	418.0	201.8	401.2	231.7	455.3	
8 53	71	71.0	65.14	171.2	338.2	213.4	415.0	197°6 197°6	399.1	235.4	452.8	
92	72	71.8	65.47	173.5	343 °4	223 0	416.8	199.3	39 ^{6.} 6	215.3	450.9	
9 13	73	72.7	65.86	180.4	320.1	203.0	410.2	198·4 207·б	39 4° 4	210.0	447'4	
11 33	74	82.3	72.53	252.0	444.8	204 [.] 8 217 [.] б	379 [.] 7	185.0	362 ·9	209.8 206.8	418.7	
11 48	75	82.0	73:29	190'9 245'7	461.0	100.2	385.2	178.3 174.0	365.7	209.8 212.9	419.9	
O I P.M.	76	82.0	73.96	^{213.2} ^{237.4}	471.4	193.3 191.2	384.3	189 [.] 2 178.0	370.3	205.0 207.7	422.8 .	
0 12	77	82.0	74.55	231.7 242.2	481.3	191.5 198.6	379'7	190.4 190.5	372.8	213.0 209.2	427'1	
o 38	78	84.0	75.78	· 230.7 248.6	502 ° 7	178 4 186 4	384.3	180 [.] 8 182 [.] 4	373.7	215·8 212·9	429.1	
лг	79	83.9	76.82	251.6	519.4	196 .0 192.3	390.5	189.4 192.5	373.8	214.1 218.1	430.4	
I 13	80	84.4	77.30	257'I 264'I 261'I	527.8	196 [.] 3 194 [.] 2 193 [.] 0	389.1	179 [.] 5 198.3 176.5	376.5	210.2 210.3 219.4	431.9	
		Means	71.48		477'73		447·64		430.33		484.93	
							At 1	North-E	ast-End	of the	base-li ne,	
Mar. h. m.		<0°	C 0 ⁰						.00			
<i>(</i> μ 7 27 λ.Μ.	I	08.2	08.73	183.0	309.0	205 '4 200' 0	407*3	240 ⁻ 3 143 ⁻ 1	304.0	210.7	431.0	
747	2	09 7	08.23	178.7	304.4	207.0 197.0	405.9	210'I 175'9	387.2	199·8 231·7	433'7	
				1								

after set No. 287-(Continued.)

١

	м	ICBOMET == 1.27	EE REA 810 m.y. of A	DINGS I: = '9903 × 1	N DIVIS	IONS		
omparison	D		·]	E]	H	an of the ipensated bars	Bemars
No. of c	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	Mean compt bi	
	+	+	+	+	+	+	+	
67	299 . 4 205.6	507 .0	226.6 215.0	444.6	224°4 215°8	442.3	446 [.] 8	
68	222.9 277.8	503.4	210°0 226°3	444.2	217.3	445.0	446.7	Observers changed places.
69	255.6 246.6	504.0	216 [.] 0 223.0	441'2	223 [.] 3 217 [.] 0	442'4	444'7	
70	251°0 247°8	501.2	223.0 213.9	439.0	222.9 216.2	441'2	442.2	
71	248.0 251.2	501.2	213.0 221.3	436.2	233.0 203.9	438.9	440.7	
72	248.0 251.6	502.1	216.0 218.8	436.9	220°1 219°б	441.9	440'9	
73	258.6 235.3	496.2	221.2 213.1	436.7	223.0 212.0	437'1	437.1	
74	232°1 226°8	461.1	209.9 189.0	400'8	193.9 215.3	411.3	405 [.] 8	Lieutenant Herschel at micrometer K ; Mr. Hennessey L.
75	232.2	403.7	188°2 215°б	4 °5'9	200.I 212.3	414.2	409.2	
70	223.8	408.7	205.2	409.4	203.2 208.6	413.8	411.0	
77	2349 2319	409'1	207°1 198°8	407.8	209°0 205°4	416.4	412.3	
78	220.9 242.6	4719	196.6	415.5	2040	417.4	415.3	Observers changed places.
79	2300 235°I	470 2	210.9	417.8	204.7	410.8	417.0	
80	2307 236-2	4/5 2	214.2	417.4	207.2	417.1	4179	
feans		529.17		471.80		473'41	472.88	
fter th	ie measu	rement.	·		l Division	$K = \frac{1}{21726.41}$	Inch [a.d.] on S	Siteel Foot = 1.37847 m.y of $A = .9905 \times 1$ Division

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
--

IX_₁₇

IX-18

•

After the

	of observing A			d mean temperature of A		M 10	BOMBTE Division of	$\mathbf{E} \mathbf{R} \mathbf{E} \mathbf{A} \mathbf{D} \mathbf{I}$ $\mathbf{K} = \frac{1}{21726 \cdot 41}$	NGS IN Inch [a.b] o	DIVISIC m Steel Foot =	8 X (
1868 Mar.	ae times of ot	nparison	rre of Air		<u> </u>	lean A		A	-	В		с
	Mcan of th	No. of cor	Temperatu	Corrected	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K
	h				+	+	+	+	+	· +	+	+
7th	7 58 л.м.	3	70 ^{.7}	68 [°] 51	219.5	362.8	228.6 175.0	405.3	250 . 7 132.1	384.1	293 [.] 9	4 34 '9
	8 8	4	71.3	68•53	224·I	3 63 · 9	252°4	40 5 .9	255.4 127.8	384 ·4	235.5	4 33 · 4
	8 29	5	72.0	68 [.] 73	203.6	36 5.7	279 '2	39 ^{8•} 4	280.7 06.5	378.1	185.0 247.1	434.2
	8 40	6	73.5	68·88	172.9	368.8	203.5	400'0	206 [.] 8 166.6	375 [.] 0	197.5	431.1
	8 50	ל	74'0	69.05	204.0	370.7	190'4	397 ·8	211'0 160'4	372 ·9 ·	194.5 237.1	43° [•] 5
	8 59	8	74.0	69.24	221.5	372.6	231.0 101.2	394 ·3	209'0 162'1	372.7	223.6 202.8	428.3
	11 7	9	82.4	73.43	251.6	445.0	240*7	385.1	262·4	364.1	267.0 161.6	430.3
	11 IG	10	83.0	73.82	267.1	451.2	259.9 122.0	384.7	253 [.] 8	366.2	264.2 165.0	430.8
	11 25	11	83.5	74.22	263.0	4 57 [•] 5	263 . 7	385.1	245·8 118·8	365.7	252.9	429.8
	11 35	12	83.7	74.58	249.6	463.2	700.1	384.4	282.0 81.0	366.8	244.0 185.2	431.0
	11 45	13	84.1	74.95	207:6	471.0	232.0	388. 3	217·7 140·1	368.2	209 [.] 0 210 [.] 0	4 30'7
	11 53	14	84.7	75:35	2009	478.3	188.0	385 .3	200'3 167'0	368 [.] 9	208.0 208.0	429'7
	0 12 P.M.	15	85.1	76.13	2/30	479 '6	204.0 167.6	373 -2	225.0 131.8	358.1	215·3 204·2	421.2
	0 19	16	85.0	76 [.] 45	225.9	488.0	207.5	372.0	203.8 153.3	358.0	208.0 210.8	420'8
	o 28	37	86.0	76 [.] 78	250.0	493 .0	250.0	373.0	262.0 04.8	357 .7	258.1 160.8	420'4
	o 36	18	86.1	77.10	291.0	496.5	267.6 105.1	374.0	268.0 87.6	356.4	255.0 162.0	420'1
	o 43	19	86.3	77 . 41	201.0	503.9	279.6 03.0	373.5	295.0 62.9	358.5	296 [.] 5 118.4	416 [.] 0
	0 51	20	86 [.] 5	77 . 71	234.8	510.4	230.4 143.0	375.7	240 [.] Ó 115 [.] Ó	357'3	223 [.] 1 19 <u>5</u> .б	420°G
	I J2	21	87.0	78.52	250.8	524.7	248·2 126·6	376.0	239.7 118.1	358.9	252°3 168°0	421.9
	1 19	22	87.3	7 ^{8.8} 5	242'0	529.2	192.4	375.1	193 .3 167.0	361.0	177°5 243°4	423-2
	1 27	23	87.5	79'14	224'7 304'2	531•8	225.0 149.1	375 .5	210 [.] 3 147 [.] 8	359.5	199.1 221.1	422.3

.

measurement—(Continued.)

	М	I C B O M B T == 1.27	ER REA 847 m.y. of A	DINGS I = -9905 × 1	N DIVIS	5 I O N S L		
No. of comparison] K L	D K + L in terms of K	E K	E K + L in terms of K] K L	H K + L in terms of K	Mean of the compensated bars	ф Remarks
	}		· · · · · · · · · · · · · · · · · · ·					
	+	+	+	+	+	+	+	
3	309.9	485.2	293.8	425.2	240.2	418.9	425.0	
	173.0		130.5	ìo	177.0			ч.
4	251.8	479'0	217.8	424'8	117.0	410.0	423.9	
5	106.3	470'0	2050	421.2	295.0	416.2	421.0	
5	281.0	7/99	228.2	4-4 -	202.4	410 2	421 Y	Lieutenant Campbell at micrometer K ; Mr. Hennessey L.
6	198.0	482.5	193.3	422.6	194.0	417.4	421.4	······································
	281.8	•	227.2		221.3		•••	
7	205.7	481.4	224.3	420'3	231.0	415.4	419.7	
8	2731	180.1	194.1		182.0		0	
0	212.4	400 1	106.2	421-2	100.0	414.4	418.5	
0	260.0	478.2	260.1	416.3	261.0	A 1 8·7	416.4	
	215.2	17	145.8	+-· J	155.3	4-07	4-34	
10	279.0	479'5	273.0	417.2	249'4	418·9	416.3	
	198.0	0	142.8		167.9			·
11	271.3	481.9	257.0	418.1	203.9	417.8	416.4	
12	2000	470'7	266.8	4 18° ¢	265.0	417.4	4.76.2	
	217.0	7/9/	1 200.0	4.0)	141.0	41/4	410 3	
13	205.6	480.9	206.6	4 18∙6	183.3	410.2	417.7	
-	272.7		210.0	•	234.0			
J4	176.1	482.7	201.7	422.4	214.0	418.8	418 .0	
	303.7	160.9	218.0	0	202.9			
15	2003	4090	210.2	400.9	2230	404.0	400.0	
16	207.5	471.8	107.5	407.0	201.8	401.8	406 .0 ,	
	261.8	7/- 2	208.4	τ-/ y	201.1	7*7 *	T •	
17	272.3	470'3	284.7	410'1	265.5	407.7	406 [.] 6	
	196.1		124.2	~	140'8			
18	270'8	469.9	200.0	408.4	287.2	407.3	400.0	
10	19/2	4 ¹⁴ 1 ⁴ • 5	212.0	410.8	226.4	4.0.0	407'0	
• • 9	278.3	4/31	104.0	4100	180.1	400 3	40/0	
20	215.9	476.8	219.1	411.2	212.9	407.6	408:3	
	2 58 [.] 4		190.8		192.8			
21	295.4	473'1	244.8	411.3	232.2	407'9	408.2	Mr. Hennessey at micrometer K ;
	2220		104.0		174.0		0	Lieutenant Campbell " L.
22	236.0	4/13	1 (0.0	411.2	2132	4 07 [.] 7	400.4	
23	228.3	471.5	226.2	411.0	194'1	∡ 08·8	108.1	
	240.6	71-2	183.0	7	212.7	7-00	TTT	
					-			I

IX_19

IX___20

•

.

.

•

, BANGALORE BASE-LINE

After the

	observing A		. 5	ed mean temperature of A	MICROMETER READINGS IN DIVISIONS ¹ Division of $K = \frac{1}{21726\cdot 41}$ Inch [a.b] on Steel Foot ==								
1868 Mar.	the times of	omparison	ture of Air		M	ean A		A		В		С	
	Mean of	No. of a	Temperat	Correcte	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	
	h. m.				+	+	+	+	+	+	+	+	
7th	1 35 P.M.	24	87.6	79.41	264.2	537.8	2538	377'1	247.8	363.9	200.4	423.5	
	I 42	25	87.8	79 [.] 68	29.5.8	542.7	198.4	376.1	228.3	362.9	222'1	423.2	
	I 49	26	87.9	79'97	259.4	547 * 2	236.4	377.5	278.8	365.7	213.4	425.0	
	2 14	27	87.9	80 [.] 86	285 I 245 I	564.2	253 . 4	379.0	226.4	369.2	209.0 251.5	427.4	
	2 20	28	88 [.] o	81.02	208.7	568·0	125°0 200'4	380'7	141.4 201.0	369.9	174 . 5 197 . 7	428.9	
	2 27	19	87 [.] 8	81.27	355.9	571.9	178'0	384.0	100'7 225'7	368 · 6	229 .0 232.9	427"1	
	2 34	30	87.5	81.20	340'4 235'0	576.1	180.1 226.2	382.4	141.5 ' 240.2	369.1	192.4 240.9	427.7	
	2 42	31	87.9	81.2	337'9 246'2	585.0	154°4 201°5	384.0	127°4 182°1	369 [.] 6	185°0 214°6	430'0	
	2 50	32	88.2	81.93	332.0 244.0 330.0	586.9	180.8 234.б 150.2	386-2	185°7 163°6 204°0	369 6	213'4 175'9 254'0	432.3	
041		• •	60.8	70'08	226.6	00 5. 1	1071			11 <i>1</i> 10			
эш	7 20 л .м.	33	090	70 20	107.5	333 1	148.4	340.9	169.6	3350	229.3	303 0	
	7 33	34	70.2	70.18	224.3 109.8	335.3	169 [.] 8 173 . 0	344.5	168.2 160.2	330.8	180.3 182.0	380.1	
	7 45	35	71.5	70'14	192.9 141.4	335.7	169'9 172'3	343'9	164.6 162.8	332.0	177.0	381.8	
	7 57	36	71.0	70.13	185.9 147.8	332.1	174°6	343.0	164.2	329.0	187.7	378.1	
	8 29	37	74 [•] 5	70 [.] 50	194.0	336.8	188.9	335.8	178.8	319 ' 4	171.1	372.4	
	8 44	38	75.0	7° [.] 79	179.0	341'4	167.4	333.0	-393 152.6	319.3	143.3	369.7	
	8 58	39	76·7	71.13	173.3	347.1	171.3	334'7	164.9	318.0	180.2	370.8	
	9 10	40	77 [.] 6	71.40	194.3	351.8	177.8	334.5	165.9	316.4	182 3 182 6	371.8	
	11 3	41	84.9	76 [.] 47	204.0	4 45 [.] 0	+33 ≠ 225°2 108°8	335.0	167.2	317.8	183.8	374.0	
	11 15	43	84 [.] 6	76 .9 0	193.6	450.3	167.1	335.7	171°2	322.7	185.0 180.1	377.5	
	11 24	43	85.2	77 [.] 3 I	192.0 203.0	459.0	178.8	338.2	173.4 146.2	321.0	180.0 180.0	379 ·8	

•

- - -----

•

measurement-(Continued.)

	M	ICROMET == 1.2784	TER REAL 7 m.y. of A =	DINGSIN = •9905 × 1	DIVISIO Division of L) N S		
mparison	I)	I	E	E	I	of the sneated ars	Remarks.
No. of co	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	Mean compe	χ
			<u> </u>					
24	+ 210'4 260'0	+ 472 ' 9	+ 181.1	+ 412.3	+ 160'7 248'5	+ 411.0	+ 410'2	
- 25	197.4 276.0	476'0	229°4 181°4	412.2	232°5 174°3	408.5	409'9	
26	249'4 220'5	472'0	216 [.] 6 104 . 1	412 · 6	242.3 163.5	407 '4	410 .0	
27	249 [.] 8 225 [.] 0	477 ° 0	243°4 170°0	415.0	209 [.] 5 200 [.] 7	412'1	413 ' 4	
28	243'2 *133'7	378-2	214'4 200'0	416.3	208 ·4 202·3	412' G	397.8	
29	229 ' 4 244'5	476'2	213°2 200'7	415.8	220 [.] 8 190 <u>.</u> 5	413'1	414.1	
30	261.3 212.2	475°5	261.3 155.5	418.3	225.3 187.8	414'9	414'7	
31	268.8 208.8	479'6	212.3 205.0	419'3	230 [.] 8 180 [.] 0	412.2	415.8	
32	190 [.] 8 286 [.] 9	480.2	239 . 4 179.0	420'I	230°2 181°8	4137	4171	
33	181.3	424 ' 4	192 · 9	372.3	220.5 140.0	362.4	370 .7	Lientenant Herschel at micrometer K; Mr. Hennessey "L.
34	207.3	423.1	183 .4 186.3	371.2	178.8 180.2	360.2	368.2	
35	214·9 204·4	421.3	189·4 176·8	367.9	181 [.] 5 179.1	362.3	368.2	
36	219 [.] 3 200 [.] 4	421°6	175°2 192°6	369.6	178.8 181.0	362.1	367.3	
37	218.4 202.7	423.0	205 .5 157.5	364.2	170'4 183'5	355 ° 7	3 61.8	Observers changed places.
38	202°2 217°4	421.2	158·3 200'8	301.0	177°6 177°2	356.2	360.2	
39	219.9 197.6	419.4	173 .9 187.9	363.6	179'4 175'2	356.3	360.2	
40	196 [.] 6	419'7	177 .4 183.2	362.4	182.8 172.8	357.3	360.4	
4 ^I .	218.0 203.8	423.8	190 .4 170.8	362.8	182.8 182.8	367.4	363 .0	
42	208·7 216·0	426.8	186.6	364 4	190'8 175'5	368 [.] 0	365.9	
43	213 [.] 6 208 [.] 3	423 .9	185.0 177.0	364.9	187 ^{.6} 179 ^{.8}	369.1	366.3	

* This quantity evidently should be 233'7. The mistake was however detected only in correcting proofs for the press, too late to rectify in the calculations : the corresponding correction to the length of the entire base-line is hardly appreciable, being only + '0008 feet.

•

Afler the

	observing A		ature of Air	l mean temperature of A	MICROMETRE READINGS IN DIVISIONS 1 Division of $K = \frac{1}{21726 \cdot 41}$ Inch [a.b] on Steel Foot ==								
1868 Mar.	the times of a	mparison			M	ean A		A		В		С	
	Mean of	No. of 00	Tempera	Corrected	K L	K + L in terms of K	K L	K + L in terms of K	L K L	K + L in terms of K	K L	K + L in terms of K	
	h. m.		o	o	+	+	+	+	+	+	+	+	
9th	11 35 A.M.	44	85.2	77'73	207°6 257°1	467.2	174 .8 162 .0	338.4	1 50.8 1 20.0	320.3	203.6 174.5	379.8	
	о бр.м.	45	87.5	79'14	236.4	494 [.] 6	186.5	342.4	158 ^{.8}	325.9	182.2	384.5	
	0 17	46	87.5	79 [.] 60	253.7	502.4	176.3	341.4	164.9	324.0	187.4	384 [.] 8	
	o 28	47	88.1	80.08	264.9	512.7	103.5	342.1	151.9	324°2	192.7	3 ^{88.} 4	
1	o 40	48	88 [.] 0	80 [.] 56	245.4	522 .3	100·3 172·8	344 °O	170 7	326.3	189.9	391.0	
	1 18	49	89.3	82.04	253.0	547°I	109 ^{.0} 197 ^{.2}	344.6	147 8	332.0	199 2 192 2	390 .8	
	.1 29	50	88 [.] 9	82.42	283.0 266.4	555 [.] 7	146°0 191 °4	346.8	138'5 187'6	334.1	190.7	390.7	
1	1 40	51	88.0	82.82	280.5 277.4	564.8	1 53.9	348 [.] 6	145.1	335 '3	189.2 190.3	395.7	
	1 52	52	8 8·8	83.22	284.7	572.9	181.1 181.1	350.0	107'8 187 ' 4	338·8	204°2 203°2	399.2	
	2 20	53	90 [.] 0	84.15	204 ^{.0} 284 ^{.8}	596.7	168.2 176.8	361.4	182.8	348.7	194'1 201'8	409'0	
	2 30	54	9°'4	84.48	308.9 293.8	60 <u>0</u> .1	182.8 194 .0	364.1	164 · 3 174 [·] 8	352.7	205 . 2 209 . 1	412.2	
	2 48	55	9° [.] 8	85.12	309.3 303.1	621.8	168·5 196·4	371.5	170°2 197°8	359 '9	201°5 179°2	417.8	
	35	56	00.1	85.73	315.7 322.3	637 [.] 6	173 ° 4 195 °8	376.3	160.6 192.5	366·6	236°3 207°0	425'2	
					312.3		1788		172.4		3 10. I		
10th	7 38 а.м.	57	71.2	70.32	168.3	326.8	183.0	333.9	176·8 143·1	321•3	184.7 181.2	367 .6	
	7 52	58	72.4	70.29	167.8	326.7	160.9	335 [.] 6	165.0	321.7	176.7	368 [.] 6	
	8 18	59	73.8	70.40	166.4	<u>330</u> .Q	171'9	334 °0	100.0	321.4	180.2	367.4	
	8 31	60	74.2	70 [.] 50	163.0	332°4	176.2	333'7	154°4	321.5	178.1 180.0	368.9	
	8 46	61	75 ' 4	70 [.] 74	167.2	341'4	178.9	338.4	148.2	324'9	185.0	373.0	
	8 58	62	76 . 1	70 [.] 93	169.5	346.3	160.0	339 . 1	167.0	326.8	182.1	377.0	
	9 11	63	76·8	71'12	175.1 168.3 180.6	350 .0	108.5 184.7 154.0	340.2	158'3 157'2 168'1	326.9	193'0 177'9 197'0	376.8	

IX___22

٠

.

measurement—(Continued.)

	۲	бісвоме — 1.27	TEE REA 7847 m.y. of					
comparison	D		F	2	1	Ŧ	1 of the pensated bars	. REMARKS
No. of	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	Mean	
	+	+	+	+	+	+	+	
44	213 . 4 213.0	429.1	177 ·8 185 ·7	365.3	176'4 191'8	370.0	367.2	
45	213.Q 215.2	430'9	189.2 180.2	371.4	183.1 183.1	371.8	371-2	Lieutenant Herschei at micrometer K ; Mr. Hennessey » L.
46	2203.0	432.1	187.0 186.3	375.0	181.4 192.1	375.3	372.1	
47	221.5	433.8	184.8 188.2	374.8	180.3 180.3	377.2	373 4	
48	201.2	437.7	180.8 180.0	377.6	198.5 174.6	374.8	375 .2	
49	2343 222°I	437.8	180.0	381 .3	195.3	382.3	378.2	Observers changed places.
50	222.3	442.3	196.3 182.6	380 .7	196.8	381.0	379'4	
·51	210.8	440.8	183.8	383 [.] 6	183.3	383 .0	381.2	
52	222.8 221.8	446 . 7	188.8	3 8 5 .7	195°6 180°8	387.2	384 [.] 8	
53	222.2	456.0	206.7 180.2	397 '7	188.2	394°5	394 · 6	Observers changed places.
54	233.1	455.0	213.4 182.0	397.8	197'7	399'5	397:0	
55	210.0	467.7	197°5 206°4	405 .9	194 .0 200.8	405.8	404.8	
50	229°I 238°3	469.7	198.2 198.2	411.4	189.3 220.3	411.3	410.1	
57	211'9	413.7	185.Q	357.9	174.5	323.1	357.9	Lieutenant Herschel at micrometer K ; Mr. Hennessey , L.
58	2012	416.4	179.5 177.7	358.9	179'I 176'0	356.8	359'7	
59	204°G	417.3	187.9 170.7	360.3	172.1	358.0	359'7	
бо	204.9	417.8	174.8	301.1	172.3	356.8	360 ^{.0}	
бі	2070	421.8	175°G	364.1	169.3	362,9	364.3	Observers changed places.
62	200.1	· 423·6	178.0	364.4	176.4	364.3	365.9	
63	2199 205.2	427.1	188 [.] 0 178 [.] 7	368.4	170'0 191'6	363.4	367.1	

IX_23

~ •

IX____24

BANGALORE BASE-LINE

After the

	bserving A	noa	Air	ature of A	MICBOMETER READINGS IN DIVISIONS 1 Division of $K = \frac{1}{21726^{-441}}$ Inch [a,b] on Steel Foot =								
	o 1868 50 Mar. III 9	of compari	nperature of	mean temper	Me A	an		A		В		С	
	Mean of t	Nc	Ter	Corrected	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	
	h. m.			•	+	÷	+	+	+	+	+	+	
	10th 9 22 A.M.	64	77.3	71.35	164'9 188'2	354'9	163·8 177·0	342.5	173.3	320.1	184.5 101.1	377.4	
┟	11 43	65	86.0	. 75'90	175·9 243·8	422'0	200 [.] 6 120 [.] 7	331.2	175.0	319.3	179°0	371.9	
	11 53	66	87.5	76.36	187.3	432.4	168.0 168.0	336.4	153.1	320.0	176.4	372*4	
	0 3 P.M.	67	88.1	76.83	210.9	442.0	100.0	337'9	160.7	320.9	184.5	371.9	
	0 23	68	88 · o	77 ° 47	212.0	454.8	171'1	339'7	170.0	318.2	181.1	376.7	
	1 23	69	89.1	80*25	249.8	512.1	179'9	346.2	164.8	331'2	192.8	389 .0	
	I 33	70	88•3	80.62	246.7	518.9	180.1	348.7	104 0 194 .9	328 1	190.2	386.2	
	I 43	7 I	87.7	80.92	262.0	524.8	175.9	320.1	171'0	330.2	197.0	390.1	
	I 54	72	87. 7	81.25	267.0	530 -4	171.2	3 4 9 '6	175.5	333.1	101.0	389.9	
	2 34	73	89.0	82•42	274.7	554'3	178.1	353.7	177.8	338.8	192.0	39 ^{8.} 7	
	2 43	74	89.0	82.67	273.6	559 [.] 9	181.9	355.8	183.0	342.2	198.3	399.2	
	2 55	75	89.1	83.10	278.4	570 .0	168.9	365.8	172.0	347*2	198.6	400.8	
	<u>3</u> б	76	88·8	83.44	265.5 310.5	578.7	162 [.] 4 190 [.] 8	355.0	184°0 159°4	344.9	189.4 210.0	401.4	
ŀ			Means	76 [.] 46		466.14		361.72		345'95		402'70	

Let the mean length of the compensated bars minus the Standard A at 62° F be denoted by x, and the observed excess of the compensated bars by δ when the temperature of A is t° . Then, the expansion of A for 1° being $(E_a - dE_a)$, we have

$$x - (t^{\circ} - 62^{\circ}) (E_a - dE_a) - \delta = o;$$

Treating the bar comparisons "Before the measurement" as shewn in this equation, we obtain the following series of results :---

measurement- (Continued.)

	М	I C B O M B 1 								
omparison	D		Ē		1	H	of the nsated trs	R E M A E K S		
No. of 6	K L	K + L in terms of K	K L	K + L in terms of K	K L	K + L in terms of K	Mean compe bg			
	+	+	+	+	+	+	+			
64	213.3 200.0	424.3	199°0 167°3	367.9	187 .0 174.0	363.0	367.0			
65	190'0	419.3	171.7	357°t	176.5	364.0	360.2	Lieutenant Campbell at micrometer K ; Lieutenant Herschel "L.		
66	203.1	418.1	193.0	358.4	180.0	362.1	361.2			
67	211.9	420'7	175.7	360.4	178.3	366.1	363.0			
68	203.7	424 *4	179.6	360.3	182.3	366.0	364.4			
69	210 0 212 0 210 2	434 'o	181.5	372.6	186.9	376.8	375.0	Observers changed places.		
70	213.7	434.0	183.2	373'9	177.2	376.8	374`7			
71	225.7	43 3' 7	187.2	378.0	183.0	378.9	376.9			
72	208.8	437'0	183.7	376.5	194°9 181°8	377 '4	377'3			
73	224.8	440'9	194.1	382.9	101.1	383.0	383.1			
74	214.2	443 ' 9	198.0	383.7	1907	385.8	385-2	,		
75	217.4	446 [.] 8	190.9	388 [.] 0	202.8	390.1	389.8	Observers changed places.		
76	221.9 225.0	449 '7	195°7 191°0	38 8 •5	192.9 193.2	388.0	387'9			
Means		449'72		391.47		389·66	390.43	-		

Before the measurement-(Continued.)

			d						ð	
x +	1°15 (E _a	$-dE_a$	-189.1	=	0	x	10 [.] 87 (E	$da - dE_a$	+ 20.2 =	= 0
x +	1.12	"	-186.2	=	0	x -	0.31		-170.3 =	= 0
x +	0.67	"	-172.0	=	0	x +	0.04	22	-172.0 =	= 0
<i>x</i> —	4.33	"	- 75.7	=	0	x +	0.04	,,	-163.1 =	= 0
<i>x</i> –	5.82	"	- 49'2	=	0	<i>x</i> —	0.31	"	- 146.5 =	= 0
x -	7.63	دد	- 25.1	=	0	<i>x</i> —	o.88	"	-133.5 =	= 0
<i>x</i> –	8.88	"	- 6.1	=	0	x -	1.60	,,	-116.9 =	= 0
x -	9.85	"	+ 6.4	=	0	<i>x</i> —	6.12	,,	- 30.8 =	= 0

IX_____25

Digitized by Google

•

Before the measurement-(Continued.)

		d					5
$x - 7.69 (E_a - c_a)$	$dE_a) - 1$	(2.5) =	0	<i>x</i> +	0.1 <u>0</u> (J	$E_a - dE_a$	-165.6 = 0
x - 8·32 ,,	, —	3·0 =	0	x+	0.00	"	-158.1 = 0
x - 8.93 ,	, +	6.4 =	0	x —	0.38	, ,,	-148.7 = 0
# — 9.50 "	, + 1	11.0 =	0	<i>x</i> —	0.66	"	-140.9 = 0
<i>a</i> -10.06 ,	, + 1	18.3 =	0	x —	1.11	"	-129.9 = 0
x —10.64 ,	, + :	25.2 =	0	<i>x</i> —	5.31	"	-48.7 = 0
x —11·27 "	, + <u>:</u>	33.5 =	0	x-	6.11	"	- 3 ⁶ .9 = 0
x-12.03 "	, + 4	+3.2 =	0	<i>x</i> —	7.06	"	-21.4 = 0
x —12.59 "	, + 4	16·9 =	0	x-	7 · 92	"	- 7·4 = 0
x —13.05 "	, + <u></u>	51.2 =	0	x —	8.80	"	+ 4 ^{.6} = 0
x— 13.40 "	, + <u>-</u>	;8·6 =	0	x —	9.80	"	+ 16.6 = 0
x —13.69 ,	, + (50.3 =	0	x —1	11.12	"	+ 36·1 = 0
x — 0.57 ,	, -1	59.1 =	0	x —:	11.91	"	+ 45 [.] 9 = 0
x -0.25 ,	, —10	56.1 =	0	x -1	12.66	"	+ 55 [.] 1 = 0
<i>x</i> 0'0I ,	, —1	70'4 =	0	x -:	13.30	"	+ 64.5 = 0
x+ 0'14 ,	, —1	72.6 =	0	x -1	13.87	"	+ 67°0 = 0
<i>x</i> + 0.21 ,	, —1	70'9 =	0	x 1	[4:24	"	+ 70.8 = 0

And from the mean of these results,

$$x = +52.13 + 6.18 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.743,$$

and $x = 161.78 - 6.18 \ dE_a = 206.71 - 6.18 \ dE_a = L - A;$

where L denotes the mean length of the compensated bars obtained from *all* the comparisons, as represented by the mean micrometer reading $499^{\circ}86$, page IX_____.

In terms of	A - L	B – L	$\mathbf{C} - \mathbf{L}$	$\mathbf{D} - \mathbf{L}$	E – L	H - L
Micrometer divisions.	-28 [.] 68	-40 [.] 16	+ 10.37	+ 59 ^{.8} 9	+ 2·72	-4 ^{.15}
Millionths of a yard.	-36 [.] 64	-51.31	+ 13.25	+ 76 [.] 52	+ 3·48	-5 ^{.30}

IX____6

I

÷

Before the measurement-(Continued.)

Also combining the values in this table with the equivalent of L-A just determined, there result,

About the middle of the base-line.

Again from the bar comparisons "After set No. 287", we obtain the following series of results :--

/	-	ď			,
x - 0.11	$E_a - d$	$(E_a) - 151.6 = 0$	x-10.41 ($E_a - c$	dE_{a}) + $34.5 = 0$
x = 711	"	-18.3 = 0	x-10.93	"	+ 41.9 = 0
x = 0.15	"	- 1.2 = 0	x-11.47	"	$+ 49^{2} = 0$
x— 9.02	"	+ 9.9 = 0	x -12.03		+ 560 = 0
x-11.99	,,	+ 59°0 = 0	x-12:55		+ 66.5 = 0
x -12.59	"	+ 67.3 = 0	x — 13.61		+ 78.2 = 0
x-13.13	**	+ 74.6 = 0	x-14.02	,,	
x -13.81	"	+ 870 = 0	x —14.45	"	4° $04^{\circ} = 0$
x -14.36	"	+ 94.1 = 0	<i>x</i> - 14.88	"	+ 900 = 0
x —14.89	"	+102.0 = 0	<i>x</i> − 15.06	"	+ 98.9 = 0
x-15.34	"	+107.0 = 0	₩ 1 <u>5</u> 20	"	+103.9 = 0
x —15.80	"	+113.6 = 0	<i>w</i> -1500	"	+100.0 = 0
x -16.30	••	+1175 - 0	<i>x</i> -15'94	"	+112.7 = 0
x -16.75		+11/3 = 0	x-16.38	"	+114'2 = 0
x-17.11); 	+1222 = 0	x — 2.96	"	-122.8 = 0
<i>x</i> - 1.88	"	+1290 = 0	x— 3.01	"	-120.3 = 0
2 - 1.70	"	-1302 = 0	x- 3.12	"	-115.6 = 0
** - 79 * 1.06	"	-141.4 = 0	<i>x</i> - 3 [.] 43	"	-108.4 = 0
- 170 	"	-139.2 = 0	x - 3.73	"	-99.8 = 0
#	"	-139.2 = 0	x - 4.08	,,	-89.7 = 0
a - 1.99	"	-138.5 = 0	x - 4·48	,,,	-78.1 = 0
2.05	"	-133.5 = 0	x- 7.93		$-20'^{2} = 0$
<i>x</i> - 2·25	"	-124.6 = 0	x - 8.54		- 8.4 = 0
x - 8.10	"	$-4^{2}=0$	<i>x</i> - 9.15		=
a — 8.90	"	+ 11.5 = 0	x — 0.75	"	+ 10:0
x— 9.76	"	+ 24.1 = 0	~ 7/J	ננ	+ 139 = 0
			- IV 32	23	+ 230 = 0

IX____27

IX_____28

About the middle of the base-line, after set No. 287-(Continued.)

		ď			
$x = 11.72 (E_a)$	$-dE_a$) + 43.0 = 0	x - 2.27	$(E_a - dE_a)$	-131.0=0
x = 12.23		+ 53.2 = 0	x- 2·24	"	-128.3 = 0
r 12.71	,,	+ 62.7 = 0	x - 2.45	"	-119.6 = 0
x = 12/1	"	+ 60.0 = 0	x - 2.62	33	-115.1 = 0
x = 13.10	"	+ 74.7 = 0	x— 2.86	"	-100.0 = 0
x - 13 03	"	+ 05.2 = 0	x - 3.14	"	-102.5 = 0
2-1507	"	+102.4 = 0	x - 3.47	,,	- 97 · 5 = 0
x - 15 54))	+110.5 = 0	x - 3.86	"	-87.0 = 0
x-15'95	"	+116.8 = 0	x - 10.53	,,	+ 39.0 = 0
$x - 10^{\circ}50$	"	+121.0 = 0	<i>x</i> -11.29	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+ 51.8 = 0
x - 10'00	"	+ 126'I = 0	x-11.96	,,,	+ 59.8 = 0
$x - 17^{2}$	"	-128 = 0	x - 12.55	23	+ 69.0 = 0
x - 2.00	"	-1205 = 0	x - 13.78	22	+ 87.4 = 0
x - 2.53	"	-1305 = 0	x - 14.82	, ,,	+101.8 = 0
x — 2.40	"	-1310 - 0	<i>x</i> −15'30	· · · ·	+100.0 = 0
x — 2°32	"	-1330-0			

And from the mean of these results,

 $x = -4^{d}_{.85} + 9^{.48} (E_a - dE_a):$

adopting the original value of the expansion of A given at page (9),

$$E_a = 22.67 = 17.738,$$

and $x = 163.31 - 9.48 \ dE_a = 208.72 - 9.48 \ dE_a = L - A.$

Proceeding as on page IX_ $_{26}$ we obtain;

In terms of	A - L	B – L	C – L	$\mathbf{D} - \mathbf{L}$	E – L	H — L
Micrometer divisions.	- 25°24	-42 [.] 55	+ 12.05	+ 56 [.] 29	- 1·08	+0.23
Millionths of a yard.	- 32°26	-54 [.] 38	+ 15.40	+ 71 [.] 94	- 1·38	+0.68

Also the following;

After the measurement-(Continued.)

Also from the bar comparisons "After the measurement," we obtain the following series of results :---

			đ			2
<i>x</i> —	6·73 (Ea	dE_{c}	-57.0 = 0	$x - 8.14 (E_a)$	— d	$(E_a) - 32 \cdot 5 = 0$
<i>x</i> —	^{6.} 53	"	- 62.9 = 0	x- 8.13	,,	-32.5 = 0
<i>x</i> —	6.21	"	-62.8 = 0	x— 8.50	"	- 25 [.] 0 = 0
x —	6.23	"	— бо·о = о	x - 8.79	,,	-18.8 = 0
x	^{6.} 73	"	-56.2 = 0	x- 9.13	,,	- 13 [.] 4 = 0
<i>x</i> —	6· 88	"	-52.6 = 0	x - 9.46	,,	- 8.6 = 0
<i>x</i> —	7.05	"	- 49.0 = 0	x-14.47	"	+ 81.4 = 0
x —	7:24	,,	- 45'9 = 0	<i>x</i> -14.90	"	+ 84.3 = 0
x — 1	1.43	"	+ 29.6 = 0	x-15.31	,,	+ 92.8 = 0
x 1	1.82	"	+ 352 = 0	x-15.73	"	+100.0 = 0
x —]	2.33	"	+ 58.9 = 0	x -17.14	,,	+123.4 = 0
x — 1	1 2· 58	"	+ 47.2 = 0	x —17 [.] 60	"	+130.3 = 0
x — 1	2.95	"	+ 53 [.] 3 = 0	x -18.08	"	+139.3 = 0
# —]	3.35	"	+ 60 [.] 3 = 0	x -18.56	,,	+ 147°0 = 0
<i>x</i> — 1	4.13	,,	+ 73 [.] 6 = 0	<i>x</i> -20.04	"	+168.9 = 0
x — 1	4.42	"	+ 82.0 = 0	x -20.42	,,,	+176.3 = 0
a — 1	4.78	"	+ 86·4 = 0	x -20.82	,,	+ 183.6 = o
<i>a</i> — 1	5.10	,,	+ 90 [.] 5 = 0	x -21.22	"	+188.1 = 0
<i>a</i> — 1	5.41	,,	+ 96·9 = 0	x -22.15	,,	+202.1 = 0
<i>a</i> — 1	5.71	"	+102.1 = 0	x -22.48	,,	+ 209'I = 0
<i>x</i> — 1	6.52	"	+116.5 = 0	x -23.12	,,	+217°0 = 0
x — 1	6.85	"	+ 120.8 = 0	x -23.73	,,	+227.5 = 0
<i>x</i> — 1	17.14	"	+123.7 = 0	x - 8·32	"	- 31·1 = 0
x — 1	7'41	"	+127.6 = 0	x - 8·29	,,	-33.0 = 0
x — 1	7.68	"	+132.8 = 0	x - 8·40	"	-29.1 = 0
<i>x</i> — 1	7*97	"	+137.2 = 0	x - 8.50	"	-27.6 = 0
x — 1	8.80	23	+150.8 = 0	<i>x</i> - 8·74	"	-22.8 = 0
x — 1	9.06	"	+170.2 = 0	x - 8·93	"	- 19 [.] 6 = 0
x — 1	9.32	"	+157.8 = 0	x - 9.13	,,	-16.5 = 0
x — 1	9.20	"	+ 161.4 = 0	x - 9.35	,,	-12.1 = 0
x — 1	9.72	"	+169.2 = 0	x -13.90	,,	+ 61.5 = 0
x — 1	9.92	"	+169.8 = 0	x -14.36	"	+ 70.7 = 0
x —	8.38	"	- 35 [.] 6 = 0	<i>x</i> -14.83	"	+ 79 [.] 6 = 0
<i>x</i> —	8.18	"	-33.3 = 0	x -15.47	"	+ 90.4 = 0

IX____29

: :

IX_____30

After the measurement-(Continued.)

		-			đ
- Prod / F	dF	$\int d dt = 0$	$x - 20.42 (E_a - 1)$	$-dE_a$)	+171.5 = 0
$x = 18.25 (E_{0})$	s — ""a	+144.2 = 0	x-20.67	"	+174.7 = 0
x -10'0 x	"		<i>x</i> -21.10	,,	+180.5 = 0
x -18.95	"	+1479 - 0			+100.8 = 0
x -19 ^{.25}	"	+153.1 = 0	x - 21 44	"	1-900

And from the mean of these results,

$$x = -75.94 + 14.46 (E_a - dE_a):$$

adopting the original value of the expansion of A given at page (9),

$$E_{a} = 22.67 = 17.732,$$

and
$$x = 180.46 - 14.46 \, dE_a = 230.72 - 14.46 \, dE_a = L - A;$$

Proceeding as on page IX_26 we obtain :--

In terms of	A - L	B – L	C – L	D – L	E – L	H – L
Micrometer divisions.	-28·48	-44 ^{.25}	+ 12·50	+ 59 [.] 52	+ 1·27	—0 [.] 54
Millionths of a yard.	-36·41		+ 15·98	+ 76 [.] 10	+ 1·62	—0 [.] 69

Also the following:

$$A - A = 151'98 - 14'46 dE_a = 194'31 - 14'46 dE_a$$

$$B - A = 136'21 - , = 174'15 - , = 174'15 - , = 174'15 - , = 174'15 - , = 174'15 - , = 192'96 - , = 246'70 - , = 230'82 - , = 306'82 - , = 306'82 - , = 181'73 - , = 232'34 - , = 232'34 - , = 179'92 - , = 230'03 - , = 1384'3 - 86'8 dE_a.$$

٠

•

.....

n in the second

IX_____31

Final deduction of the total length measured with the compensated bars.

P----

From page IX_	the excess	of the 6 compensa	ated bars above 6 t	imes A 7	m.y	
	27	•	before the measur	ement }	= 1240.3	— 37°1 dEa
" IX_	-28 "	· >>	after set No. 287		= 1252.3	– 56 [.] 9 dE _a
" IX_	-30 "	"	after the measure	ment	= 1384.3	$-86.8 \ dE_a$
Therefore the m	nean excess	"	applicable to sets N	los. 1, & 3 to 2	187 = 1246.3	— 47°0 dEa
and	,,	,,	applicable to sets	Nos. 288 to 5	572 = 1318.3	$-71.9 dE_a$
Also the mean	length of a set	of 6 compensated ba applicable	ars in feet of the sta to sets Nos. 1, & 3	$\left. \begin{array}{c} \text{and} \text{ard}, \\ \text{to } 287 \end{array} \right\} = 6$	0.0037389 A	— 47°0 dE _a
and	<i></i>	a pplicable	to sets Nos. 288	to $572 $ $\} = 6$	60.0039549 A	$-71.9 dE_a$
Similarly from]	pages IX_27 a	nd IX ₂₈ the mea sated bar	n excess of the 3 cors A, C, H above 3 t	ompen-) imes A}	= 600.7	– 23·5 dE _a
and the mean le	ength of a set	of compensated bas standard, applic	rs A, C, H in feet eable to sets Nos. 2 ₁	$\left\{\begin{array}{c} \text{of the}\\ \text{and } 2_2 \end{array}\right\} = 3$	30.0018021 A	$-23.5 dE_a$
Also from pages	IX_27 and IX	-28 the mean exc bars A	cess of the 4 compo , B, C, D above 4 t	imes A	= 832.1	$-31.3 dE_a$
and the mean l	length of the s	et of compensated the st	bars A, B, C, D in andard applicable to	$\begin{cases} \text{feet of} \\ \text{o set} *_1 \end{cases} = 4$	40.0024963 A	$-31.3 dE_a$
Similarly from]	pages IX_28 a	nd IX30 the means ated	n excess of the 2 c l bars A, B above t	ompen-}	= 349.6	$-23.9 dE_a$
and the mean le	ength of the set	of compensated bar	s A, B in feet of the ard, applicable to	$\left\{\begin{array}{c} \text{stand-}\\ \text{o set } *_2 \end{array}\right\} = 2$	20.0010488 A	– 23.9 dE _a
Also from pages	IX_28 and IX	-30 the mean exc bars A, B,	cess of the 5 compe C, D, H above 5 t	imes A	= 1098.5	$-59.9 dE_a$
and the mean le	ength of the set	of compensated ba the standard	rs A, B, C, D, H in applicable to set N	$\left\{\begin{array}{c} \text{feet of} \\ \text{o. 573}_1 \end{array}\right\} = \xi$	50.0032925 A	– 59 [.] 9 dE _a

Hence the total lengths measured with the compensated bars,

In sets Nos. I to $*_1$ or S.W. End to Station A $= \left\{ \left. \right\} = \left\{ \right. \right\}$	$\begin{array}{c} feet & of \\ 201 & (60:0037389 - 47:0 \ c \\ 2 & (30:0018021 - 23:5 \ c \\ 1 & (40:0024963 - 31:3 \ c \\ \end{array}$	$dE_{a} = \dots$ $dE_{a} = \dots$ $dE_{a} = \dots$ $Sum = \dots$	$\begin{array}{r} feet of \ \mbox{A} \\ 12060.7515 - 9447 \ \ \mbox{d} E_a \\ 60.0036 - 47 \ \ \mbox{d} E_a \\ 40.0025 - 31 \ \ \mbox{d} E_a \end{array}$ $12160.7576 - 9525 \ \ \mbox{d} E_a \end{array}$
In sets Nos. $*_1$ to $*_s$ or Stn. A to Stn. to B $= \begin{cases} -1 & -1 \\ -1 & -1 \\ -1 & -1 \end{cases}$	- I (40.0024963 - 31.3 a 85 (60.0037389 - 47.0 a 74 (60.0039549 - 71.9 a I (20.0010488 - 23.9 a	$\begin{array}{l} lE_{a} \\ = & \dots \\ lE_{a} \\ = & \dots \\ lE_{a} \\ = & \dots \\ lE_{a} \\ = & \dots \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
In sets Nos. $*_3$ to 573_1 or Stn. B to N.E. End $\} = \begin{cases} -2 & -2 \\ -2 & -$	- 1 (20'0010488 — 23'9 d 211 (60'0039549 — 71'9 d 1 (50'0032955 — 59'9 d	$Sum = \dots$ $E_a = \dots$ $E_a = \dots$ $E_a = \dots$ $E_a = \dots$ $Sum = \dots$	$9520.6090 - 9309 dE_a$ $20.0010 + 24 dE_a$ $12660.8345 - 15171 dE_a$ $50.0033 - 60 dE_a$ $12690.8368 - 15207 dE_a$
In sets Nos. 1 to 573 ₁ or S.W. E	and to N.E. End	. =	$34372^{\circ}2034 - 34041 dE_a$

Final deduction of the total length measured with the compensated bars-(Continued.)

Now the mean temperature of A during the bar comparisons before the measurement and after set No. 287 was $62^{\circ} + \frac{47^{\circ} \cdot \circ}{6} = 69^{\circ} \cdot 8$, for which temperature the corresponding expansion of A from page (19) = 21.696 m.y. Again the mean temperature of A during the bar comparisons after set No. 287 and after the measurement was $62^{\circ} + \frac{71^{\circ} \cdot 9}{6} = 74^{\circ} \cdot \circ$, for which temperature the corresponding expansion of A from page (19) = 21.722 m.y. Comparing these values of expansion respectively with the original value = 22.67 m.y, used in the foregoing; it is found that the values of $dE_a = + \circ \cdot 974$ m.y, for sets Nos. 1 to 287, and = $+ \circ \cdot 948$ m.y, for sets Nos. 288 to 573. Substituting for dE_a respectively these numerical values, there result,

Total lengths measured with the compensated bars

IX_____32

"	ı to	5731 or S. W. End, to N. E. End =	(34372:2034 — :0978)	= 34372.1056
>>	* _s to	5731 or Station B, to N. E. End =	(12690-8368 — -0432)	= 12690.7936
"	* ₁ to	$*_{g}$ or Station A, to Station B =	(9520.6090 – .0268)	= 9520.5822
in sets Nos	. 1 to	$*_1$ or S. W. End, to Station A =	feet of (12160 ^{.7} 576 — [.] 0278)	A = 12160 ^{.7298}

Comparisons between the Compensated Microscopes and the 6-inch brass scales during the measurement, and provisional determination of Microscope errors with respect to the 6-inch brass scale A, expressed in millionths of an inch (m.i.)

. When compared 1868		ope. red with.		62° Fah. 6″ scale 52.5 m.i.	Microscope — Microscope Scale.		le – <i>A</i> , ^{lah.}	Micros : - Scale A, at 62° Fah.			
		Licrosc	compa	Scale compa Corrected to ture	Reduction to Expansion of for $1^\circ = E =$	Observed value in terms of		8 : Sce t 62° I		er.	
		Scale o	Scale			Divisions 10000=1".	<i>m.</i> i.	Micro	m.i.	Befere numb	
January	10th	Before the measure- ment.	V T M N O U	V T M N S U	78°4 79°1 74°7 75°0 77°3 76°7	+ 1025 1069 794 813 956 919	- 9 ^{.7} 8·8 11 ^{.5} 9 ^{.3} 2 ^{.3} 22 ^{.2}	- 389 880 1150 930 230 2220	$ \begin{array}{r} - & 133 \\ & 18 \\ + & 122 \\ & 468 \\ & 4 \\ & 392 \end{array} $	$ \begin{array}{r} + 503 \\ 171 \\ - 234 \\ + 351 \\ 730 \\ - 909 \end{array} $	1 2 3 4 5 6
"	12th	Do.	S	8	77"7	+ 981	- 6·1	— 610	+ 4	+ 375	7
, ju ¹	19th	After set No. 50.	T	T	78.3	+ 1019	+ 1.2	+ 170	- 18	+1171	8
"	2 0th	Do.	v	V	78.3	+ 1019	- 13.8	- 553	- 133	+ 333	9
Microscope Comparisons-(Continued.)

	When compared				mpera-	62° Fah. 6″ scale 25 m.i.	Micros Microscop	cope le Scale.	• - 4, ^{ah.}	Micros : at 62°	Scale <i>A</i> , Fah.
			Microsco	compar	ected te ture.	tion to $\vec{E} = \vec{E} = \vec{0}$	Observed term	value in 8 of	os: Scal t 62° Fi		ence ber.
		1968	F 1	Scale	Corr	Reduc Expar for 1°	Divisions 10000 = 1"	<i>m.i.</i>	Micr	7/8.3.	Refer
January	27th	After set No. 131.	T V M N O U S	T V M N S U S	76°4 75°8 73°8 72°4 76°4 79°9 72°9	+ 900 863 738 650 900 1119 681	$ \begin{array}{r} - & 1.4 \\ 10.2 \\ 10.0 \\ 5.2 \\ 10.1 \\ 16.4 \\ + & 3.0 \end{array} $	$ \begin{array}{r} - & 140 \\ 409 \\ 1000 \\ 520 \\ 1010 \\ 1640 \\ + & 300 \end{array} $	$ \begin{array}{r} - & 18 \\ & 133 \\ + & 122 \\ & 468 \\ & 4 \\ & 39^2 \\ & 4 \end{array} $	$ + 742 \\ 321 \\ - 140 \\ + 598 \\ - 106 \\ 129 \\ + 985 $	10 11 12 13 14 15 16
"	28th	After set No. 136.	N	N	80.0	+1125	- 13.0	-1300	468	+ 293	17
February	4th	After set No. 221.	T S T	T S T	85 · 4 84·3 78·4	+ 1463 1394 1025	- 11.5 0.9 12.3	— 1 1 50 90 1 2 3 0	$ \begin{vmatrix} - & 18 \\ + & 4 \\ - & 18 \end{vmatrix} $	$ \begin{vmatrix} + & 295 \\ & 1308 \\ - & 223 \end{vmatrix} $	18 19 20
"	11th	After set No. 287.	V M N O U	V M N S U	64.3 61.5 63.1 62.9 64.9	$ \begin{vmatrix} + & 144 \\ - & 31 \\ + & 69 \\ 56 \\ 181 \end{vmatrix} $	$\begin{vmatrix} + & 10^{\circ}3 \\ & 4^{\circ}5 \\ - & 1^{\circ}4 \\ + & 3^{\circ}3 \\ - & 3^{\circ}4 \end{vmatrix}$	$ \begin{array}{r} + 413 \\ 450 \\ - 140 \\ + 330 \\ - 340 \end{array} $	$ \begin{array}{ c c c c } - & 133 \\ + & 122 \\ & 468 \\ & 4 \\ & 392 \\ \end{array} $	+ 424 541 397 390 233	2 I 22 23 24 25
22	14th	Do.	T S	T S	84 [.] 9 80 [.] 7	+ 1431 1169	- 11.7 0'9	-1170 90	$\begin{vmatrix} - & 18 \\ + & 4 \end{vmatrix}$	+ 243 1083	26 27
P3 \	28th	After set No. 479.	T V M O N U S	TV MSNUS	91.6 89.6 88.2 88.8 87.8 90.0 90.5	+ 1850 1725 1638 1675 1613 1750 1781	$ \begin{array}{c c} - & 13^{\circ}1 \\ 31^{\circ}4 \\ 13^{\circ}5 \\ 12^{\circ}9 \\ 10^{\circ}3 \\ 20^{\circ}8 \\ 3^{\circ}2 \end{array} $	- 1310 1259 1350 1290 1030 2080 320	$\begin{vmatrix} - & 18 \\ & 133 \\ + & 122 \\ & 4 \\ & 468 \\ & 39^2 \\ & 4 \end{vmatrix}$	+ 522 333 410 389 1051 62 1465	28 29 30 31 32 33 34
"	29th	Do.	V	r	89.1	+ 1694	- 29'0	-1163	- 133	+ 398	35
March .	6th	After the measure- ment.	T V M O N U S	T V M S N U S	86.4 85.6 83.8 86.3 84.8 87.2 85.8	+ 1525 1475 1363 1519 1425 1575 1488	- 10.0 25.7 10.0 9.9 8.9 18.6 1.9	- 1000 1031 1000 990 890 1860 190	$ \begin{array}{c c} - & 18 \\ & 133 \\ + & 122 \\ & 4 \\ & 468 \\ & 392 \\ & 4 \\ \end{array} $	+ 507 311 485 533 1003 107 1302	36 37 38 39 40 41 42

IX______33

۰.

Microscope Comparisons-(Continued.)

The required combinations of individual microscope errors taken from pages IX_{32} and IX_{33} are expressed as follows;

Reference numbers. $e_1 = 2 + 3 + 4 + 5 + 6 + \frac{1+7}{2} = + 548$ at (62 + 1481)before the measurement. $e_2 = 2 + 4 + \frac{1+7}{2}$ = + 961 at (62 + 15.38)do. = + 2428 at (62 + 13.43) between sets 50 & 51, and 131 & 132 $e_3 = 8 + 13 + \frac{9+16}{2}$ $e_4 = 8 + 12 + 13 + 14 + 15 + \frac{9+16}{2} = + 2053$ at (62 + 14.07) do. do. **j**; { before the measurement and be-tween sets 50 & 51 $e_5 = 3 + 4 + 5 + 6 + 9 + \frac{7+8}{2} = + 1044$ at (62 + 14.67) $e_6 = 11 + 12 + 13 + 14 + 15 + \frac{10+16}{2} = + 1408$ at (62 + 13.49) between sets 131 & 132 136 لا: 137, 221 لا: 222, 187 لا: 288 $e_7 = 17 + 21 + 22 + 24 + 25 + \frac{18+19}{2} = + 2683$ at (62 + 7.74) { " $e_8 = 11 + 12 + 14 + 15 + 17 + \frac{10+16}{2} = + 1103$ at (62 + 14.76) " 136 & 137, and 131 & 132 do. and 221 & 222 $\hat{e}_{g} = 11 + 12 + 14 + 15 + 17 + \frac{19+20}{3} = + 782$ at $(62 + 15.88) \frac{9}{3} \left\{ \right\}$ do. $e_{10} = 11 + 12 + 17 + \frac{10+16}{2} = + 1338$ at (62 + 14.06) gr " 131 & 132, and 136 & 137 $e_{11} = 21 + 22 + 23 + 24 + 25 + \frac{18+19}{2} = + 2787$ at (62 + 4.93)221 & 222 and 287 & 288 $e_{12} = 21 + 22 + 23 + 24 + 25 + \frac{26+27}{2} = + 2648$ at (62 + 458)287 & 288 $e_{13} = 21 + 22 + 23 + \frac{18+19}{2}$ = **+** 2164 at (62 + 6.44) ;; do. and 221 & 222 $e_{14} = 21 + \frac{26+27}{2}$ = + 1087 at (62 + 11.55) do. $e_{15} = 29 + 30 + 31 + 32 + 33 + \frac{28+34}{2} = + 3239$ at $(62 + 27 \cdot 24)$ 479 & 480 = + 1327 at (62 + 28.33) $e_{16} = 29 + \frac{28+34}{5}$ d). $e_{17} = 30 + 31 + 32 + 33 + 35 + \frac{28 + 34}{2} = + 3304$ at (62 + 27.16)do. $e_{18} = 37 + 38 + 39 + 40 + 41 + \frac{36 + 42}{2} = + 3344$ at (62 + 43.63) after the measurement. $e_{19} = 30 + 31 + 32 + 35 + \frac{28 + 34}{2} = + 3342$ at (62 + 26'99) between sets 479 & 480. $e_{20} = 37 + 38 + 39 + 40 + \frac{36+42}{2} = + 3237$ at (62 + 23.32) after the measurement.

Microscope Comparisons--(Continued.)

And from the foregoing, we obtain the following equations for the microscope errors per set (or m.e.); where dE expresses the error in the adopted value of the expansion for the 6-inch scales.

$(m.e.)_1 = \frac{e_1 + e_4}{2} = + \frac{m.i.}{1301} - 6 \times 14.44 dE$	applicable to sets Nos. 1 and 3 to 50
$(m.e.)_{g} = \frac{e_{g} + e_{3}}{2} = + 1695 - 3 \times 14.41 dE$,, ji bitu 2g
$(m.e.)_{8} = \frac{e_{5} + e_{6}}{2} = + 1226 - 6 \times 14.08 dE$;; ;; 51 to 131
$(m.e.)_4 = \frac{e_6 + e_7}{2} = + 2046 - 6 \times 10.62 dE$,, i32 to 135
$(m.e.)_5 = \frac{e_8 + e_{11}}{2} = + 1945 - 6 \times 9.85 dE$	ii i, 137 to 202 and 203 to 221
$(m.e.)_6 = \frac{e_{10} + e_{13}}{2} = + 1751 - 4 \times 10.25 dE$	" set No. * ₁
$(m.e.)_7 = \frac{e_9 + e_{19}}{2} = + 1715 - 6 \times 10^{19}3 dE$,, sets Nos. 222 to 287
$(m.e.)_8 = \frac{e_{12} + e_{15}}{2} = + 2944 - 6 \times 15.91 dE$	" " 288 to 361 and 362 to 479
$(m.e.)_9 = \frac{e_{14} + e_{18}}{2} = + 1207 - 2 \times 1994 dE$,, set No. *2
$(m.e.)_{10} = \frac{e_{17} + e_{18}}{2} = 4 3324 - 6 \times 2540 dE$	" sets Nos. 480 to 572
$(m e.)_{11} = \frac{e_{19} + e_{20}}{2} = + 3240 - 5 \times 25.16 dE$	" set No. 5731

Hence the total microscope errors are as follows :-----

l

feet of A In sets Nos. I to $*_1 = \begin{cases} +49 \ (m.e)_1 = +63749 - 4245 \ dE = \\ +2 \ (m.e)_2 = +3390 - 86 \ dE = \\ +81 \ (m.e)_3 = +99306 - 6843 \ dE = \\ +5 \ (m.e)_4 = +10230 - 319 \ dE = \\ +66 \ (m.e)_5 = +128370 - 3901 \ dE = \\ +1 \ (m.e)_6 = +1751 - 41 \ dE = \end{cases}$ ·0053 — ·0053 — ·0083 — ·0083 — ·0107 — ·0001 — 4245 dE 86 dE 6843 dE 319 dE 3901 dE 41 dE·0256 – 15435 dE Sum =In sets Nos. *₁ to *₂ $\begin{cases} -1 (m.e)_6 = -175i + 4i dE = -196i + 196i (m.e)_5 = +36955 - 1123 dE = +166i (m.e)_7 = +113190 - 405i dE = +166i (m.e)_8 = +217856 - 7064 dE = +16i (m.e)_8 = +1207 - 406i dE = +16i (m.e)_8 = +1207 - 406i dE = +16i (m.e)_8 = +1207 - 406i dE = +16i (m.e)_8 = +1207 - 406i dE = +16i (m.e)_8 = +16i (m.e)_8 = +1207 - 406i dE = +16i (m.e)_8$.0001 + 41 dE 1123 dE 4051 dE 7064 dE 40 dESum = $+ \cdot 0307 - 12237 dE$ In sets Nos. $*_{g}$ to $*_{5731}$ $\begin{cases} -1 (m.e)_{9} = -1207 + 40 dE = -0001 + 40 dE \\ +118 (m.e)_{8} = +347392 - 11264 dE = +0289 - 11264 dE \\ +93 (m.e)_{10} = +309132 - 14173 dE = +0258 - 14173 dE \\ +1 (m.e)_{11} = +3240 - 126 dE = +0003 - 126 dE \end{cases}$ Sum = + .0549 - 25523 dE

IX_____36

Final deduction of the total lengths measured with the compensated microscopes.

Hitherto the microscope errors have been determined only provisionally: *i.e.* in terms of the 6-inch brass scale A. But from page (31), we have $2 A = 1.0000192 \frac{A}{10}$, value in 1835. Also, the co-efficient of expansion for brass, has been taken at .000,010,417 in the fore-going reductions, whereas it appears from page (17) that .000,000,855 is a more probable value. Accepting the latter, it may be found that $dE = 3.372 \ m.i$. Hence, remembering that the length measured with a set of microscopes is equal to 3 feet of A + the corresponding (m.e), we have,

Total length measured with the compensated microscopes

In sets Nos. 1 to $*_1$ or S.W. End to Stn. A $\}$ = $\begin{cases} 20 \\ + \\ \end{cases}$	feet of ○2×3 + 1×2 +	▲ +•0256 }-154	$_{35} dE =$	<i>feet</i> :(608:0373—*(ণ ০০43)=	А бо8 [.] 0330
In sets Nos. $*_1$ to $*_3$ or Stn. A to Stn. B $\}$ = $\begin{cases} -\\ + 15\\ + \end{cases}$	1×2 59×3 + 1×1	- 0307 } - 1223	$_{7} dE =$	(476 [.] 0398—.a	xx34)=	476.0364
In sets Nos. $*_{s}$ to 5731 or Stn. B to N.E. End $\left\{ \begin{array}{c} -\\ +2 \\ +\end{array} \right\}$	1×1 11×3 + 1×2.5	+ •0549 } -255	dE =	(634.2671-0	0072)=	634.2599
In sets Nos. 1 to 5731 or S.W. End to N.E. End		••••	=	:(1718·6442—•	0149)=1	718.6293

DETAILS OF THE MEASUREMENT.

Disposition of the bars and microscopes during the measurement.

The following typical illustrations shew the permutations and combinations of the bars and microscopes during the measurement. The instruments are here named in the succession that actually occurred, commencing from the rear-end of a set, and the numbers assigned to the illustrations, will be found employed in the tables of "Extracts from the Field Book &c."

Bar	Illustration.	Microscope Illustration.
$\begin{array}{c c} No. 1 & No. 2\\ \hline A \\ B \\ C \\ C \\ H \\ \end{array} \\ \begin{array}{c} No. 2 \\ A \\ C \\ H \\ \end{array} \\ \begin{array}{c} A \\ C \\ H \\ \end{array} \\ \begin{array}{c} B \\ C \\ H \\ \end{array} \\ \begin{array}{c} B \\ C \\ H \\ \end{array} \end{array}$	$\begin{array}{c c} \underline{No. 3} \\ \hline A \\ B \\ C \\ D \end{array} \begin{array}{c} \hline A \\ B \\ B \end{array} \begin{array}{c} \hline A \\ B \\ B \end{array} \begin{array}{c} \hline A \\ B \\ B \end{array} \begin{array}{c} \hline A \\ B \\ B \end{array} \begin{array}{c} \hline A \\ B \\ B \\ B \\ C \\ D \\ D \\ H \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5	Statement.	Statement.
No. 1 occurs in set No. 2 ,, No. 3 ,, No. 4 ,, No. 5 ,,	ts Nos. 1,3 to 202,203 to and 362 to Nos. 21 and 22. No. *1. No. *2. No. 5731.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Extracts from the Field Book of the measurement, and calculated heights of sets above the origin. Adopted heights above mean sea level.

South-West-End (origin) = 3118.3 feet. North-East-End (terminus) = 3009.3 feet.

	the Set	ure of Air	Mean time of	bars used Set above gin	Nun shev arrs mer	neral wing ange- nt of		the Set	ure of Air	Mean time of	ars used	Set above gin	Nun shev arrai men	neral ving nge- it of
1868	No. of	Temperat	ending	No. of 1 Height of ori	Bars.	Micros:	1868	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Microe':
13th Jan. 14th "	1 21 29 3 4 5 6 7	64.0 70.5 77.5 79.0 80.0 64.0 68.5 78.0	h. m. 8 40 A.M. 10 5 0 25 P.M. 2 30 3 35 8 25 A.M. 9 30 0 30 P.M.	$ \begin{array}{c} feet \\ 6 + 1.63 \\ 3 - 0.51 \\ 3 & 2.31 \\ 6 & 4.56 \\ 6 & 7.35 \\ 6 & 9.93 \\ 6 & 11.79 \\ 6 & 13.66 \end{array} $	T 2 1 1 1 1 1 1	I 2 2 I I I I I I	14th Jan. 15th "	8 9 10 11 12 13 14	80°4 80°0 60°0 69°0 73°8 81°0 83°0 84°0	h. m. 2 5 Р.М. 3 25 7 45 А.М. 8 55 10 15 0 45 Р.М. 1 40 2 25	6- 6 6 6 6 6 6	feet 15:86 17:84 19:79 21:79 24:04 26:06 28:08 30:06	I I I I I I I I	I I I I I I I

Norg.-The rear-end of set No. 1 stood exactly over the dot at South-West-End.

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	are used	Set above gin	Nun shev arra mer	neral wing nge- nt of	1000	the Set	ure of Air	Mean time of	bars used	Set above gin	Num shew arran men	eral ring nge- t of
	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:	1868	No. of	Temperat	ending	No. of	Height of ori	Bars.	Micros:
15th Jar 17th " 18th " 20th "	1. 1. 1. 1.	80788888870007788888888888886007788888888	b. m. 3 30 P.M. 9 25 11 45 0 25 F.M. 1 5 1 45 2 20 3 0 3 45 7 20 A.M. 8 0 8 33 9 10 9 40 11 25 0 0 P.M. 0 30 1 10 1 40 2 25 3 0 7 15 A.M. 8 50 9 30 1 30 2 0 3 45 7 15 A.M. 8 50 9 30 1 30 2 0 3 45 7 15 A.M. 8 6 8 40 9 20 10 50 1 30 2 0 2 30 3 15 4 0 2 0 2 0 2 30 3 15 4 0 3 0 2 0 2 30 3 15 4 0 3 0 13 5 2 10 2 45 3 30 7 15 4 M. 8 30 7 15 4 M.		feet. 32:1272 33:5:0:43:5:0:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:5:		I I I I I I I I I I I I I I I I I I I	21st Jan. 22nd "	6678697777777777898123345567889999999999999999999900110034455678990111131415	777788888888886666777888888888886666777888888	\hbar m. 9 7 A.M. 10 50 11 25 0 0 P.M. 0 32 1 38 2 20 2 55 3 25 4 15 7 10 A.M. 8 33 9 10 9 45 11 30 0 2 P.M. 0 37 1 30 2 25 3 40 1 1 37 2 32 2 55 3 32 4 0 37 1 1 37 2 32 2 55 3 32 4 0 37 1 1 37 2 32 2 55 3 32 4 0 37 1 1 37 2 32 2 55 3 32 4 5 3 40 1 1 37 2 32 2 55 3 32 4 5 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 4 5 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 4 5 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 4 5 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 4 5 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 4 5 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 4 5 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 4 5 8 33 9 45 8 33 9 40 1 1 27 1 1 37 2 32 2 55 3 32 2 55 3 32 3 2 5 5 3 32 5 7 8 3 8 3 7 4 5 8 3 8 3 9 45 8 3 8 3 8 3 9 40 1 1 27 1 1 37 2 3 2 32 2 55 3 32 2 55 3 32 3 2 5 8 3 8 3 7 4 5 8 3 8 3 8 3 9 4 5 8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3	, ,	<i>feet</i> <i>feet</i> <i>107</i> +5 <i>109</i> 58 <i>111</i> 70 <i>115</i> 27 <i>116</i> 69 <i>117</i> 63 <i>117</i> 72 <i>116</i> 29 <i>117</i> 72 <i>116</i> 29 <i>117</i> 72 <i>116</i> 29 <i>117</i> 72 <i>116</i> 29 <i>117</i> 72 <i>116</i> 29 <i>117</i> 72 <i>116</i> 29 <i>117</i> 72 <i>107</i> 94 <i>107</i> 93 <i>107</i> 94 <i>137</i> 754 <i>137</i> 756 <i>137</i> 757 <i>138</i> 757 <i>138</i> 757		

January 22nd Cloudy during the day. January 23rd and 24th Sky spread over with clouds throughout the day.

IX_____38

DETAILS OF THE MEASUREMENT.

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	ars used	Set above gin	Num shev arra men	neral ving nge- nt of		the Set.	ure of Air	Mean time of	bars used	Set above gin	Num shew arran ment	eral ing ige- t of
1868	No. of	Temperatı	ending	No. of t	Height of ori	Bars.	Micros:	1868	No. of	Temperatı	ending	No. of 1	Height of ori	Bars.	Micros:
24th Jan 25th ,, 27th ,, 28th ,, 29th ,,	- 116 117 118 119 120 121 122 122 122 122 122 122	868546050455177777778966907778888888866677778888888888	h. m. 2 43 P.M. 3 10 3 45 7 50 A.M. 8 20 8 50 9 26 11 20 11 25 0 22 P.M. 0 55 1 25 1 25 1 25 1 25 1 25 1 30 P.M. 2 40 3 10 4 10 7 15 A.M. 7 45 8 25 8 55 9 30 11 35 0 10 P.M. 0 40 1 20 1 50 2 45 3 30 7 15 A.M. 7 45 8 15 8 45 9 25 11 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 15 1 50 0 20 P.M. 0 45 1 50 0 20 P.M. 0 55 1 50 1 50	, , , , , , , , , , , , , , , , , , ,	feet. - 145 58 147 93 149 71 152 25 154 81 156 45 158 15 160 05 162 21 164 24 165 82 167 77 167 66 169 21 171 31 172 08 173 52 174 32 173 52 174 32 175 57 175 58 175 57 175 58 175 58 175 57 175 58 175 59 175 5		333333333333333333333333333333333333333	29th Jan. 30th ,, 31st ,, 1st Feb 3rd ,,	161 162 163 164 165 166 167 171 172 173 174 175 176 177 178 181 182 183 184 185 184 185 192 193 194 195 192 193 194 195 197 198 199 200 201 202 1 1	88800777788888888800077788888888888888	\hbar . m. 2 20 P.M. 3 13 3 45 7 15 A.M. 7 45 8 45 9 15 9 55 11 40 0 13 P.M. 0 43 1 14 1 44 2 9 2 37 3 10 7 5 A.M. 7 38 8 57 9 30 11 18 11 48 0 18 P.M. 0 46 1 16 1 40 2 8 2 37 3 15 5 8 A.M. 7 24 8 29 8 50 9 15 1 18 1 48 0 18 P.M. 0 46 1 16 1 40 2 8 2 37 3 15 5 8 A.M. 7 24 8 29 8 50 9 15 1 10 1 3 P.M. 0 43 1 14 2 9 2 37 3 10 7 5 A.M. 7 5 A.M. 7 5 A.M. 7 5 A.M. 7 5 8 4 8 57 9 30 11 18 11 48 0 18 P.M. 0 46 1 16 1 40 2 8 2 37 3 15 5 8 A.M. 7 24 8 29 8 50 9 15 1 18 1 18 1 48 0 32 P.M. 7 5 A.M. 7 5 A.M. 7 5 7 8 2 8 29 8 50 9 15 1 10 1 10 1 3 7 8 2 8 29 8 50 9 15 1 18 1 18 1 14 1 40 2 8 2 9 3 7 3 15 5 8 A.M. 7 5 4 8 29 8 50 9 15 1 18 1	- + >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	<i>feet.</i> - 178.84 178.99 178.30 177.02 176.10 174.66 172.99 167.29 167.29 167.29 167.29 167.29 167.29 167.29 157		333333333333333333333333333333333333333
measu	The ad red on Height The te	lvance Cary's of set rminal	d-end of set 1 s brass scale w t No. *1 abov point of set	No. vith e Sta No.	* ₁ fell in a beam o ation A = 202 was	excession excession pass = 2.92 the po	ss (<i>i. e</i> 18. feet. 19. of	. North-Ea	st) of set N	f the o	lot defining S	- Stati	on A 4.8	31 32 fe	, as

January 25th (124) Cloudy throughout the day; light showers in the afternoon. , 27th (132) Rain in the forenoon.

IX____39

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	ars used Set above	gin	Nun shev arra men	neral wing nge- nt of	1000	the Set	ure of Air	Mean time of	bars used	' Set above igin	Nun shev arrai men	neral ving nge- t of
1868	No. of	Temperat	ending	No. of b Height of	10	Bars	Micros :	1868	No. of	Temperat	ending	No. of	Height of ori	Bars.	Micros:
3rd Feb	203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 210	71.4 86.8 89.5 88.5 88.6 88.8 87.8 65.3 67.8 65.3 67.8 72.0 75.7 83.9 85.5 88.5 86.5 88.5 83.9 85.5 88.5 85.5 88.5 83.5 83.5 85.5 83.5 85.5 83.5 85.5 83.5 85.5 85	h . m. 8 12 A.M. 11 40 0 34 P.M. 1 14 1 53 2 23 2 45 3 30 6 55 A.M. 7 27 7 59 8 31 9 15 11 22 11 55 0 18 P.M. 0 47	6 - 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 14 6 15 6 15	eet. 5:47 5:69 2:09 2:43 1:01 5:12 5:762 5:762 5:763 5:765 5:	I I I I I I I I I I I I I I I I I I I	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	7th Feb.	253 254 255 255 255 255 255 255 255 265 265 265	0 73.6 84.3 80.8 89.5 27 668.1 73.5 68.1 73.5 68.1 73.5 68.1 85.5 84.8 85.5 78.4 85.5 85.5 85.5 85.5 85.5 85.5 85.5 8	h. m. 8 52 A.M. 9 21 11 23 11 55 0 27 P.M. 1 51 2 36 3 17 6 53 A.M. 7 38 8 8 8 47 9 20 11 12 0 1 P.M. 0 37 1 12	6- 66666666666666666666666666666666666	<i>feet.</i> -213'97 214'97 215'25 215'71 216'38 216'40 217'43 218'81 219'07 218'85 218'85 217'91 217'62 217'84		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5th ,,	219 220 221 222 223 224 225 220 227 228 229	86.5 87.5 66.5 70.0 72.4 75.7 77.8 85.0 87.4 88.1	2 57 3 43 6 58 A.M. 7 42 8 15 8 47 9 15 11 26 11 55 0 15 P.M.	6 16 6 16 6 16 6 17 6 17 6 17 6 17 6 17	5 40 7 76 7 76 7 34 7 71 8 74 7 89 5 71 7 89 5 24 8 09 4 52		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	10th "	270 271 272 273 274 275 274 275 277 278 279	86·3 87·0 84·5 84·2 53·9 58·5 63·9 69·5 73·0 81·3	I 45 2 18 3 0 3 43 7 I A.M. 7 42 8 17 8 48 9 16 11 14	000000000000	218 05 218 05 220 10 220 53 220 97 221 20 221 56 221 18 222 04 222 20		う ぷ ぷ ぷ ぷ ぷ ぷ ぷ ぷ ぷ ぷ
6th "	230 231 232 233 234 235 236 237 238 239 240 241 243 244 243 244 245	88.9 89.1 89.8 87.6 88.7 68.4 70.1 72.3 75.3 79.1 86.4 87.1 83.0 84.9 84.9 88.7 88.7	0 47 I 22 I 50 2 24 2 56 3 31 7 29 A.M. 8 0 8 30 8 55 9 27 II 25 II 58 0 36 P.M. I 7 I 42 2 15	0 18 0 18 18 18 18 19 19 19 19 19 0 19 0 19 0 19 0 19 0 20 0	5755 768 760 755 729 750 729 750 729 750 729 750 729 750 728 755 728 755 728 755 755 755 755 755 755 755 755 755 75		333333333333333333333333333333333333333	15th "	280 281 282 283 284 285 286 287 288 290 291 293 294 295 206	81 ² 82 ⁹ 84 ³ 83 ⁹ 84 ³ 86 ⁴ 85 ⁹ 7 ² 7 ⁷ 77 86 ⁹ 88 ¹ 77 77 88 88 ⁹ 88 sup>9</sup>	11 45 0 17 P.M. 0 51 1 20 1 54 2 25 2 57 3 43 7 28 A.M. 8 6 8 36 9 11 9 50 11 41 0 15 P.M. 0 48 1 10	00000000000000000000000000000000000000	221.81 221.17 221.11 221.44 221.32 221.21 221.52 222.07 222.82 223.52 223.75 222.87 221.70 221.70 221.13 221.44		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
7th "	247 248 249 250 251 252	86.5 85.1 66.4 67.5 69.0 71.7	2 43 3 22 6 48 A.M. 7 22 7 53 8 24	6 20 6 21 6 21 6 21 6 21 6 21 6 21	2.13 2.17 2.91	I I I I I I	3 3 3 3 3 3 3	17th "	297 298 299 300 301 302	89 ^{.5} 88 ^{.4} 88 ^{.6} 88 ^{.0} 57 ^{.0} 61 ^{.0}	1 46 2 15 2 46 3 20 7 15 A.M. 7 46	6 6 6 6 6 6	221.14 221.37 220.87 221.12 220.77 220.95	I I I I I I	3 3 3 3 3 3 3 3 3

1X_40

٠

DETAILS OF THE MEASUREMENT

.

1X_41

Extracts from the Field Book-(Continued.)

	the Set.	ure of Air	Mean time of	bars used	Set above gin	Nun shev arra mer	wing nge- nt of	1000	the Set.	ure of Air	Mean time of	ars used	Set above gin	Nun she arra men	neral wing nge- nt of
1868	No. of	Temperat	ending	No. of	Height of ori	Bars.	Micros :	1868	No. of	Temperat	ending	No. of 1	Height of or	Bars	Micros:
17th Fe 18th "	b. 303 304 305 306 307 308 300 311 312 313 314 315 317 318 322 322 322 322 322 322 322 322 322 32	66 71 74 36 74 38 87 99 97 70 5 74 75 57 70 8 9 9 9 1 7 7 7 7 7 8 9 9 9 1 7 7 7 7 8 9 9 9 1 7 7 7 7 8 9 9 9 9 1 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	h. m. 8 20 A.M. 8 51 9 22 11 9 11 37 0 10 P.M. 0 41 1 37 2 13 2 44 3 29 7 13 A.M. 7 45 8 13 8 50 9 24 11 26 11 56 0 25 P.M. 1 37 2 13 2 41 3 11 3 46 7 0 A.M. 7 32	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	feet. -220.39 220.42 220.43 220.71 220.07 219.85 220.20 220.22 220.42 219.87 219.97 219.87 219.97 219.87 215.80 215.80 215.82 214.40 213.58 212.00 208.05 206.18 204.30 203.38 202.39 200.05 198.58 196.58		333333333333333333333333333333333333333	19th Feb. 20th "	334 3356 3378 3344 3344 334456 3344 334456 3355 35578 3555 35578 3555 35578 35778 357778 35778 357778 357778 357778 357778 357778 35778 357778 357778	0 79 99 99 99 99 99 99 99 99 99	h. m. 9 26 A.M. 11 26 11 53 0 13 P.M. 0 45 1 12 1 35 1 59 2 25 2 54 3 21 3 45 6 58 A.M. 7 17 7 40 8 0 8 20 8 40 9 26 11 22 11 47 0 11 P.M. 0 34 0 53 1 13 1 33 1 55	00000000000000000000000000000000000000	feet. - 189.90 188.21 186.69 185.21 183.50 181.71 179.88 175.73 174.28 175.73 174.28 175.73 174.28 175.73 174.28 175.73 177.75 175.73 177.75 175.73 177.75 175.73 177.75 175.73 177.75 177.7		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
T measur H J 20th Fel	331 332 333 The ad ed on (leight The ter 5. 362	62.9 68.3 75.0 Vanced Cary's of set minal 94.8	8 0 8 30 9 0 l-end of set N brass scale w No. *2 above point of set N 2 25 P.M.	б б Io. * ith a Stat Io. 3 б-	195.01 193.68 191.78 2 fell in 3 beam cc ion B = 361 was t -159.74	I I defect ompass 2.43 fe he poi	3 3 (<i>i.e.</i> 5	South-Wes origin for s 21st Feb.	*s t) of set No. . 376	94.5 the do . 362. 96.0	2 55 Total - ot defining S I 54 P.M.	2 - <u>3</u> tati	$\frac{159.74}{1465.39}$	4 153 fe 1	5 et, as
21st "	363 364 365 366 367 368 369 370 371 373 373 374 373	93'1 61'5 63'9 67'7 72'8 77'0 80'5 91'7 92'5 93'6 94'7 94'9 95'8	$\begin{array}{c} 3 & 3^{\overline{2}} \\ 6 & 49 \text{ A.M.} \\ 7 & 21 \\ 7 & 51 \\ 8 & 25 \\ 8 & 5^{\overline{2}} \\ 9 & 19 \\ 11 & 16 \\ 11 & 42 \\ 0 & 7 \text{ P.M.} \\ 0 & 34 \\ 1 & 0 \\ 1 & 26 \end{array}$	00000000000000000000000000000000000000	159.36 159.18 159.42 158.41 158.33 157.83 157.83 157.87 158.10 158.15 157.89 157.78 157.78 157.78 157.78		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	22nd "	377 378 379 381 382 383 384 385 386 385 386 387 388 389	95 ³ 94 ⁹ 93 ⁹ 93 ⁹ 63 ⁰ 65 ³ 69 ⁶ 73 ⁸ 78 ⁵ 82 ⁶ 91 ⁰ 91 ³ 92 ⁹	2 22 2 48 3 13 3 39 7 5 A.M. 7 33 7 59 8 32 9 4 9 34 11 26 11 56 0 30 P.M.	66666666666666666	157.64 157.04 156.72 156.83 156.20 156.57 156.09 156.24 155.98 154.94 154.63 154.02		33333233333333333

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	bars used Set above	Nu she arrs me	meral wing ange- nt of	1000	the Set	ure of Air	Mean time of	bars used	Set above gin	Num shev arras men	neral ving nge- it of
1306	No. of	Temperat	ending	No. of 1 Height of	Bars.	Micros:	1668	No. of	Temperat	ending	No. of 1	Height of ori	Bars.	Micros:
22nd Feb. 24th "	390 391 392 393 394 395 396 397 398 399 400 401 402	92.7 93.4 93.2 92.8 92.9 92.9 92.9 92.9 92.9 95.3 65.7 6 5.7 7 5.4 6 7 7 5.4 9 92.4 92.9 92.7 92.7 92.7 92.7 92.7 92.7 92.7	<i>h. m.</i> o 56 P.M. I 28 I 56 2 2I 2 45 3 17 7 0 A.M. 7 33 8 0 8 32 9 4 9 34 II 22	fe 6 - 153 6 152 6 152 6 151 6 151 6 150 6 149 6 149 6 149 6 149 6 147 6 147 6 147	$\begin{array}{c} t. \\ 52 \\ 52 \\ 538 \\ 138 \\ 149 \\ 149 \\ 15$	3 3 3 3 3 3 3 3 3 3	26th Feb. 27th "	440 441 442 443 444 445 444 445 447 448 449 450 451 452	9551 9600 9548 9554 9554 9554 9551 9551 6925 7755 7758	h. m. 1 10 P.M. 1 34 1 55 2 19 2 43 3 32 7 11 A.M. 7 36 7 58 8 22 8 48 9 9	, , , , , , , , , , , , , , , , , , ,	feet. - 1 52 07 1 52 07 1 52 04 1 51 57 1 50 56 1 49 73 1 49 73 1 49 48 1 48 40 1 48 44 1 47 63 1 47 36 1 46 48		9 3 3 3 3 3 3 3 3 9 9 9 9 9 9 9
, 25th "	403 404 405 405 405 405 405 405 405 405 405	99239999999999999999999999999999999999	11 58 0 24 P.M. 0 53 1 18 1 49 2 18 2 46 3 14 7 12 A.M. 7 37 7 58 8 18 8 45 9 19 9 48 11 19 11 41 0 3 P.M.	6 148 6 147 6 148 6 149 6 150 6 151 6 153 6 155 6	28 1 28 1 29 1 38 1 39 1 38 1 39 1 38 1 39 1 38 1 39 1 33 1 36 1 58 1 58 1 58 1 58 1 58 1 58 1 58 1 58 1 58 1 58 1 58 1 58 1	53333333333333333333333333333333333333	28th "	452 453 455 455 455 455 455 455 455 455 455	7958 89100 9358 94500 9558 9550 9551 9550 9551 9550 9551 9550 9551 9550 9551 9550 9551 9550 9551 9550 9551 9550 9550	9 9 33 11 14 11 33 11 52 0 10 P.M. 0 31 0 53 1 15 1 35 1 35 1 57 2 19 2 43 3 4 3 30 7 18 A.M. 7 40 8 4 8 27	00000000000000000000000000000000000000	140 40 140 40 146 30 145 87 145 14 144 72 143 80 143 63 143 63 142 53 142 53 142 41 142 00 142 24 141 62 141 62 141 71 141 28 141 84 142 00 142 77		3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
26th "	421 422 423 424 425 426 427 428 429 430 431 433 434 435 436 437 438 439	93.9 94.3 995.2 997.8 996.8 996.5 996.5 996.5 996.5 75.6 92.9 94.8 994.8 994.8 995.9 95.9	o 32 o 50 I 17 I 40 2 3 2 26 2 46 3 I3 3 4I 8 I4 A.M. 8 38 8 59 9 22 9 50 II 25 II 48 o 8 P.M. o 29 o 50	6 162. 6 162. 6 161. 6 161. 6 160. 6 159. 6 159. 6 159. 6 159. 6 159. 6 157. 6 157. 6 157. 6 155. 6 155. 6 155. 6 155. 6 155. 6 153. 6 153. 6 153.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33333333333333333333333333333333333333	2nd Mar.	471 473 475 475 475 475 475 475 475 475 475 477 477	779888900558053366009999005774798900099900707747956600999999999999999999999999999999999	8 46 9 4 9 25 9 47 11 40 0 4 P.M. 0 27 0 53 1 23 7 18 A.M. 7 43 8 14 8 43 9 12 9 42 11 21 11 47 0 23 P.M. 0 52	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	143.60 144.22 145.08 145.99 147.23 148.97 150.02 150.70 152.20 153.28 154.69 156.27 158.52 160.31 161.90 163.23 164.35 166.82 169.46		33333333333000000000000000 00000000000

February 28th. (479) A strong breeze from the E. which stopped further work for the day.

٠

IX_42

,

DETAILS OF THE MEASUREMENT.

IX_43

Extracts from the Field Book-(Continued.)

	the Set	ure of Air	Mean time of	oars used	Set above igin	Num shev srrs mer	neral wing nge- nt of		the Set.	ure of Air	Mean time of	oars used	Set above gin	Num shew arran men	eral ing ige- t of
1868	No. of	Temperat	endiyg	No. of 1	Height of or	Barre.	Mieros :	1868	No . of	Temperat	ending	No. of 1	Height of eri	Bars.	Micros:
2nd Mar. 3rd "	491234990123449505555555555555555555555555555555555	09999999999999999999999999999999999999	\hbar . m. 1 16 P.M. 1 41 2 6 2 26 2 44 3 4 3 55 6 50 A.M. 7 11 7 31 8 0 8 22 8 51 9 10 9 33 11 9 13 6 11 57 0 30 P.M. 0 54 1 16 1 39 2 25 2 46 3 15 6 51 A.M. 7 19 7 42 8 7 8 24 8 45 9 4 9 27 11 21 11 43 0 54 P.M. 1 49	, , , , , , , , , , , , , , , , , , ,	feet. - 171 70 173 56 175 42 177 21 179 73 180 19 181 55 182 55 182 55 182 55 182 55 182 55 182 55 182 55 182 50 182 55 182 50 182 50 182 50 182 50 180 40 177 63 175 90 174 64 171 70 166 98 166 98 166 98 166 98 166 58 166 58 166 70 158 67 158 67 158 67 158 67 158 67 158 70 158 70 159 70 159 70 159 70 150 7		ୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠୠ	4th Mar. 5th "	53357890123555555555555555555555555555555555555	992+8 2 5 76 3 0 5 4 0 5 0 5 0 5 8 8 6 0 3 0 8 0 0 5 3 2 5 7 7 7 7 7 7 8 9 9 9 9 3 3 3 5 5 1 2 0 0 3 0 8 0 7 1 2 7 7 7 7 7 8 8 5 0 0 4 3 1 8 8 6 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	\$\lambda\$. m. 2 11 P.M. 2 33 2 55 3 18 3 41 6 44 7 30 7 51 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 28 8 29 3 13 9 39 11 53 0 17 12 29 2 47 3 14 3 40 6 55 1 35 7 33 7 53 8 29 8 48 9 7 <t< td=""><td>, • • • • • • • • • • • • • • • • • • •</td><td><i>feet.</i> - 138.73 139.10 138.91 138.95 138.22 138.00 137.78 137.23 137.44 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.35 130.41 128.87 122.33 120.76 122.33 120.76 112.39 112.39 111.73 111.10 110.49 110.05 108.65 108.65 108.58 108</td><td></td><td>66666666666666666666666666666666666666</td></t<>	, • • • • • • • • • • • • • • • • • • •	<i>feet.</i> - 138.73 139.10 138.91 138.95 138.22 138.00 137.78 137.23 137.44 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.34 137.35 130.41 128.87 122.33 120.76 122.33 120.76 112.39 112.39 111.73 111.10 110.49 110.05 108.65 108.65 108.58 108		66666666666666666666666666666666666666

The advanced-end of set No. 573, fell in excess (*i. e.* North-East) of the dot at North-East-End 1.9718 feet, as measured on Cary's brass scale with a beam compass. Height of set No. 573, above North-East-End = 3.61 feet.

Reduction to Mean Sea Level.

Let the sections into which this base-line is divided be denoted as follows;

South-	West-	End to	Static	on A	by	Section	Ι
Station	A	to	"	Β		,,	Π
,,	B	to	Nort	h-East-	End	,,	\mathbf{III}

Then in the notation of (7) page I_{22} we have

IX____44

H = 3118; h = -1090; $\delta h = +4.3$; Log. R = 7.31936, and n = 572

			[<i>h</i>] ₁ ^{<i>p</i>}	a	n	dh	F	λ	C _s	<i>C</i> ₁	C
				+		+			+		_
Section	Ι	•••	23515	· 48	202	1.2	23315	12764	0 °0704	1.9078	1.8374
**	II	•••	31465	200	159	1.5	30931	10008	0.0934	1°4959	1'4025
"	111	•••	31643	72	211	1.0	30832	. 13317	0.0931	1.9902	1.8924

Final	length	of	the	Base-Line	and_of	its	parts :	in	feet	of	Standard	A
-------	--------	----	-----	-----------	--------	-----	---------	----	------	----	----------	---

	Me	asured wi	th			
Section	Compensated bars page IX	Compensated microscopes page IX36	Beam compass pages IX39 IX43	Reduction to sea level as above	Total Length	Log.
S. W. End to Stn. A	12160.7298	бо8 [.] 0330	- 4.8132	- 1.8374	12762.1122	4.10592 2558
Stn. A to Stn. B	9520.5822	4 76 [.] 0364	+ 11.1285	-1.4022	10006.3446	4.00027 5455
Stn. B to N.E. End	12690.7936	634.5599	- 8.2871	- 1.8974	13315.1690	4 ·12+34 66 83
S.W.End to N.E. End	34372.1056	1718.0293	- 0'4697	-5.1373	36083.6258	4.22231 0170

Verificatory Minor Triangulation.

of agle			Tog Sine		Distance	in	of gle
No. Tria	Name of Station	Corrected Angle	Log. Sine	Log. Distance	Feet	Miles	Error Trian
1	South-West-End of Base, Station A, Machalbetta S,	58 23 56.677 74 22 20.610 47 13 42.756 180 0 0.043	9 [.] 930296059 9 [.] 983641104 9 [.] 865736415	4`170482202 4`223827247 4`105922558	12762.1122	2•417	" +0 [.] 537
2	Station A, Machalbetta S, Ainur S,	55 46 12.925 50 9 22.294 74 4 24.815 180 0 0.034	9'917394505 9'885244629 9'983001124	4*104875583 4*072725707 4*170482202			-1.344
3	Station A, Ainur S, Station B,	49 51 24.976 54 55 13.239 75 13 21.806 180 0 0.021	9 [.] 883341730 9 [.] 912941111 9 [.] 985392616	3°970674821 4'000274202 4'072725707	10006.3157	1.892	+0.349
4	Ainur S, Station B, Gubi S,	63 50 34 567 72 38 29 787 43 30 55 672 180 0 0 0 26	9 [.] 953077496 9 [.] 979756469 9 ^{.8} 37935 ⁶ 75	4:085816642 4:112495615 3:970674821			—0 [.] 926
5	Station B, Gubi S, North East-End of Base,	32 8 7.904 82 40 51.760 65 10 60.356 180 0 0.020	9.725849381 9.996447025 9.957921348	3·853744675 4·124342319 4·085816642	13315'0352	2.22	—0,310
6	South-West-End of Base, Station A, Gadalhalli S,	60 9 41.726 38 15 56.240 81 34 22.055 180 0 0.021	9 [.] 938235482 9.791906707 9.995285359	4`048872681 3`902543906 4`105922558	12762.1122	2.412	+0'979
7	Station A, Gadalhalli S, Basanguta S,	54 24 43 ^{.897} 50 53 51 ^{.266} 74 41 24 ^{.8} 56 180 0 0.019	9'910210514 9'889872737 9'984307832	3`974775363 3`954437586 4`048872681			-0.330
8	Station A, Basanguta S, Station B,	87 19 21.352 49 30 2.970 43 10 35.699 180 0 0.021	9 [,] 999525654 9 ^{,8810} 50844 9 ^{,8} 35214230	4*118749010 4*000274200 3*954437586	10006.3157	1.892	+0'179

.

IX.____45

of Bla					Distance	in	je je
No. Trian	Name of Station	Corrected Angle	Log. Sine	Log. Distance	Feet	Miles	Error Triang
9	Basanguta S, Station B, Sampanhalli T.S	° 4 4'616 81 38 15 44 64 36 59 963 180 0 0.025	9°744690462 9'995357877 9'955908897	3'907530575 4'158197990 4'118749010			+ 0.002
10	Station B, Sampanhalli T.S North-East-End of Base,	55 11 9'358 87 29 0'283 37 19 50'380	9'914347941 9'999580942 9'782769201	4`039109315 4`124342316 3`907530575	13315.0321	2.22	+0.100
•		180 0 0,051		Sum	36083.4631	6·8 ₃₄	

Verificatory Minor Triangulation-(Continued.)

NOTE.-Each side of a triangle is given in the same horizontal line with the angle which it subtends.

The angles of the verificatory triangulation were measured with Barrow's 24-inch Theodolite No. 2 read by 5 micrometer microscopes. At all the stations 3 measures were made on each of 10 zeros. The stations on the line are S.W. End, A, B, and N.E. End.—The auxiliary stations are Machalbetta, Ainur, Gubi, Sampanhalli, Basanguta and Gadalhalli.

Comparison in feet between the values computed by means of the verificatory triangulation and the measured value.

Of the cntire line.

South-West-End to North-East-End by the	$\begin{array}{c} measurement, \\ page IX_{44} \end{array}$ 360	<i>Lng.</i> 83 [.] 6258 4 [.] 557 310 170
,, computed in terms of South Station A,	$\left. \begin{array}{c} -\text{West-End to} \\ \text{page IX}_{-46} \end{array} \right\} 3608$	33.4631 4.557 308 212
Log. computed value	e — Log. measured v	value $-0.000 001 958$
In terms of the entire l	ine by mcasurement.	
	Computed	Computed
	•	Measured *
South-West-End to Station A	. 12762.1698	+ 0 [.] 0576
Station A to Station B	. 10006.3608	+ 0.0162

		•	•	•	J	1
" B to North-East-End	•			•	13315.0952	- 0'0738

Of each section in terms of the others.

	South-West-End to Station A	Station A to Station B	Computed Mensured	Station B to North-East-End	Computed Measured
Measured lengths* Computed on base S.W. End to Station A {	12762 [.] 1122	10006.3446 10006.3157	 — 0 [.] 0289	13315 [,] 1690 13315 [,] 0352	 – 0 [.] 1338
Computed on base Station A to Station B			•••••	13315.0736	- 0.0954

Description of Stations.

SOUTH-WEST-END or BANGALORE BASE, or UIALDINNA OBSERVATORY STATION, Lat. 13° 1', Long. 77° 37', is situated in the district of Bangalore, province Mysore, on the highest part of the undulating ground to the N. generally of Bangalore cantonment. An old small square building of about 7 feet side, consisting of a pyramidal roof raised on 4 stone pillars, stands some 70 feet S.E. of the station. The azimuths and distances of some of the circumjacent places are as follows;—St. John's Church, 304° 37'; miles 2.51. Scotch Kirk, 327° 16'; miles 2.73. Commissioner's Flag, 342° 30'; miles 2.23.

The point to which the measurement was referred is denoted by a dot drilled into a plug of brass ; the dot being placed at the centre of a small circle on the brass and of a larger one 4" in diameter on the stone. The plug is let into a block of gneiss, pyramidal in form, 36" square at base, 8" square at top and 42" in height. The block rests on the reddish indurated clay of which the highland is here composed. The base-line dot is covered for protection with a plate of brass some $2\frac{1}{4}" \times 5" \times 0"$ 15. The plate carries a coarser dot and eircle and is so adjusted that the two dots are in the same normal. Subsequent to the measurement an observatory was erected over the station. In the first instance, a pillar resting on stone-beams, thrown across the well in which the markstone is sunk, was built over the mark and carried up flush with the roof of the observatory; the theodolite rested on this pillar while the principal angles and azimuth were observed at this station. After these observations were concluded, the pillar and its supporting stone-beams were removed. A stone cap was placel over the mark and an isolated pillar of cut-stone built over it to a height of 5" below the level of the observatory also contains an isolated pillar of cut-stone built over the stone exactly over with stone flags, flush with the floor of the observatory, a rough dot and circle being engraved on the stone exactly over the mark below. The observatory also contains an isolated platform 5' 6" square, the centre of which is on the prime vertical of the station already described and to the W. : the distance between the two centres is about 6'³. The platform was provided for the pendulum observations. There are two abutment walls on the western side of the building which carry a flight of stone steps from the level of the roof to within 8 feet of the ground. A block of stone fixed in the normal of the box of the observatory. The observatory is 15' 6" by 11' 1', being a rectangle with the 2 castern angles cut off. It is raised

The South-West-End was connected by spirit levelling in 1868 with the Railway Benchmark at the Bangalore Railway Station by two independent routes; this Bench-mark is on the East end of arrival platform at the Railway Station and is stated by the Resident Engineer to be 3033.07 feet above mean sea level at Madras. Accepting this value, the height above mean sea level of the base-line dot was found to be 3118.3 feet.

NORTH-EAST-END OF BANGALORE BASE, OR KANNUR OBSERVATORY STATION, Lat. 13° 5', Long. 77° 42', is situated in the district of Bangalore, province Mysore, on the crest of the high land S. of Kannúr and west of Gubbi (Chota) village. The azimuths and distances of some of the villages are as follows;—Kannúr, 185°; miles 0.998. Gubbi (Chota), 287°; miles 0.689.

The Station is marked in the manner adopted for the South-West-End Station with the following differences,—the surface of the cut-stone pillar built over the base-line dot is 4" below the ground-loor and 2' 7" above the base-line dot. The roof of the observatory is 12' 8" above the ground floor.

STATION A, on NAGVARAM, Lat. 13° 2', Long. 77° 39', is on the straight line from South-West-End to North-East-End, being distant 2.4 miles from the former, and is situated in the Bangalore district, province Mysore, on the northern slope of the high land W. of the small village of Nágváram. There is a large tank of water about 0.4 miles to the N. The azimuths and distances of some of the circumjacent places are as follows ;—Nágváram village, 302°; miles 0.51. St. John's Church, 353° 17'; miles 3.17. Commissioner's Flag staff, 14° 53'; miles 3.99.

The point to which the measurement was referred is denoted in precisely the same manner as at the South-West-End Station. The superstructure consists of a solid stone platform 10° 6 square and 1' above the ground level, on which rest four stone pillars carrying an upper platform. The former platform has a mark engraved on stone in the normal of the station and the upper platform carries a circular slab of stone with an orifice in it. The theodo-lite rested on this slab during the measurement of the principal angles. After the angles had been measured, a cut-stone pyramid 2' square at base and 6' 3" high was erected on the slab. The heights above the base-line dot are as follows ;— Dot on lower platform 1'7"; Surface of slab in upper platform 10' 2".

Description of Stations—(Continued.)

STATION B, OR RACHINHALLI, Lat. 13° 3', Long. 77° 40', is on the straight line from South-West-End to North-East-End, being 2.5 miles from the latter, and is situated in the Bangalore district, province Mysore, on the rising ground between the villages of Ráchinhallí and Tanísandar. The azimuths and distances of these villages are as follows; — Ráchinhallí, 92°; miles 0.11. Tanísandar, 282°; miles 0.46. The Scotch Kirk is distant 5.59 miles at an azimuth of 16° 6'.

The point to which the measurement was referred is denoted in precisely the same manner as at the South-West-End Station, the pyramidal mark-stone being sunk in a well and surrounded by concrete, but having its top rising about 12" above the well in which it is sunk. A circular isolated pillar is built over the mark, the latter being protected as usual by a hollow stone cap. A second mark is engraved on the pillar in the normal of the lower or base-line mark and 2' 3" above it. To protect the pillar and its mark, stone slabs have been placed over the whole, resting on the annulus wall, so as not to touch the pillar at all. These slabs form a circular platform 5' in diameter, and 9" high; and having two lines cut into it intersecting over the mark. A pyramid of cut-stone surmounts the platform.

MACHALBETTA AUXILIARY STATION, OR MUCHULGUTTA, Lat. 13° 0', Long. 77° 40', is situated in the Bangalore district on the summit of a rocky eminence 500 or 600 yards N. of the Madras Railway; $\frac{1}{2}$ mile S.S.W. from Lingarajapuram, and $1\frac{1}{2}$ miles N.E. by E. from St. John's Church.

The station is marked by an isolated circular masonry pillar 1 foot high, surrounded by a platform of stones and earth. The former contains a mark-stone at top, and another at bottom.

AINUR AUXILIARY STATION, OR YENNUR, Lat. 13° 2', Long. 77° 41', is situated in the Bangalore district on the top of the rocks above a stone quarry about $\frac{1}{2}$ mile E.N.E. from the village, and $\frac{1}{2}$ mile N.W. from Agraram.

The station is denoted by an isolated circular masonry pillar 2 feet high, surrounded by a platform of stones and earth. The former contains a mark-stone at top, and another at bottom.

GUBI AUXILIARY STATION, Lat. 13°4', Long. 77°42', is situated in the Bangalore district on rising ground 1 mile S. of Pedda Gubi village, ½ mile W. of Kalsanhalli village and about 8 miles W. by S. from Huskota.

The station is denoted by an isolated circular masonry pillar 2 feet high, surrounded by a platform of stones and earth. The former contains a mark-stone at top, and another at bottom.

GADALHALLI AUXILIARY STATION, OR GETHALHALLI, Lat. 13° 2', Long. 77° 37', is situated in the Bangalore district, and is distant about 350 yards N. by W. from the village and 1½ miles N. by W. from the South-West-End of the base-line.

The station is denoted by an isolated circular masonry pillar 7 feet high, surrounded by a platform of stones and earth. The former contains a mark-stone at top, and another at bottom.

BASANGUTA AUXILIARY STATION, OR BASWANGUTTA, Lat. 13° 3', Long. 77° 38', is situated in the Bangalore district on a rocky hillock, 200 yards W. of the Ballari road and $\frac{1}{2}$ mile S. of Badrayanpuram.

The station is denoted by an isolated circular masonry pillar 1 foot high, surrounded by a platform of stones and earth. The former contains a mark-stone at top, and another at bottom.

SAMPANHALLI AUXILIARY TOWER STATION, Lat. 13° 5', Long. 77° 40', is situated in the Bangalore district on top of a bare rock about 500 or 600 yards E. of the village and $\frac{1}{4}$ mile N.E. of Striramapuram village.

The pillar is perforated and 12 feet high. It has a mark engraved on the rock in situ.

J. B. N. HENNESSEY.

Digitized by Google

IX_48

1

X__2

This base-line is situated at the southern extremity of the Peninsula of India, a few miles to the north-east of the Cape from which it's name is derived. The middle point is in latitude N. 8° 15' and long. E. 77° 45'; the direction is nearly meridional, the azimuth of the north end from the south end being 185° 56'; the length is 1.688 miles; the line was measured four times.

The line was selected and all the necessary preliminary arrangements were made, by Captain B. R. Branfill, in the field season of 1867-68, and in the following field season the measurement was effected under the supervision of Captain J. P. Basevi, R.E., with the aid of the following Officers and Assistants—

Captain J. Herschel, R.E.	Mr. A. Christie.
Captain B. R. Branfill.	"J. McDougall.
Lieutenant M. W. Rogers, R.E.	" O. V. Norris.
Mr. G. Anding.	" J. Bond.
" J. W. Mitchell.	" C. D. Potter.
., G. Belcham.	C. Torrens.

Digitized by Google

The reductions of the observations and of the measurements were carried on, for the most part, under the superintendence of Captain Herschel, but they were completed at the Head Quarters of the Trigonometrical Survey, under Colonel Walker's instructions.

INTRODUCTION.

In order to ascertain the magnitude of the probable errors of base-lines measured with the apparatus of compensation bars and microscopes, from the intrinsic evidence of the operations themselves, instead of the evidence afforded by triangulation connecting the several sections of the base, the usual procedure was deviated from at Cape Comorin, and, instead of measuring a line of the length of 6 to 8 miles-divided into sections to be compared by triangulation-once for all, a line of 1.688 miles or about one-fourth the usual length, was measured four times. This line was extended in opposite directions to a length of 7.635 miles by triangulation on both flanks, thus affording for the contiguous Principal Triangulation a side of verification of similar length to the previous base-lines. In fact the first intention had been to measure a base-line of the usual length in the usual manner, and a line was selected accordingly, and divided into three sections, for mutual verification by triangulation on both flanks; but meanwhile strong representations were made to Colonel Walker by Captain Herschel, who was then engaged in reducing the measurements of the Bangalore base-line, to the effect that the accuracy of the compensation apparatus was very questionable; he therefore decided to depart from the usual procedure of operation, and directed that the central section only should be measured, but that the measurements should be repeated four times, and be conducted in such a manner as to indicate, with all possible certainty, the actual magnitude of the probable errors of base-lines measured with the apparatus.

The entire line lies between, and nearly at right angles to, the crests of the low ridges or undulations of Kúdankólam and Ráthápúram in the táluk of Nángunéri. The southern station, Kúdankólam, is nearly 4 miles E.N.E. of Colonel Lambton's astronomical station of Punnœ, the southernmost point of the well known meridional arc which extends from thence to the Himalayas. Proceeding northwards from Kúdankólam, the line passes through the stations of Shánganéri and Parméspuram, the distance between which was measured four times by the compensation apparatus, and which are therefore the terminal stations of the linear measurements.—The entire length was determined by triangulation from the measured section, and the stations at the extremities of the entire line are the terminal stations of the Principal Triangulation between Bangalore and Cape Comorin.

The preliminary arrangements and the general programme of the operations have been fully described in section 2 of Chapter VIII, which should be referred to for further information on the subject.

Digitized by Google

The comparisons of the compensation bars with the standard were made with the pair of microscopes which had been used at all previous base-lines and are described in Appendix No. 1, but with the addition—at Bangalore and at this base—of a micrometer to the microscope which originally carried a fixed wire only. This addition was a great improvement, as regards the delicacy of the operations, but it added very considerably to the bulk of the record and to the labor of the reductions; thus it is not desirable to print the whole of the original micrometer readings and reductions, as they would occupy about eight times the space which sufficed for the record of the micrometer readings at the preceding base-lines; in this place will be given the resulting excess of each bar over the standard, at the temperature of 62°, as reduced with the old value of the factor of expansion of the standard, which was determined in Calcutta in 1832, and which is indicated in the theoretical investigation of the changes in the length of a compensation bar and invariably throughout Chapters VII and VIII, by the symbol E'_a

Thus in the following tables of the results of the comparisons of the compensation bars with the standard, the quantities in column B are the numerical values of x'' for bar B in equation 10 page (65), and those in the column for the mean are the numerical values of X'' in equation 15 page (69). They are expressed in divisions of the micrometer K, the value of which, determined from runs taken on inch [a.b] of the standard foot, was found to be 21758 divisions = 1 inch of standard A; and thus E'_a , the preliminary value of the expansion of the standard for 1°F, = 17.74 K-divisions.

The temperatures in the table are the observed temperatures corrected for the calibration and index errors of the thermometers which are given in Appendix No. 8.

All the comparisons of the compensation bars with the standard were made in the vicinity of the Parméspúram station—the northern terminus of the measurement—in the base-line tents; the comparing microscopes were fixed on stone caps, resting at three points on substantial pyramidal blocks of stone which were carefully isolated and placed parallel to the direction of the base-line; when the position of the bars were reversed, as described at page (64), the stone caps carrying the microscopes were also reversed on their supports.

As soon as sufficient practice made it possible, the rule was observed of beginning a comparison of the set of compensation bars with the standard at every half-hour, and thus distributing the operations with equal regularity over the whole of the working hours; every comparison of the set of bars commenced and terminated with an observation of the standard.

The operations for the measurement of this base-line differ most materially from those of all the previous base-lines in the arrangements which were made for measuring the thermal inequalities of the components of the compensation bars. It has been shown in Section 3 of Chapter VII that a knowledge of the differences of temperature of the components is essentially necessary for the determination of the normal length of a compensation bar; therefore one of the bars was fitted with thermometers, and taken as a representative of all the others (Section 4, Chapter VII), and the temperatures of the components of this bar were systematically observed, throughout the whole of the operations.

X_4

BAR COMPARISONS.

te 1869.	arisons.	BOT	Air.	Standard.	Prelimi in divis	nary exc ions of H	ess of bas K. micror	rs over S neter, 1 d	tandard division	at 62° F = 1·277	ahrenheit m.y of A	Temper compo of	atures of ments B.	
Group and Da	Times of comp.	No. of compari	Temperature of	Temperature of	A	B (x'')	С	D	Е	н	Mean (X")	62° + T _b Temp : of brass bar.	t, excess of iron over brass.	Remarks.
I, I. 9th January.	h. m. 7 37 A.M. 8 36 9 20 9 49 10 23 11 0 11 37 0 8 P.M. 0 55 1 29 2 1 2 34 3 3 4 2	1 2 3 4 5 6 7 8 9 10 11 12 13 14	75.4 77.7 79.1 82.3 83.6 85.6 85.6 85.8 85.9 85.9 85.9 85.9 85.7	74'10 74'47 75'10 75'70 76'54 77'56 78'62 79'58 80'95 81'76 82'42 82'94 83'36 83'73	152.6 153.7 143.5 145.5 145.5 145.5 145.5 154.2 154.2 154.2 154.2 154.3 158.6 158.9 164.8 161.0 160.7	160°1 162°7 160°5 160°8 169°5 173°8 179°5 183°3 179°2 *183°1 182°6 183°4 183°3 182°6	195'4 202'8 200'6 205'6 213'0 223'2 222'7 223'2 222'7 223'9 225'6 221'4 223'1 225'0 223'0	246.5 249.8 249.8 252.6 259.0 261.7 269.0 272.9 266.8 269.2 267.7 266.7 266.6 265.6	187.8 191.7 191.0 196.1 203.5 206.6 215.7 213.2 208.1 209.5 208.8 209.9 205.9 205.9	181.3 182.9 179.7 186.9 188.6 197.2 196.0 195.6 198.9 194.9 195.2 196.9 195.2 195.9	187.3 190.6 187.5 191.3 196.7 200.0 206.5 207.4 204.7 207.5 205.7 207.2 205.7 207.2 206.5 206.1	73°7 74°25 75°17 75°85 78°11 79°49 80°47 82°11 82°19 82°17 82°17 82°19 82°56 83°56 84°60 84°60 84°60 84°50	+ .02 .04 .07 .13 .24 .39 .43 .44 .39 .38 .38 .38 .33 .33 .33	Capt. Basevi at L. or S. end ; Capt. Branfill at K or N. end. Observers chang- ed places. Col. Walker, at K. or N. end ; Lieut. Rogers, at L. or S. end. Observers chang- ed places
I, 2. 11th January.	4 3 6 59 A.M. 7 33 8 1 9 33 9 59 11 13 11 40 0 10 P.M. 0 44 1 10 1 43 2 20 2 47 3 13 3 45 4 15	15 12 34 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 13 14 50 78 90 11 12 13 14 50 78 90 11 12 13 14 50 78 15 15 15 15 15 15 15 15 15 15	85 ² 74 ⁴ 9 75 ⁷ 1 779 ⁵ 6 88 ¹ 30 88 ⁴ 8 87 ¹ 4 87 ⁷ 9 88 ¹ 30 88 ⁷ 4 88 ⁷ 9 88 ⁷ 3	83 98 74 15 74 11 74 31 74 65 75 20 75 84 76 44 78 18 78 93 79 82 80 75 81 48 82 40 83 34 83 97 84 51 85 506 85 43	103'1 145'8 143'1 142'8 145'0 152'9 157'1 160'2 164'4 163'6 160'3 164'2 163'5 163'2 163'2 163'5 159'9 158'4 156'5 153'3	181.8 161.7 158.7 162.0 161.5 168.9 174.7 177.9 175.9 183.2 179.4 181.3 179.8 182.7 179.8 182.7 179.8 182.7 179.8 172.7 172.4 170.4	224'2 197'0 197'4 199'3 201'8 209'2 211'7 217'0 221'1 225'7 220'2 220'1 217'8 213'6 213'6 216'0 204'3	200.8 230.0 230.7 239.5 243.0 255.1 201.1 207.5 204.5 272.9 274.8 272.7 209.4 205.8 205.8 205.8 205.8 205.8 205.9 252.7 250.3 254.7 250.3 254.7	202 ² 182 ⁴ 181 ⁶ 186 ⁹ 1202 ⁰ 208 ⁴ 207 ⁸ 213 ³ 215 ⁶ 223 ³ 215 ⁶ 223 ³ 215 ⁶ 223 ³ 215 ² 208 ⁷ 208 ⁵ 208 ⁷ 203 ⁵ 201 ³ 198 ² 194 ¹	193'1 181'2 181'6 182'2 185'8 197'2 200'8 200'6 201'4 202'9 202'6 196'8 195'6 194'9 192'6 191'4 186'2	205.2 184.5 183.2 185.5 187.7 197.6 202.3 205.2 206.8 210.7 209.0 205.8 209.7 209.0 205.8 209.7 209.0 205.8 209.7 209.0 205.8 205.6 202.8 198.6 198.5 192.9	84.83 73.65 73.76 74.09 74.61 75.40 76.36 77.12 79.4 80.4 81.4 82.4 83.2 84.1 85.0 85.5 86.0 85.5 86.4 86.7	·32 ·06 ·12 ·13 ·15 ·26 ·33 ·37 ·33 ·37 ·3 ·37 ·3 ·4 ·4 ·4 ·4 ·4 ·1 ·1 ·1 ·5 ·26 ·33 ·37 ·37 ·3 ·37 ·3 ·37 ·3 ·37 ·3 ·37 ·37	Col. Walker, at K. or N. end ; Lieut. Rogers, at L. or S. end. Observers chang- ed places. Captain Branfill, at K ; Lt. Hers- chel at L. Observers chang- ed places.
	 The thermometers on Standard A were No. 7295 and 7298. January 9th—On Bar B, left end, thermometer on iron No. 7296, on brass No. 7293; Right end, thermometer on iron No. 4206, on brass No. 4216. , 11th—(1) to (7) On Bar B, Left end, thermometer iron No. 7296, on brass No. 7293; Right end, thermometer on iron No. 4206, on brass No. 4216. , (8) to (15) On Bar B, Left end, thermometer iron No. 7296, on brass No. 7293; Right end, thermometer on iron No. 7347, on brass No. 7349. , (16) to (18) On Bar B, Left end, thermometer iron No. 7348, on brass No. 7293; Right end, thermometer on iron No. 2406, on brass No. 4216. January 9th—(1) Slight clouds at sunrise; afterwards clear with strong north breeze; towards noon cumuli formed. 													
	", 11 "	th_	(1) I (1) I (5) S	Light clo trong w	ouas, su ouds at vind from	n occas sunrise m north	, afterw	obscur ards clo	ed. ear.					

Preliminary results of the comparisons of the compensation bars A, B, C, D, E, H, with the Standard, before and after the 1st measurement. Brass components West.

* The original record gives 203 1 which is evidently erroneous and has been altered to 183 1.

x__5

Digitized by Google

Preliminary results of the comparisons of the compensation bars A, B, C, D, E, H, with the Standard, before and after the 1st measurement. Brass components West.

, 1869.	rieons.	g.	Air.	3tendard.	Prelimin in divisi	nary exce ions of K	es of bai microm	rs over St ieter, 1 d	andard a livision =	t 62° Fa = 1·277	hrenheit, m.y of A	Temperatures of componets of B.		
Group and Date	Times of compa	No. of comparis	Temperature of	Temperature of	A	B (x'')	С	D	E	н	Mean (X")	62° + Τ _δ Temp: of brass bar.	t, excess of iron over brass.	BBMARXS.
I, 3. 25th January.	h . m. 7 10 A.M. 7 44 8 12 8 40 9 11 9 40 10 11 10 41 11 19 11 52 0 19 P.M. 0 46 1 16 1 49 2 17 2 46 3 17 3 46 4 9	1 2 3 4 5 6 7 8 9 0 1 1 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76°6 78°7 79°5 83°5 83°5 85°5 85°5 85°5 85°5 85°5 85	0 77'44 77'68 78'04 78'54 79'18 80'79 81'84 82'72 83'45 84'21 85'99 86'61 86'59 88'59	147'2 152'9 153'5 157'3 161'1 167'9 171'5 173'0 178'3 176'4 177'6 175'3 177'0 173'7 173'3 175'0 175'4	162.2 162.4 163.8 167.8 171.4 180.8 190.3 188.5 192.2 195.7 192.4 193.2 189.5 192.7 192.1 190.6 188.3 189.3 189.6	198.6 199.2 200.4 224.0 224.0 224.0 230.4 237.3 230.6 230.3 230.6 240.1 234.1 233.2 234.1 234.1 231.5	2399 2454 2450 2531 2607 2783 2772 2805 2840 2801 2850 2831 2850 2831 2857 2831 2857 2837 2807 2837 2807 2837 2807 2837 2837 2837 2837 2837 2837 2837 283	184.6 189.4 186.8 195.8 202.5 209.6 219.7 220.6 227.4 228.5 225.8 225.8 225.8 223.6 224.5 227.7 222.7 225.8 223.7 225.8 223.7 225.7 205.7	178.6 184.3 185.2 190.6 200.4 205.2 208.2 212.6 212.3 214.4 210.5 213.1 210.5 213.1 210.5 213.2 210.7 208.5 200.5	185 ² 188 ⁹ 190 ¹ 194 ⁸ 202 ⁰ 209 ¹ 216 ³ 218 ¹ 221 ³ 222 ⁹ 220 ⁹ 220 ¹ 220 ¹ 210 ¹ 210 ¹ 2	77'14 77'27 77'69 78'18 78'89 79'77 80'78 81'90 83'03 84'12 85'80 86'69 88'33 88'93 88'93 88'93 89'53 89'53 89'53	+ ·10 ·08 ·12 ·19 ·25 ·42 ·57 ·67 ·78 ·64 ·55 ·59 ·58 ·58 ·58 ·58 ·58 ·58 ·48 ·47 ·43	Lt. Herschel at K. Capt. Basevi at L. Col. Walker, and Lt. Rogers. Observers chang- ed places.
I, 4. 26th January.	7 2 A.W. 7 22 7 42 8 16 8 44 9 17 9 42 10 9 10 39 11 9 45 0 15 P.W. 44 1 11 1 45 2 14 45 3 12 43 4 14	1 2 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	75 ⁴ 76 ³ 77 ⁴ 80 ⁷ 83 ¹⁰ 83 ¹⁰ 85 ¹¹ 87 ¹⁸ 87 ¹⁸ 88 ⁷⁰ 87 ¹⁸ 88 ⁷⁰ 88 ⁷¹ 88 ⁷⁰ 88 ⁷¹ 88 ⁷⁰ 88 ⁹⁰ 88 ⁹⁰ 88 ⁹¹ 88 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ⁹¹ 89 ¹ 89 ¹ 89 ¹ 7 80 ¹ 80 ¹ 10 ¹ 80 ¹ 10 ¹ 80 ¹ 80 ¹ 80 ¹ 80 ¹ 80 ¹ 80 ¹	77.04 76.93 77.20 77.65 78.30 79.60 80.26 81.26 82.30 83.191 84.61 83.91 85.41 85.41 86.58 86.58 86.58 86.58 86.58 86.58	149'7 153'3 154'5 159'5 159'5 152'8 162'8 167'0 170'8 170'8 170'1 170'1 170'1 170'5 179'4 174'6 176'5 169'2 172'2 172'1 174'5	103.0 164.7 168.6 168.9 175.2 175.9 184.3 192.8 194.8 196.0 196.0 196.0 196.0 197.7 191.5 191.4 189.8 189.7	202'2 205'3 204'8 208'7 213'3 218'0 227'5 232'0 247'5 244'9 244'9 244'9 237'2 230'4 230'4 229'4 229'4 229'4 229'4 229'4 229'4 229'4 229'4	243 ¹ 2479 2486 2553 2599 2662 2695 2777 2809 2814 2869 2876 2876 2876 2876 2876 2876 2852 2784 2859 2876 2852 27884 2859 2876 2852 27798 2859 28759	185 ² 192 ² 191 ⁰ 201 ⁴ 210 ³ 214 ⁴ 221 ⁴ 221 ⁴ 222 ⁴ 235 ⁵ 235 ⁵ 235 ⁵ 235 ⁵ 235 ⁵ 235 ⁵ 235 ⁵ 231 ¹¹ 221 ¹⁰ 224 ¹¹ 224 ¹⁵ 223 ⁴ 223 ⁵ 235 ⁵ 225 ⁵ 235 ⁵ 225 ⁵	181'2 187'1 184'9 192'c 200'2 204'8 212'2 217'0 219'2 220'3 221'2 218'3 220'3 221'2 218'3 220'9 212'7 219'0 209'9 212'7 200'4 209'9 200'2 200'2 200'3 20	1874 1918 1921 1976 2036 2052 2130 2183 2219 2238 2244 2270 2281 2244 2244 2244 2244 2244 2244 2245 2185 2185 2185 2189 2139	78.01 77.84 77.78 78.00 78.47 79.17 79.80 80.72 81.74 82.70 83.83 84.83 85.71 86.45 87.31 87.88 88.40 88.65 89.97 89.14	+ 10 • 09 • 10 • 19 • 23 • 31 • 42 • 55 • 64 • 67 • 69 • 68 • 67 • 67 • 68 • 65 • 57 • 57 • 51 • 43 • 42 • 35 • 42 • 35	Captain Branfill, at K. Lieut. Ro- gers, at L. Observers chang- ed places.
Mea pa	in of 4 day irisons	B C O	^{, m-} }	80.78	162.0	180.3	221.2	266 [.] 5	210.4	200'4	206.3	81.80	+•35	

On Bar B, Left end thermometer, on iron No. 7291, on brass No. 7287; Right end thermometer, on iron No. 7292 on brass No. 7290.

Digitized by Google

 (1) Fine morning; few cumuli, light wind N.E., afternoon rather cloudy.
 (12) Sunshine and a few cirri.
 (15) Wind from S.E.
 (1) Fine morning, cirri and strati. Wind light N.E. January 25th.

"

"

"

x__6

BAR COMPARISONS.

1869.	risons.	đ	Air.	Standard.	Prelimin in divis	nary exce ions of E	es of ban C micron	rs over Si neter, 1 d	andard : livision :	at 62° Fi = 1·277	hrenheit m.y of A	Temper comp of	atures of onents B.	
Group and date	Times of compa	No. of comparise	Temperature of	Temperature of	A	B (x'')	С	D	Е	H	Mean (X")	62° + T ₃ Temp : of brass bar.	t, excess of iron over brass.	BEMARES.
II, 1. 28th January.	h m. 7 14 A.M. 7 39 8 12 8 41 9 16 5 42 10 12 10 40 11 12 11 40 0 11 P.M. 0 43 1 11 1 39 2 10 2 39 3 12 3 40 4 9	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	° 77'2 77'8 83'1 83'1 88'5 88'5 88'5 88'5 88'5 88'5 99'4 99'0 99'0 99'0 99'0 99'0 99'0 99'0	77'64 77'50 77'57 78'29 78'98 80'71 81'71 82'59 83'64 85'64 85'64 85'64 85'64 85'64 85'64 85'64 85'64 85'64 85'64 85'66 85'16 85'60	148.7 147.1 147.8 149.0 145.7 147.7 147.7 147.7 147.7 147.7 144.4 140.0 142.9 151.0 154.2 161.7 170.1 169.0 173.9 183.9	160'9 160'0 157'4 157'1 157'6 156'1 158'4 153'2 154'3 153'5 160'7 165'1 173'9 179'4 174'6 185'8 197'2	2010 1986 2015 1986 1957 1956 1956 1956 1956 1957 2023 2149 2023 2149 2023 2149 2055 2205 2309 2307	242.4 240.4 241.4 237.4 237.4 238.3 241.0 241.0 241.7 236.4 235.8 230.6 244.0 260.8 268.1 256.8 269.0 277.0	186'2 187'4 185'4 190'7 179'8 181'0 183'0 182'7 188'4 182'1 184'0 185'5 192'4 197'3 203'0 208'4 215'8 224'6	182.8 179.8 181.7 185.9 177.4 180.9 183.8 182.2 187.1 184.8 184.8 184.7 194.3 194.5 198.5 203.9 207.9 205.4 215.3 222.0	187.0 185.6 185.9 187.8 182.7 183.0 184.4 184.8 187.0 183.2 182.2 184.0 190.1 195.7 203.7 203.7 205.7 205.8 215.1 222.7	79.07 78.81 78.78 78.78 79.27 80.05 81.05 82.02 83.11 84.07 85.22 86.43 87.35 88.16 89.02 89.03 90.16 90.96	+ 01 - 02 08 07 04 07 10 12 17 26 32 34	Capt. Branfill at K Lt. Herschel at L. Observers changed places.
	б42 д.н. 7 13	12	76 . 5 77.1	79°33 79°05	155 . 4 150.9	164.0	200.Q	249°7 250°3	187 . 2	180.3 181.3	189.7 189.8	79 ^{.8} 3 79 [.] 39	+•15	Lt. Herschel, at K.
	7 44 8 10 8 42	3 4 5	78°2 79°б 81°4	78 [.] 89 78 [.] 93	150°1 150°9	158.2 160.0 158.2	100.0	248.9 243.5 237.7	192'7 180.4 182'7	178.6 172.7 178.2	188.3 184.4 182.0	79'14	·03 -·03 ·12	Capt. Branfill at L. Observers changed
)th January.	9 11 9 42 10 14 10 41 11 12	5 6 7 8 9 10	82.6 83.7 85.1 86.4 88.0	79 01 80 20 80 89 81 01 82 55 80 61	142'1 141'9 141'7 142'3 140'9	153.7 152.9 150.4 152.8 157.0	188.0 187.0 198.3 193.7 193.1	231.7 232.6 228.9 234.2 238.0	179°0 180°3 180°6 183°6 183°6	170'9 175'8 175'8 179'3 184'0	177.6 178.4 179.3 181.0 183.5	80'14 80'91 81'79 82'70 83'83	·19 ·22 ·23 ·23	places.
2. 20	0 9 P.M. 9 42 1 13	12 13 14	89.7 90.0 80.8	84°48 85°57 86°54	142 5 147*5 146*7 154*5	155 2 164.0 164.0 174.7	203.7 206.7 220.0	2373 2382 2465 2566	193.3 190.3 202.0	188.5 189.1	189.2 190.7 200.7	86.08 87.28 88.18	•17 •18 •00	
Ц	1 47 2 12 2 39 3 14	15 16 17 18	88.7 88.0 87.5 87.5	87 [.] 22 87 [.] 44 87 [.] 58 87 [.] 65	158.2 162.4 159.5 174.4	176.0 186.7 178.4 188.4	220'9 224'6 220'9 225'2	258.5 265.2 258.1 262.2	205 [.] 6 213 [.] 7 202 [.] 7 210 [.] 9	195.8 211.0 201.2 206.3	202.5 210.0 203.5 211.2	88.40 88.32 88.14 87.85	+ ·11 •16 •18 •25	Observers changed places.
	341 40	19	87.0 87.0	87 ^{.67} 87 ^{.64}	176.0 172.1	180.3 180.3	227'4 228'7	265°I 265°6	211·5 217 [.] б	213.0 200.3	214°0 214°8	87.66 87.47	•32 •40	

Preliminary results of the comparisons of the compensation bars A, B, C, D, E, H, with the Standard, before and after the 2nd measurement. Brass components East.

The thermometers used on Standard A were Nos. 7295 and 7298. On Bar B, Left end, thermometer on iron No. 7291, on brass No. 7287; Right end, thermometer on iron No. 7292, on brass No. 7290.

January 28th (13) A few clouds and little or no wind. , 29th (11) and (12). Alternate cloud and sunshine. , (13) (18), (19) and (20). Sunshine. , (14) Wind changed to East.

Digitized by Google

X_7

Preliminary results of the comparisons of the compensation bars A, B, C, D, E, H, with the Standard, before and after the 2nd measurement. Brass components East.

, 1869.	risons.	on.	Air.	Standard.	Prelimin in divisi	ary exces ons of K	s of bar microm	s over St eter, 1 d	andard i ivision =	at 62° F = 1·277 #	ahrenheit n.y of A	Temper compo of	atures of onents B.	
Group and Date	Times of compa	No. of comparie	Temperature of	Temperature of	A	B (x'')	С	D	Е	н	Mean (X'')	62° + T _b Temp : of brass bar.	t. excess of iron over brass.	REWARES.
II, 3. 10th February.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 17 18 19 20	7733588500 7773823288500 885000 885000 99100 99100 99000 99000 9000 9000000	78.27 78.10 78.03 78.24 78.74 79.49 80.22 81.01 82.34 83.45 84.66 85.81 86.96 87.78 89.05 89.05 89.52 89.52 89.52 90.21	148 ^{.8} 147 ^{.9} 145 ^{.4} 125 ^{.4} 129 ^{.4} 124 ^{.7} 116 ^{.5} 119 ^{.3} 117 ^{.9} 128 ^{.4} 133 ^{.4} 138 ^{.2} 144 ^{.1} 144 ^{.4} 151 ^{.2} 158 ^{.8} 165 ^{.9} 169 ^{.8} 171 ^{.5}	160'3 160'4 154'2 146'0 142'1 140'3 135'3 133'0 138'1 146'5 151'8 157'0 162'1 161'4 170'0 178'9 180'8 186'8 186'8 189'2 191'1	198'2 195'2 190'1 180'8 178'5 178'7 172'6 173'3 178'1 181'8 187'8 194'3 197'9 196'3 209'6 213'8 221'3 229'6 213'8 221'3 230'7 230'7 232'7	240°0 23937 22348 2174 2178 2167 2127 2183 2254 2278 2309 2347 2414 2575 2633 2683 2738 2738 279°0	180.8 177.9 175'1 167'2 161'1 158'8 162'4 169'2 179'3 176'9 180'9 184'9 192'4 197'4 200'8 206'2 212'6 217'2 218'0	176.5 174.3 172.6 164.5 157.9 156.6 156.7 157.9 163.3 169.5 173.8 178.6 180.6 180.6 180.6 180.6 180.6 189.5 202.7 8 209.6	184 · 1 182 · 5 178 · 5 169 · 8 164 · 4 159 · 4 159 · 4 159 · 8 164 · 2 171 · 8 175 · 3 180 · 0 184 · 1 186 · 3 193 · 9 201 · 2 205 · 8 210 · 3 214 · 8 217 · 0	79'54 79'35 79'31 80'41 80'41 83'33 84'80 85'93 84'80 85'93 87'16 88'26 89'31 89'99 90'53 90'90 91'21 91'37 91'48 91'48	$\begin{array}{r} + \cdot \cdot \cdot 4 \\ - \cdot \cdot \cdot 2 \\ \cdot \cdot \cdot 5 \\ \cdot 5 \\ \cdot$	Capt. Branfill at K. Lt. Herschel at L Observers changed places. Capt. Basevi at L. Lt. Rogers at K.
February.	6 50 A.M. 7 20 41 8 11 41 9 9 39 10 10 39	1 2 3 4 5 6 7 8 9	75.9 77.0 78.3 80.3 82.3 83.9 86.0 87.0 89.2	77'91 77'65 77'54 77'63 78'07 78'06 79'50 80'58 81'70 81'00	143'7 147'5 144'4 137'5 137'2 133'7 133'0 128'1 123'2	159°2 163°3 160°4 151°8 149°3 147°8 149°5 145°2 140°1	199'1 198'0 195'6 188'2 185'7 181'9 187'7 180'7 175'9	243.7 244.3 239.8 230.2 225.9 223.6 226.8 225.0 219.8 227.2	1859 1837 1836 1723 1722 1704 1751 1705 1704	175.9 177.2 176.8 170.3 167.1 165.1 164.6 162.6 163.0	184.6 185.7 183.4 175.1 172.9 170.4 172.8 168.7 165.4	78.43 78.19 78.13 78.37 79.03 79.83 80.80 82.24 83.55 85.21	$+ \cdot 11$ $\cdot 03$ $- \cdot 04$ $\cdot 14$ $\cdot 26$ $\cdot 35$ $\cdot 42$ $\cdot 48$ $\cdot 55$ $\cdot 78$	Capt. Basevi at K. Lt. Rogers at L. Observers changed places.
II, 4. 11th Febr	39 0 10 P.M. 41 1 9 37 2 10 42 3 17 42 4 8	10 11 12 13 14 15 16 17 18 19 20	93.0 94.7 93.4 93.3 93.7 93.2 92.3 92.3 91.5 90.8 89.8	84.31 85.83 87.12 87.89 88.59 89.31 89.80 90.02 90.10	124 9 125 2 130 5 133 3 137 0 146 0 149 4 161 5 167 6 170 8 174 5	143 3 142 5 146 2 155 1 162 7 165 8 167 0 179 9 186 4 191 7 190 0	181 ^{.2} 186 ^{.2} 196 ^{.4} 202 ^{.1} 205 ^{.9} 210 ^{.3} 215 ^{.9} 224 ^{.3} 228 ^{.3} 230 ^{.9}	220°6 230°2 244°0 249°4 249°3 250°0 262°1 268°8 272°2	170'I 174'2 185'7 191'7 194'4 196'9 205'5 212'7 217'I 217'2	107 2 170 5 181 0 188 2 195 1 198 2 208 0 216 9 221 4 222 0	1/0 5 1/73'0 182'7 188'5 192'8 195'3 205'5 212'8 216'9 218'3	80.00 88.07 89.10 89.47 89.87 90.27 90.41 90.30 90.23	$\begin{vmatrix} & 50 \\ & 60 \\ & 56 \\ & 42 \\ & 25 \\ & 20 \\ & 10 \\ & +04 \\ & 12 \\ & 21 \\ & 30 \end{vmatrix}$	Lt. Herschel at K. Capt. Branfill at L. Observers changed places.
Mea pe	n of 4 days risons,	s con	n- }	83.30	147'9	162.7	201.8	243'4	189.3	185.5	188.2	84.80	15	

February 10th (1) Fine morning up to 10 o'clock. (8) Cumuli occasionally obscuring sun. (10) Sunshine, generally, for the remainder of the day. Sea breeze set in about noon, but the wind was gentler than usual.

11th "

Fine clear day, no clouds until the afternoon and then a few cumuli only.

X__8

BAR COMPARISONS.

e 1869.	risons.	on. Air.	Standard.	Prelimin in divisi	ary exce	ss of bar I microm	s over St neter, 1 d	andard a livision =	st 62° Fa = 1·277 #	hrenheit n.y of A	Temper compo of	atures of onents B.	
Group and Dat	Times of comps	No. of compari Temperature of	Temperature of	A	B (<i>x</i> ")	С	D ′ .	E',	H	Mean (X'')	62° + T _b Temp : of brass bar.	t, excess of iron over brass.	BBRARES.
۲.	h. m. 6 54 A.H. 7 14 7 40 8 10 8 44	1 77.8 2 79.1 3 81.0 4 82.8 5 84.9	° 79°51 79°43 79°68 80°20 80°96	146.0 149.3 148.5 151.8 154.0	166.9 163.9 167.5 168.3 172.1	202'4 204'3 205'4 206'0 212'8	245°I 249°4 252°5 254°9 259°3	189.7 189.2 194.3 199.5 206.7	185'4 180'0 185'3 190'0 193'8	189.3 189.4 192.3 195.1 199.8	81.16 80.88 80.76 80.98 81.56	+ · 12: · 13 · 12 · 10. · 14	Lt. Herschel at K. "Rogers at L.
2th Februar	9 14 9 41 10 11 10 40 · 11 8	6 86.1 7 86.7 8 87.6 9 87.7 10 88.4	81.81 82.60 83.53 84.42 85.19	152°2 156°0 159°1 152°9 155°7	174 ·1 176·7 175·3 176·6 176·9	210 [.] 3 217 [.] 2 218 [.] 4 216 [.] 5 218 [.] 1	263.9 269.7 269.9 271.6 268.8	207 [.] 3 209 [.] 3 210 [.] 8 208 [.] 8 216 [.] 4	195'2 199'0 198'0 194'3 108'2	200.5 204.7 205.3 203.5 205.7	82·37 83·18 84·10 85·11 86·01	•17 •25 •20 •14 •06	Observers chang- ed places. Capt. Basevi at K.
III, 1. 1:	11 36 0 7 P.M. 0 38 1 8 1 40	11 89.2 12 87.9 13 89.7 14 90.0 15 90.9	85.93 86.46 87.00 87.51 88.09	150'1 150'3 149'5 141'7 144'0	176 [.] 2 173 [.] 7 171 [.] 4 163 [.] 9 158 [.] 3	215.9 212.7 209.0 201.4 199.4	263.7 259.8 252.5 249.1 248.3	210.7 205.0 200.6 192.4 100.4	191.0 190.3 183.7 180.5 181.2	201·3 198·6 194·5 188·2 186·0	86 [.] 91 87 [.] 72 88 [.] 47 89 [.] 19 90 [.] 00	02 14 29 33 42	" BranfillatL. Observers chang-
	2 9 2 38 3 8 3 40 4 11	16 91.3 17 91.4 18 90.1 19 90.7 20 90.0	88.63 89.14 89.50 89.73 89.87	142 ^{.8} 142 ^{.9} 143 ^{.5} 145 ^{.4} 142 ^{.8}	159.8 163.5 162.4 166.6 161.6	198.3 201.8 203.0 203.6 204.0	246 0 246 1 250 0 254 8 249 4	187.9 190.8 193.9 193.3 191.1	183.1 184.5 189.0 192.5 186.7	186.3 188.3 190.3 192.7 180.3	90.54 90.98 91.30 91.48 91.50	•38 •37 •37 •37 •40	ed places.
	б 50 а.м. 7 9 7 38 8 10 8 43	1 75'4 2 75'2 3 77'9 4 79'8 5 70'8	79 [.] 52 79 [.] 21 78 [.] 82 78 [.] 84	155°0 158°2 155°3 152°1	178.5 173.9 169.1 168.4	211°2 212°5 208°3 210°9	258.3 254.5 255.3 257.8	199.4 195.6 192.6 196.8	191'7 188'1 186'4 186'8	199'0 197'1 194'5 195'5	80.54 80.11 79.56 79.40	+•22 •20 •19 •15	Capt. Basevi at L. "BranfillatK.
3th February.	9 7 9 38 10 9 10 37 11 8	5 7 83.5 6 81.0 7 83.5 8 84.8 9 84.7 10 84.8	79.41 79.95 80.69 81.45 82.14	149.5 149.3 151.0 146.8 144.0	167.5 169.6 169.3 167.7 166.2	205'I 205'I 204'7 208'3 203'8 200'2	254.4 253.9 258.4 253.5 251.3	1997 0 1997 1 1997 5 2027 2 1967 9 1957 6	180'8 189'0 185'0 191'8 189'1 185'7	194'4 194'1 193'8 196'8 193'0 190'5	79.90 80.45 81.27 82.08 82.87	•10 •08 •03 -•03 •07	Lt. Rogers at L. Capt. Basevi at K. "Branfillat K. Lt. Rogers at L.
III, 2. 1	11 40 0 11 P.M. 0 40 1 12 1 38	11 80'7 12 88'0 13 89'4 14 89'1 15 89'1	82.86 83.60 84.38 85.26 85.94	151°9 149°4 145°5 142°2 139°9	168.6 165.2 160.3 152.8 153.1	201.9 201.6 193.3 190.4 187.1	248·8 247·3 241·7 237·7 236·1	192.8 190.9 179.9 181.5 178.1	188.5 186.8 175.4 177.1 179.9	192°1 190°2 182°7 180°3 179°0	83.69 84.52 85.51 86.68 87.53	•12 •20 •33 •39 •44	Observers chang- ed places. Lt. Rogers at K. Capt. Basevi at L.
	2 39 3 7 3 37 4 10	10 80.3 17 89.3 18 89.3 19 88.4 20 87.2	86.95 87.37 87.71 87.88	139 ⁻¹ 145 ⁻⁵ 147 ⁻¹ 145 ⁻ 3 146 ⁻ 1	153-3 162-9 163-9 165-6 167-7	191.3 199.2 205.9 200.6 200.5	242.2 245.5 253.5 252.9 257.0	184°1 187°1 200°6 198°2 108°0	1767 1803 1884 1891 1876	181°1 186°8 193°2 193°0	88.09 88.54 89.04 89.41 80.41	·41 ·30 ·27 ·26	Observers chang- ed places.

Preliminary results of the 'comparisons of the compensation bars A, B, C, D, E, H, with the Standard before and after the 3rd measurement. Brass components West.

The thermometers on Standard A were Nos. 7295 and 7298.

On Bar B, left end, Thermometer on iron No. 7291, on brass No. 7287; right end, Thermometer on iron No. 7292, on brass No. 7290. Juary 12th (1) Rather cloudy morning, strong N.E. wind.

February 12th

"

"

"

" "

(1) Rather cloudy morning, strong N.E. wind.
 (11) Cloudy.
 (14) North East wind all day.
 (1) Cloudy morning, few drops of rain fell during the set. Slight fall of rain at about 4 A.M.
 (3) Sunshine. (4) Wind North. (5) Clouds. (6) (7) and (8) Sunshine. (12) Sunshine.
 (14) Clouds.

.

X_10

Preliminary results of the comparisons of the compensation bars A, B, C, D, E, H, with the Standard before and after the 3rd measurement. Brass components West.

1869.	risons.	ä.	Air.	ltandard.	Prelimi in divis	nary exce ions of E	ess of bar I micron	rs over Si leter, 1 d	taudard : livision =	st 62° Fa = 1·277 (hrenheit m.y of A	Temper composition of	atures of onents B.	
Group and Date	Times of compa	No. of comparis	Temperature of	Temperature of f	A	B (x")	C	D	E	н	Mean (X")	62° + T _s Temp : of brass bar.	t, excess of iron over brass.	BBMARKS.
III, 3. 24th February.	$\begin{array}{c} h & m. \\ 6 & 57 & h.M. \\ 7 & 22 \\ 7 & 46 \\ 8 & 16 \\ 8 & 42 \\ 9 & 14 \\ 9 & 43 \\ 10 & 14 \\ 10 & 14 \\ 10 & 46 \\ 11 & 9 \\ 11 & 41 \\ 0 & 12 & P.M. \\ 0 & 40 \\ 1 & 10 \\ 1 & 44 \\ 2 & 11 \\ 2 & 38 \\ 3 & 10 \\ 3 & 41 \\ 4 & 12 \end{array}$	1 2 3 4 50 78 900 11 13 14 50 178 900 11 12 13 14 50 178 900 11 12 13 14 50 178 1900 1000 1000 1000 1000 1000 1000 100	0 0 0 0 0 0 0 0 0 0 0 0 0 0	87-58 87-52 79-52 79-55 79-64 79-94 80-50 81-32 82-33 82-94 83-50 84-74 85-58 85-54 85-58 85-54 85-58 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-55 85-54 85-565	150°1 151°8 146°2 143°7 143°4 143°7 143°3 139°7 137°3 135°9 131°3 130°3 131°3 130°3 137°6 120°3 137°6 120°7 135°5 137°4	165.5 162.9 157.7 155.7 162.1 155.2 157.3 146.4 148.9 153.8 159.3 149.4 149.5 158.1 155.8 155.7 150.1 158.1 152.9	204.0 200.4 198.4 196.6 195.4 196.0 192.9 189.7 194.0 189.6 189.3 193.0 190.4 198.4 199.7 198.2 196.3 200.5	247.5 245.5 246.3 239.1 239.4 243.4 238.6 237.6 237.6 237.8	1930 1894 1867 1909 1870 1892 1862 1821 1797 1821 1825 1825 1863 1930 1874 1920 1904 1918 1868	184'1 181'8 183'2 181'3 182'5 180'2 180'2 180'2 180'2 180'2 180'2 184'6 182'4 183'4 183'4 183'4 183'4 183'4 183'4 183'2 187'0 190'2 186'2	190'7 188'0 186'9 185'2 184'5 183'9 179'8 179'8 179'8 178'2 178'2 178'2 178'5 179'3 188'0 183'8 180'1 183'5 187'4 184'4	80°06 79'95 79'84 79'87 79'94 80'33 80'94 83'48 83'49 85'24 86'49 87'46 88'47 89'29 89'90 90'31 90'68 90'91	+ 04 02 02 - 04 09 21 244 38 348 555 564 665 53 60 53 64 70 7	Lt. Herschel at K. "Rogers at L. Observers chang- ed places. Capt. Basevi at K. "Branfill at L. Observers chang- ed places.
E III, 4. 26th February.	$\begin{array}{c} 6 & 52 \text{ A.M.} \\ 7 & 11 \\ 7 & 42 \\ 8 & 9 \\ 8 & 42 \\ 9 & 11 \\ 9 & 41 \\ 10 & 11 \\ 10 & 39 \\ 11 & 10 \\ 11 & 40 \\ 0 & 11 \text{ P.M.} \\ 0 & 38 \\ 1 & 40 \\ 2 & 9 \\ 2 & 37 \\ 3 & 7 \\ 3 & 7 \\ 3 & 36 \\ 4 & 7 \end{array}$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	7773 780 793 824 830 8575 889 990 990 990 990 990 990 990 990 990	78:26 78:19 78:20 78:39 78:86 79:47 80:13 80:80 81:54 83:46 83:46 83:46 85:32 85:20	149 ^{.8} 152 ^{.6} 148 ^{.8} 152 ^{.3} 152 ^{.3} 152 ^{.3} 149 ^{.6} 143 ^{.1} 144 ^{.7} 145 ^{.6} 143 ^{.8} 145 ^{.6} 143 ^{.8} 145 ^{.6} 143 ^{.9} 145 ^{.6} 145 ^{.5} 136 ^{.6}	163.7 166.9 166.8 165.4 164.2 163.8 165.3 163.2 156.0 152.4 151.8 148.5 151.0 147.4 140.5 155.0 147.4 149.3 151.7 148.7	203 ⁵ 5 206 ⁷ 7 205 ² 2 207 ⁴ 4 208 ⁹ 9 211 ⁸ 8 207 ⁵ 5 208 ⁴ 4 202 ⁵ 5 201 ⁹ 9 194 ⁹ 0 196 ⁵ 5 194 ⁹ 9 195 ³ 3 195 ⁷ 3 195 ⁷ 7 193 ⁶ 0	247'2 251'3 245'1 249'4 249'1 250'2 251'8 251'1 240'3 240'3 240'5 237'7 235'5 239'6 238'6 238'6 238'8 248'9 244'4 245'4 245'4	192*8 193*6 192*7 195*4 195*1 196*9 196*1 194*9 188*5 188*6 188*6 188*6 188*6 188*6 188*6 188*6 185*1 180*4 191*5 189*5 191*1 191*9 191*8	186'9 184'6 186'2 188'9 189'1 193'1 189'1 189'1 189'1 179'4 175'3 185'4 175'3 185'4 175'3 182'0 182'0 182'5 182'4 183'3 183'3 185'1	190°7 192°6 192°8 192°8 193°2 194°7 193°4 192°1 185°4 185°4 185°4 185°4 185°4 183°8 181°2 183°0 183°0 183°0 183°3	78.48 78.38 78.35 78.60 79.13 79.90 80.75 81.78 82.05 83.87 85.08 80.35 87.31 85.08 87.31 85.08 87.31 85.26 89.89 90.38 90.38 90.38 90.38	+ 05 05 03 03 01 - 00 35 21 20 35 44 50 64 50 67 70 68 70 77 77 77	Capt. Herschelat K. "Branfill at L. Observers chang- ed places, Capt. Basevi at K. Lt. Regers at L. Observers chang- ed places,
111-011 64	1 01 2 08 y8 ()08	, , , , , ,		83.70	145.4	161.4	303.0	248.1	192.7	185.7	189.3	85.00	-'24	

February 24th (1) Dull cloudy morning following on a rainy day. No sunshine till near the 7th set.
,, (7) and (9) Still cloudy. (12) Sunshine. (13) Sunshine, strong N. wind. (18) Wind changed to E. sea breeze.
25th (1) Bright morning, wind from N.E.

Digitized by Google

(10) Wind gusty, day generally bright. . 18

BAR COMPARISONS.

1869.		ha. ≜ir.	Standard.	Prolimir in divisi	hary exci ions of H	tes of bar I microm	s over St eter, 1 e	tandard : livision =	t 62° Fi = 1·277	ahrenheit, m.y of A	Temper composition of	atures of onents B.	
Group and Date	Times of compar	No. of compariat Temperature of	Temperature of !	A	B (<i>x</i> '')	С	D	E	н	Mean (X'')	62° + T Temp : of brass bar.	t, excess of iron over brass.	Remarks.
IV, 1. 26th February.	A. m. G 52 A.M. 7 9 7 37 8 7 8 37 9 9 9 37 I0 10 I0 37 II 10 II 40 0 9 P.M. 0 40 I 9 I 40 2 13 2 4I	1 779 2 786 3 799 4 806 5 816 6 826 7 837 8 854 9 863 10 881 11 893 12 906 13 906 14 916 15 930 16 931 17 930	° 79'57 79'45 79'37 79'51 79'80 80'25 80'71 81'35 81'98 82'86 83'84 84'93 85'94 85'94 85'93 85'93 85'93 85'73 88'56 89'23	149'3 156'3 145'4 144'7 148'3 145'6 150'3 145'3 150'0 144'9 148'0 150'8 151'8 151'8 151'8 151'8 158'4 162'2	158.0 164.6 158.4 158.0 156.6 153.3 152.7 152.7 152.3 155.6 155.9 165.9 165.9 165.9 170.1 178.2 180.8	203.0 207.5 198.0 203.2 197.3 194.3 193.0 189.3 188.2 191.1 193.3 197.4 203.4 203.4 203.4 203.4 203.4 203.4 203.2 15.3 221.0 220.1	245'3 249'9 244'1 241'7 240'4 236'9 235'1 234'8 235'6 234'7 238'3 243'5 247'1 254'7 254'7 258'8 265'6 275'3	189°0 192°0 188°6 188°8 180°5 180°5 180°5 183°0 179°7 177°7 183°8 187°0 192°0 197°4 202°4 202°4 202°4 202°4 202°4 202°5	1874 1832 1800 1826 1806 1812 1787 1763 1750 1783 1853 1853 1909 1995 2030 2057	188.7 192.3 185.9 186.5 184.9 182.0 182.0 182.2 179.7 179.8 181.4 184.5 188.5 198.3 202.3 207.9 212.1	80°47 80°28 80°16 80°41 80°85 81°47 82°08 82°84 83°09 84°79 83°59 83°59 83°59 83°59 83°59 83°59 83°59 83°59 83°59 83°59 83°59 83°59 83°59 83°55 83°55	+ '01 - '05 '13 '13 '19 '20 '24 '28 '30 '24 '30 '32 '32 '17 '09 '01 + '06 '10	Capt. Basevi at K. Lt. Bogers at L. Observers chang- ed places. Capt. Herschelat L. " Branfillat K. Observers chang- ed places.
čebruary.	3 10 3 42 4 9 6 52 A.H. 7 7 7 38 8 8 8 39 9 8 9 39 10 9 10 40	18 92.3 19 91.3 20 91.2 1 78.9 2 79.3 3 80.4 4 81.4 5 82.3 6 83.9 7 85.4 8 80.0 8 80.0	89.78 90.16 90.35 81.00 80.88 80.75 80.79 81.03 81.38 81.90 82.59 82.59	100°0 170°9 172°0 158°6 154°4 156°4 153°2 153°6 153°6 153°6 153°6 153°6 158°6 148°6	1874 1881 1941 1060 1675 1612 1647 1588 1601 1572 1612	229 ² 234 ¹ 234 ⁸ 205 ⁹ 205 ⁰ 202 ⁰ 202 ¹⁰ 202 ¹⁰ 200 ⁴ 197 ⁰ 100 ³	2817 2868 2824 2531 2514 2522 2485 2512 2449 2451 2444 2452	2257 2355 2325 198.8 1955 1956 1941 1989 1924 1960 1947 1064	214.7 217.5 216.2 190.2 188.7 188.7 188.1 186.6 187.7 183.4 184.9 181.4 184.9	217'5 222'3 222'0 196'3 193'7 194'4 190'8 192'9 189'3 189'3 189'8 187'2 180'0	90'95 91'17 91'33 81'17 80'96 80'84 81'03 81'44 82'04 82'84 83'92 85'10	$ \begin{array}{r} 17 \\ 24 \\ 31 \\ - 02 \\ + 02 \\ 01 \\ - 05 \\ 05 \\ 05 \\ 05 \\ 11 \\ 18 \\ 17 \\ \end{array} $	Capt. Branfill at K. Lt. Rogers at L. Observers chang- ed places.
IV, 2. 27th F	11 10 11 39 0 9 P.M. 0 40 1 39 2 9 2 38 3 8 3 8 3 38 4 9	9 0902 10 902 11 914 12 914 13 913 14 921 15 934 16 938 17 924 18 928 19 929 20 920	84.60 85.69 86.74 87.62 88.31 89.13 89.92 90.53 91.08 91.46 91.63	151'2 151'2 154'6 156'4 160'0 167'8 171'6 169'1 176'4 175'0 178'6	162.5 167.7 172.3 174.1 176.5 181.4 181.4 183.1 187.1 191.8 199.0	205°0 209°1 213°4 220°9 219°0 219°5 222°3 224°0 232°3 233°5 244°4	255'0 252'3 259'0 260'2 264'4 267'1 267'4 270'7 278'2 281'8 288.2	202'7 202'8 207'4 209'5 208'9 215'4 220'1 211'9 226'8 229'4 233'7	180'2 187'8 187'8 195'0 197'9 198'0 204'1 209'0 212'9 214'8 221'8	193.9 193.9 195.3 199.2 204.5 208.3 211.2 213.1 213.1 219.0 221.1 237.6	80'30 87'50 88'07 89'38 89'89 90'03 91'52 92'01 92'61 92'85 82'85	·14 ·08 + ·01 ·04 ·03 ·06 ·10 ·13 ·23 ·37	Capt, Basevi at K. "Herschel at L. Observers chang- ed places.

Preliminary results of the comparisons of the compensation bars A, B, C, D, E, H, with the Standard before and after the 4th measurement. Brass components East.

The thermometers on Standard A were Nos. 7295 and 7298. On Bar B, left end, Thermometer on iron No. 7291, on brass No. 7287; right end, Thermometer on iron No. 7292, on brass No. 7290.

February 26th

(13) Cloudy sky with north wind.
(3) Clear sky, strong northerly wind.
(5) Sky partially overcast. **2**7th

"

• In original record 171'4

99 "

,

x⁻¹¹

X_____12

1869.	risons.	ġ.	Air.	Standard.	Prelimi in divi	nary exc sion of K	ess of bar microm	rs over St eter, 1 d	andard a ivision —	t 62° Fa 1 277 4	hrenheit, m.y of A	Temper comport	atures of onents B.	
Group and Date	Times of compa	No. of comparis	Temperature of	Temperature of	A	B (<i>x</i> ")	С.	D (E →	H	Mean (X")	62° + T _b Temp : of brass bar.	t, excess of iron over brass.	BBMABRS.
IV, 3. 9th March.	h. m. 6 44 A.M. 7 16 7 42 8 9 8 38 9 38 9 38 10 8 10 37 11 10 11 38 0 10 P.M. 0 40 1 9 1 42 2 9 3 9	1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 1 4 5 1 6 7 1 8 9 2 0	78.9 78.9 82.2 84.0 74.4 85.7 48.8 91.5 75.3 92.2 92.3 99.9 92.3 99.9 92.3 99.9 90.9	80'55 80'37 80'39 80'65 81'20 82'03 82'75 83'73 84'77 86'08 87'44 88'91 89'99 90'55 91'00 91'53 91'41 91'26	148.5 149.3 152.1 141.7 134.3 123.6 124.4 128.1 127.3 136.9 137.4 143.5 155.3 158.9 170.7 171.0 182.1 185.3 189.2 188.3	166.4 160.0 164.9 156.8 150.4 138.0 139.0 134.1 141.6 146.6 151.6 164.4 168.6 183.5 186.9 186.0 194.5 201.9 204.1 204.9	206.7 200.1 1204.5 189.2 183.1 180.8 177.8 179.7 176.2 179.6 187.1 196.0 207.1 196.0 207.1 196.0 207.1 217.0 228.6 229.5 236.2 242.7 243.9 244.2	251.4 236.4 241.9 232.7 227.1 219.9 220.2 221.1 229.9 228.2 249.0 256.2 264.3 272.7 269.6 280.2 28.7 9 28.4 3 291.0	180°6 179°2 178°7 176°4 161°5 165°6 165°1 167°6 180°6 182°7 206°4 191°2 211°2 215°3 218°6 226°4 226°4 226°1 227°9	1852 1819 1811 1719 1612 1541 1640 1616 1640 1640 1675 1712 1843 1906 1958 2046 2009 2110 2166 2112 2151	189.8 184.5 187.2 178.1 169.6 163.7 164.9 165.2 166.4 173.5 176.4 190.6 194.8 205.1 213.1 211.3 220.4 226.8 226.5 228.6	82'33 81'97 81'98 82'32 83'07 84'17 85'11 86'26 87'46 88'81 90'10 91'49 92'51 92'79 93'05 93'18 93'27 93'18 93'27 93'16	$\begin{array}{r} + \cdot 01 \\ - \cdot 05 \\ \cdot 11 \\ \cdot 22 \\ \cdot 38 \\ \cdot 53 \\ \cdot 59 \\ \cdot 66 \\ \cdot 64 \\ \cdot 55 \\ \cdot 44 \\ \cdot 29 \\ \cdot 16 \\ \cdot 09 \\ + \cdot 07 \\ \cdot 20 \\ \cdot 32 \\ \cdot 34 \\ \cdot 47 \\ \cdot 56 \end{array}$	Capt. Basevi at K. "Branfill at L. Observers chang- ed places. Capt. Herschel at K. Lt. Rogers at L. Observers chang- ed places.
IV, 4. 10th March.	6 42 A.M. 7 8 7 38 8 7 9 8 9 38 9 38 10 7 10 37 11 12 11 38 0 9 P.M. 0 39 1 10 1 40 2 10 2 40 3 9 3 39 4 10	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	79°0 80°0 81°4 83°3 85°9 99°3 89°3 99°3 99°3 99°3 99°3 99°3 99	80 ² 3 80 ¹ 2 80 ¹ 4 80 ⁹ 3 81 ⁷ 3 82 ⁶ 0 83 ⁷ 6 84 ⁸ 6 85 ⁷ 7 87 ¹⁰ 88 ²² 89 ⁰ 7 89 ²⁵ 90 ³ 3 90 ¹ 7 89 ⁸¹ 89 ⁴⁰	154.0 152.4 150.4 143.4 120.7 130.0 120.5 117.8 130.4 135.2 140.6 142.4 155.9 159.3 164.8 177.3 172.9 184.8 184.5 183.9	170°0 170°5 150°5 152°3 141°2 140°4 130°1 130°3 150°7 157°8 157°4 164°0 173°4 180°3 180°3 180°3 180°0 190°5 203°0 198°4	207.4 206.8 205.1 194.3 187.0 183.7 176.5 175.7 188.2 198.8 201.6 212.1 215.2 221.7 226.4 235.6 233.8 243.3 236.6 238.4	249.5 253.5 243.6 239.7 229.8 229.8 225.7 225.9 238.2 241.7 246.0 252.3 256.3 256.3 256.3 256.3 256.3 256.3 256.3 256.3 256.5 268.0 277.9 286.7 284.9 284.5	192'3 194'6 187'8 183'9 176'8 175'9 171'3 173'9 179'3 195'8 198'7 204'3 207'0 211'1 212'8 221'5 224'6 228'8 232'1 231'7	185 ² 2 189 ⁹ 9 183 ⁸ 8 181 ⁴ 4 172 ¹ 1 172 ⁴ 4 168 ¹ 1 168 ⁹ 9 175 ⁸ 8 188 ⁵ 5 191 ⁹ 6 ⁸ 5 207 ³ 5 212 ⁵ 5 222 ⁷ 7 222 ⁶ 0 226 ⁵ 5 225 ⁹	193'1 194'6 188'5 182'5 172'3 172'0 166'4 177'1 186'2 189'4 195'3 202'1 208'2 211'4 221'0 227'5 227'9 227'1	81.58 81.36 81.44 82.01 82.97 84.22 85.63 86.98 88.07 89.22 90.20 91.32 91.91 91.89 91.85 91.76 91.51 91.08 90.50 89.92	$\begin{array}{c} + \cdot \circ \circ \circ \\ \cdot \circ 4 \\ - \cdot 25 \\ \cdot 49 \\ \cdot 70 \\ \cdot 83 \\ \cdot 88 \\ \cdot 38 \\ \cdot 38 \\ \cdot 38 \\ \cdot 30 \\ \cdot 24 \\ \cdot 12 \\ + \cdot 05 \\ \cdot 09 \\ \cdot 10 \\ \cdot 27 \\ \cdot 44 \\ \cdot 54 \\ \cdot 54 \\ \cdot 54 \\ \cdot 61 \end{array}$	Lt. Rogers, at K. Capt. Basevi at L. Observers chang- ed places. Capt. Branfill at K. "Herschel at L. Observers chang- ed places.
Mean soi	of 4 days ons.	omp	oari-}	85.38	154.3	168.3	208 ·8	253.4	199.4	191.0	195-8	87.00	08	

Preliminary results of the comparisons of the compensation bars A, B, C, D, E, H, with the Standard before and after the 4th measurement. Brass components East.

March 10th (2) Early morning cloudy; afterwards finer; many cumuli, slight north wind.

Digitized by Google

•

. . . .

BAR LENGTHS

Referring to section 3 of Chapter VII, and adopting the symbols there exployed, it will be seen that the normal excess of the length of a compensation bar over that of the standard at the temperature of 62° F. as determined from comparisons at any other temperatures, is

$$= \mathbf{B}' - \mathbf{A}' - (e'_i - de'_i) t \frac{m}{m-n} - \eta \mathbf{T}_b + (\mathbf{E}'_a - d\mathbf{E}'_a) \mathbf{T}_a$$

For convenience, the relations of the compensation bars to the standard were expressed, in the first instance, in divisions of K, one of the two micrometers which were used in making the comparisons; thus $E'_a = e'_i = 1774$ K-divisions; and $dE'_a = 0.68$ division $= de'_i$ by assumption. The value of the quantity $m \div (m-n)$ which is dependent on the distances of the compensation points from the bars, was taken as 2.9. Thus if x is put for the normal excess of any one of the bars, as B, over the standard, in K-divisions, we have

$$x = (B' - A' + E'_{a} T_{a}) - 51'4 t - \eta T_{b} - dE'_{a} T_{a} + 2'9 t de'_{i}$$

The numerical values of the term within the brackets—which term is expressed by the symbol x'' for bar B and by the symbol X'' for the mean of all the bars, in the investigations in Chapter VIII—are given for every comparison of each bar and of the mean of the bars, with the standard, in the preceding tables; the values of t are also given, and those of T_a and T_b may be obtained by subtracting 62° from the given temperatures of the standard and of the brass component of bar B;—thus, with the exception of η , all the data are forthcoming for obtaining a value of x from each of the comparisons. Before proceeding further it was therefore necessary to determine the value of η from the comparisons of compensation bar B with the standard.

This has been done in the manner indicated in section 4 of Chapter VIII; putting x' = x'' - 51.4t, we get

$$x = x' - \eta \operatorname{T}_{b} - (\operatorname{T}_{a} - 2.9 t) d\mathbf{E}'_{a}$$

in which form the eight following values of x, obtained from the means of the groups of comparisons before and after each measurement of the base, are expressed.

Comparisons	Ι	l, and I	2,	$x = 160.8 - 18.1 \eta - 16.5 dE'_{a}$
,,	Ι	3, and I	4,	x = 162.5 - 21.5 , - 19.0 ,
>>	II	1, and II	2,	x = 166.6 - 22.2 , - 21.2 ,
,,	İİ	3, and II	4,	x = 170.8 - 23.4, $- 22.5$,
,,	IİI	1, and III	2,	x = 171.9 - 23.1 , - 22.2 ,
,,	\mathbf{III}	3, and III	4,	x = 175.5 - 22.8, - 22.6,
	IV	l, and IV	2,	x = 170.5 - 23.9 , - 22.8 ,
,,	IV	3, and IV	4,	$x = 174^{\circ}3 - 26^{\circ}1 , - 24^{\circ}4 ,$

Eliminating x from each of the primary equations, by it's value for the group to which it appertains, and proceeding by the method of minimum squares, the eight normal equations in η which are given at page (67) were determined, whence finally $\eta = 0.75$ K-divisions.

Having determined the value of η , the next step is to determine the normal excess of the mean of all the compensation bars over the standard, treating bar B as a representative of all the others; this process has been fully described in section 5 of Chapter VIII, which should be referred to for all particulars.

X_13

The numerical values of X'', X' and X, are given in the following table for every comparison, as expressed in K-divisions.

تو ق	Co	mparison	I, 1	Con	nparison	I, 2	Cor	nparison	I, 3	Con	nparison	I, 4	° 5 4
No. com	X ″	Χ′	X	X"	X ′	x	X"	Χ′	x	X"	Χ'	X	No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20	1873 1906 1875 1913 1967 2000 2065 2074 2047 2075 2057 2072 2057 2065 2061 2052	186.3 188.5 183.9 184.6 184.4 180.0 184.4 184.8 184.7 188.0 186.2 190.2 188.5 189.1 188.8	169.3 170.9 165.2 165.2 163.8 158.1 160.8 159.8 159.8 159.5 159.5 159.5 159.5 159.5 159.5 158.0 157.8 158.0 157.3	184.5 183.2 185.5 187.7 197.6 202.3 205.2 205.2 205.8 209.7 209.0 205.8 205.6 202.8 198.6 198.5 192.9	181.4 177.0 178.8 180.0 184.3 185.3 186.3 191.8 189.7 191.8 189.7 191.8 188.7 191.8 188.7 192.8 193.6 193.5 192.9	164.6 160.1 161.6 162.2 165.6 165.8 165.8 165.8 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.2 165.5 159.7 158.5	185'2 188'9 190'1 194'8 202'0 209'1 216'3 221'3 222'9 220'1 220'1 220'1 220'1 220'1 220'1 220'1 210'1 216'8 211'4 215'5	180'1 184'8 183'9 185'0 189'1 187'5 187'0 183'7 185'3 187'9 188'0 193'2 191'8 190'5 191'6 191'3 192'1 193'2 193'4	158.5 163.0 161.6 162.3 165.7 163.2 161.8 157.3 157.4 158.5 157.4 158.5 157.4 158.7 156.2 156.3 155.0 154.9 155.8 155.9	187.4 191.8 192.1 197.6 203.6 206.2 213.0 213.0 223.8 221.9 223.8 224.4 227.0 228.1 224.4 224.4 224.4 217.1 218.5 218.5 216.6	182-3 187-2 187-0 187-8 191-8 190-3 191-4 190-0 189-0 189-0 189-0 189-0 189-0 192-0 194-7 195-1 198-2 190-9 196-4 194-0 195-0	160.3 165.4 165.2 165.9 169.3 166.9 167.3 165.1 163.0 162.1 160.1 163.3 162.6 164.3 156.2 166.7 158.5 158.2	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Means.	200'7	180.3	101.3	200'0	187.6	162.5	211.2	188.4	159.0	213.4	191.4	162.8	

Brass Components West.

Brass Components East.

No. of comp.	Co	m paris on	II, 1	Co	mparison	II, 2	Co	mparison	II, 3	Co	mparison	II, 4	J. J.
No. Coll	X"	Χ'	X	X ″	X'	X	X ″	Χ′	X	X″	X′	X	No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	187.0 185.6 185.9 187.8 182.7 183.0 184.4 184.8 187.0 183.2 184.2 184.2 184.2 184.2 184.2 184.2 184.2 184.2 184.2 185.7 203.7 203.7 203.7 203.8 215.1 222.7	186.5 186.6 190.0 191.4 184.8 186.6 189.5 191.7 196.6 198.6 200.4 200.9 198.8 198.0 200.4 191.9 197.6 200.6	163'1 163'5 166'6 168'0 168'0 168'0 163'3 162'9 163'1 166'2 165'5 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'5 165'6 165'6 165'6 165'6 165'6 165'6 165'6 165'5 165'6 165'7 165'5 165'6 165'5	189.7 189.8 189.8 184.4 183.9 177.6 178.4 179.3 181.0 183.5 183.5 183.5 185.2 190.7 200.7 200.7 200.7 200.5 211.2 214.0	182:0 186:2 186:8 185:9 190:1 187:4 189:7 191:3 195:3 195:3 197:9 200:0 200:7 196:8 202:4 194:2 198:3 197:6	157'1 161'6 162'6 161'5 165'1 161'5 162'7 162'8 163'1 164'5 164'5 164'5 164'5 164'5 164'6 164'3 166'1 165'7 157'6 161'9 161'4	184'1 182'5 178'5 169'8 164'4 159'8 159'8 159'8 159'8 159'8 175'3 180'0 184'1 186'3 193'9 201'2 205'8 210'3 214'8	182.0 183.5 181.6 179.1 182.4 190.1 189.7 192.7 192.7 192.7 192.7 197.0 200.5 202.6 203.1 201.7 204.7 204.3 204.3 203.6 202.5	157'9 159'6 157'6 154'5 156'5 162'6 160'8 162'5 162'0 163'5 165'2 165'8 164'9 162'6 164'9 162'6 164'9 166'0 163'8 162'9 161'8	184.6 185.7 183.4 175.1 172.9 170.4 172.8 168.7 165.4 170.5 167.8 173.0 182.7 188.5 192.8 195.3 205.5 212.8 216.9	178.9 184.2 185.5 182.3 186.3 188.4 194.4 193.4 193.7 200.3 198.6 201.8 204.3 201.4 203.1 200.4 203.1 200.4 203.4 203.4 203.4	155'9 161'4 162'8 159'1 162'9 167'5 164'7 163'0 167'5 163'7 164'9 166'1 162'7 163'7 163'7 163'7 163'7 163'7 163'7 165'1	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 Means.	192.7	194.0	162.9	192.8	194.2	150.2	183.3	195.1	159.9	185.3	202.9 195.8	103.2	20

``**``**

١

x_₁₄

BAR LENGTHS

•

•

.

•

.

.

.

Brass Components West.

لي ق	Cor	nparison	III, 1	Con	parison I	III, 2	Cor	nparison	III, 3	Com	parison I	Ш, 4	6
No. com	X ″	X ′	X	X″	X'	X	X″	X'	x	X″	X ′	X	No. com
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	189.3 189.4 192.3 195.1 199.8 200.5 204.7 205.3 203.5 205.7 201.3 198.6 194.5 188.2 186.3 188.3 188.3	183'1 182'7 186'1 192'6 192'6 191'8 191'8 195'0 196'3 202'6 202'3 205'8 205'8 205'8 205'8 205'5 205'5 205'5	157.0 157.0 160.2 163.5 165.3 163.3 162.4 164.2 164.1 168.9 167.3 169.5 171.9 166.8 169.0 165.6 165.6 166.4	199.0 197.1 194.5 195.5 194.4 194.4 194.4 193.8 196.8 193.0 190.5 192.1 190.2 182.7 180.3 179.0 181.1 186.8 102.2	187.7 186.8 184.7 187.8 189.0 189.0 189.7 195.3 194.5 194.1 198.3 200.5 199.7 200.3 200.5 199.7 200.3 201.2 202.2 202.2	162'3 161'9 163'5 163'6 163'4 164'0 163'8 168'2 166'0 164'6 167'6 168'5 166'2 165'2 165'3 165'1 164'7	190'7 188'6 186'9 185'2 184'5 183'5 183'9 179'8 177'4 181'4 178'7 178'2 178'5 179'3 188'0 183'8 186'1 183'5	188.6 187.6 187.6 187.6 187.6 195.3 196.2 199.3 202.1 209.7 207.5 211.1 212.4 212.4 212.4 214.6 218.5 216.4	163'1 162'1 160'6 161'6 164'2 169'0 168'9 170'5 171'3 177'7 174'1 176'0 176'0 176'0 176'0 176'0 176'0 176'3 175'0 178'3	190'7 192'6 190'8 192'8 193'2 194'7 193'4 192'1 185'0 185'4 181'7 179'7 183'8 181'2 182'0 188'0 188'0 183'0	188 1 1900 1 1918 2 1918 1 1917 1 1942 1 2029 1 1984 2 2029 1 1984 2 2034 2 2034 2 2034 2 2034 2 2035 2 2167 2 150 2 2180 2 2190 2 2181	164.7 166.8 165.0 168.1 167.5 168.9 170.0 174.8 169.1 172.4 171.5 173.8 180.6 178.1 179.0 183.3 178.6 177.2	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20	192.7 189.3	211.7 209.9	170 ^{.1} 167.9	193.0 194.6	206 .4 206.4	167.8 167.7	187.4 184.4	223 [.] 4 218 [.] 8	182·1 177·6	180.0 182.3	225°6 222°4	184.0 180.5	19 20
Means.	195-1	199.4	165.4	101.1	196.1	165.3	183.0	204.9	172.0	187.1	205.8	173.7	

Brass Components East.

٠

ية م.	Con	nparison	IV, 1	Con	nparison	IV, 2	Com	parison	IV, 3	Com	parison l	V, 4	jo e
No. Com	X″	Χ'	X	X″	Χ′	X	X ″	_ X ′	X	X"	Χ′	X	No.
1 3 4 5 6 7 8 9 10 11 12 13 14 15 10 17	188.7 192.3 185.9 186.5 184.9 182.0 182.2 179.7 179.8 181.4 184.5 188.5 192.7 198.3 202.2 207.9 212.1	188.2 191.8 188.5 193.2 191.6 191.8 192.5 192.5 194.2 196.8 200.9 199.8 200.9 199.8 200.4 202.9 202.7 204.8 207.0	162.3 166.3 162.9 167.2 165.1 164.4 164.3 162.7 163.7 163.7 165.8 165.8 164.7 165.8 164.7 165.8	196°2 193°7 194°4 190°8 192°9 189°2 189°3 189°3 195°3 199°2 202°7 204°5 208°3 213°1	197 ⁻² 192 ⁻⁷ 193 ⁻⁹ 193 ⁻⁴ 195 ⁻⁵ 195 ⁻⁵ 195 ⁻⁵ 195 ⁻⁵ 195 ⁻⁵ 195 ⁻⁵ 201 ⁻¹¹ 199 ⁻⁴ 198 ⁻⁷ 200 ⁻⁶ 202 ⁻⁴ 206 ⁻⁸ 208 ⁻¹¹ 208 ⁻⁰	169'9 165'5 167'1 166'2 167'9 163'5 166'2 165'7 165'4 167'2 164'0 161'9 162'7 163'7 163'7 163'7 167'0 167'1	189.8 184.5 187.2 178.1 169.6 163.7 164.9 165.2 166.4 173.5 176.4 190.6 194.8 205.1 213.1 211.3 220.4	189'3 187'1 192'9 189'4 189'1 190'9 195'2 199'1 199'3 201'8 199'0 201'8 199'0 201'5 203'0 209'7 209'5 201'0	161.5 159.5 165.2 159.5 159.6 162.6 164.8 163.4 164.2 159.7 164.5 160.8 167.0 166.6 158.1 161.0	193'1 194'6 188'5 182'5 172'3 172'0 166'4 177'1 186'2 189'4 195'3 202'1 208'2 211'4 221'0 220'0	188.5 191.5 190.6 195.4 197.5 208.0 209.1 211.6 209.1 212.1 205.7 204.8 205.6 208.8 205.6 206.8 212.8 206.8	161.6 164.7 163.6 167.4 167.8 175.7 175.7 175.7 175.6 168.2 165.9 167.3 167.7 164.5 165.6 171.5 165.3	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
10 19 20	222.0 21/ J	200 0 209 9 206 1	169'3 165'4	221°1 221°1 227°6	209.3 208.0	100.0 100.0	226°5 228°6	202.3 199.8	164 1 160.0 158.0	227.9	200°1 ∎95°7	164 0 160 9 157 4	18 19 20
Means.	194.6	198.2	165.4	201.0	200.5	166.0	191.8	198.7	162.1	196.5	203.3	167.4	

•

X_____15

X____16

The relative lengths of each bar to the mean of all the bars are given in the following table :--

In terms of	A - L	B – L	C - L	D – L	E - L	H - L
Micrometer divisions.	-43'7	- 26.1	+ 15.2	+ 60.3	+4.1	-5.9
Millionths of a yard.	- 55.8	-33.3	+ 19.4	+ 76.9	+ 5.3	-7.5
	Compart	isons II, 1	-4.			
Micrometer divisions.	- 40 [.] 6	-25.8	+13.3	+ 54'9	+0.8	-3.0
Millionths of a yard.	-51.8	-32.9	+ 17.0	+70.1	+1.0	-3.8
	Compari	sons III,	14.			
Micrometer divisions.	-43.8	- 27.8	+ 12.8	+ 58.9	+ 3.2	-3.2
Millionths of a yard.	- 55'9	-35.2	+16.3	+75-2	+4.2	-4.2
	Compari	sons IV, I	l—4.			
Micrometer divisions.	-41.2	- 27.6	+13.0	+ 57.6	+3.6	-4.3
Millionths of a yard.	-53.0	-35.3	+ 16.6	+ 73.6	+4.6	-5.4
Mean	of the four	. groups oj	f Comparis	30 n s.	-	
Micrometer divisions.	-42.4	- 26.8	+ 13.6	+ 57.9	+3.0	-4.2
Millionths of a yard.	-54.1	-34.3	+17.3	+73.9	+ 3.8	-5.4

Comparisons I, 1-4.

The only *partial* set of bars in each measurement occurs at the terminal point **S**, where the bars employed were A, B, and H. Since, on an average, A = L - 54., B = L - 34. and H = L - 54., we have

A + B + H = 3 L - (93.7 m.y = .0003 of a foot)

therefore - :0001 is the correction to be applied to the actual mean lengths of all six bars at page (73) to deduce the corresponding mean length of the three bars in question, see page (76).

Digitized by Google

MICROSCOPE COMPARISONS.

Comparisons between the Compensated Microscopes and the 6-inch brass scales during the four measurements, and determination of microscope errors with respect to $\frac{1}{20}$ th of Standard A, expressed in millionths of an inch (m.i.)

				rith	era-	Fah. scale m.i.	Micro	ecope	¹ 20 A ,	æ	Errors of sid	le telescope.
When comp 1863	pared 9		Microscope	Scale compared w	Corrected tempe ture	Reduction to 62° Expansion of 6^{\prime} i for $1^{\circ} = E = 62.5$	Divisions	value in tas of m.i.	Micros : Scale — at 62° Fah.	Micros : - ¹ / ₂₀ / at 62° Fah.	Collimation	Parallelism
Before 1st mea- surement.	Jan.	12th 16th	W M T N U S V O	W M T T M V M	86 [°] 7 86 [°] 2 85 [°] 8 86 [°] 5 86 [°] 9 87 [°] 3 86 [°] 7 84 [°] 3	+ 1544 1513 1488 1531 1556 1582 1544 1394	+ 1'1 - 3'7 6'5 8'3 5'8 0'6 23'4 6'9	+ 44 - 370 650 830 580 60 938 690	$ \begin{array}{r} - 47 \\ + 122 \\ - 18 \\ 18 \\ + 122 \\ - 133 \\ + 122 \end{array} $	+ 1541 1265 820 683 958 1644 473 826	+ 0 15 0 0 0 30 0 15 0 55 0 55 0 10 1 10	Correct.
After set No. 69	33	19th	W M T N U S V	W M T T M V	86.4 86.8 87.6 84.9 87.3 86.6 88.4	+ 1525 1550 1600 1431 1582 1538 1650	+30.3 - 4.0 0.0 - 10.5 8.6 2.9 21.7	+ 1221 - 400 0 - 1050 860 290 870	$ \begin{array}{r} - & 47 \\ + & 122 \\ - & 18 \\ & 18 \\ + & 122 \\ - & 133 \\ \end{array} $	+ 2699 1272 1582 363 704 1370 647	Not examined.	Not examined.
After 1st mea- surement.	33	23rd	W M O N U S V	W M T T M V	89 .9 88.5 89.8 90.3 89.8 90.2 89.3	+ 1744 1656 1738 1769 1738 1763 1763 1707	+29.0 -6.2 9.8 13.5 15.2 4.2 25.6	+ 1 169 - 620 980 1350 1520 420 1026	$ \begin{array}{r} - & 47 \\ + & 122 \\ & 122 \\ - & 18 \\ & 18 \\ + & 122 \\ - & 133 \\ \end{array} $	+ 2866 1158 880 401 200 1465 548	$ \begin{array}{r} -0 & 42 \\ + & 0 & 16 \\ 0 & 38 \\ - & 34 \\ + & 0 & 40 \\ 0 & 8 \\ 0 & 9 \end{array} $	- 9 28 8 51 11 48 14 25 8 47 4 54 9 55
Before 2nd mea- surement.	>> >> >> >> >> >> >> >> >> >>	30th 29th 30th 29th 30th 29th	S W O N U M V	M W M T T M V	89 ^{.7} 85 ^{.3} 89 ^{.2} 83 ^{.1} 82 ^{.6} 90 ^{.5} 87 ^{.7}	+ 1731 1456 1700 1319 1288 1782 1606	$ \begin{array}{r} - 3.7 \\ + 34.4 \\ - 11.3 \\ 6.3 \\ 8.5 \\ 6.7 \\ + 6.1 \\ \end{array} $	- 370 + 1387 - 1130 630 850 670 + 245	+ 122 - 47 + 122 - 18 18 + 122 - 133	+ 1483 2796 692 671 420 1234 1718		Correct.
After set No. 75	Feb.	4th	S W O N U M V	S W M T T M V	89.6 91.4 86.8 87.1 88.0 87.6 88.6	+ 1725 1838 1550 1569 1625 1600 1663	$ \begin{array}{r} 0.0 \\ + 26.7 \\ - 9.7 \\ 14.1 \\ 13.0 \\ 3.7 \\ + 12.9 \end{array} $	0 + 1076 - 970 1410 1300 370 + 517	$ \begin{array}{r} + & 4 \\ - & 47 \\ + & 122 \\ - & 18 \\ & 18 \\ + & 122 \\ - & 133 \end{array} $	+ 1729 2867 702 141 307 1352 2047	Not examined.	$ \begin{array}{r} + & 0 & 46 \\ - & 0 & 26 \\ & 0 & 34 \\ & J & 34 \\ + & 2 & 17 \\ & 0 & 4 \\ & I & 58 \end{array} $
After 2nd mea- surement.	"	9th	S W O N U M V	S W M T T M V	85 ^{.8} 84 ^{.2} 88 ^{.6} 86 ^{.0} 87 ^{.1} 85 ^{.1} 84 ^{.9}	+ 1488 1388 1663 1500 1569 1444 1431	$ \begin{array}{r} + 4.3 \\ 31.7 \\ -16.2 \\ 10.5 \\ 9.9 \\ 5.3 \\ + 15.5 \\ \end{array} $	+ 430 1278 -1620 1050 990 530 + 621	$ \begin{array}{r} + & 4 \\ - & 47 \\ + & 122 \\ - & 18 \\ & & 18 \\ + & 122 \\ - & 133 \end{array} $	+ 1922 2619 165 432 561 1036 1919	$ \begin{array}{c} +0 & 51 \\ -0 & 30 \\ +1 & 12 \\ -2 & 0 \\ +0 & 9 \\ 1 & 24 \\ 0 & 21 \end{array} $	$\begin{array}{r} + & \circ & 46 \\ - & \circ & 34 \\ \circ & \circ & \circ \\ + & \circ & 17 \\ \bullet & \circ & 15 \\ + & \circ & 43 \\ - & \circ & 5 \end{array}$

Note.

1 division of ∇ micrometer = 40.10 (m.i.) 1 ,, W ,, = 40.29 (m.i.) For the micrometers of all the other scales, 1 division = 100.00 (m.i.)

Digitized by Google

X_₁₇

X-18

Comparisons between the Compensated Microscopes and the 6-inch brass scales-(Continued.)

When compared 1869			ith	-8-1	Fah. cale m. i.	Micro	Microscope		-	Errors of side telescope.		
		Microscope	Scale compared wi	Corrected temper ture	Reduction to 62° I Expansion of $6'^{\circ}$ for $1^{\circ} = E = 62^{\circ}$	Microsco Observed terms Divisions	value in of <i>m. i.</i>	Micros: Scale – ¹ at 62° Fah.	Micros : - ¹ / ₂₀ A at 62° Fah.	Collimation	Parallelism	
Before 3rd mea- surement.	Feb.	14th	W U	W T	89°6 92°7	+ 1725 1919	+ 27.5	+ 1109 	- 47 118	+ 2787 661		
After set No. 70	"	18th	W S O N U M V	W S M T T M V	94.8 94.6 95.9 95.6 94.4 96.2 95.9	+ 2050 2038 2119 2100 2025 2138 2119	+ 19 ^{.5} - 3 ^{.2} 15 ^{.3} 10 ^{.8} 20 ^{.0} 8 ^{.3} 0 ^{.0}	+ 786 - 320 1530 1680 2000 830 0	$ \begin{array}{r} - 47 \\ + 4 \\ $	+2789 1722 711 402 7 1430 1986		$\begin{array}{c} +1 & 8 \\ 1 & 51 \\ 0 & 21 \\ -0 & 57 \\ +0 & 34 \\ 2 & 13 \\ -0 & 19 \end{array}$
Afterset No. 116	"	21st	W W	W W	80 [.] 4 85 [.] 9	+ 1150 1494	+ 67·8 12·8	+2733 516	- 47 47	+ 3836 1963		
After 3rd mea- surement.	,,	23rd	W S O N U M V	W S M T T N V	86'9 88'9 87'9 86'3 87'1 87'4 86 9	+ 15.56 1681 1619 1519 1569 1587 1556	$ \begin{array}{r} + & 7.5 \\ - & 1.7 \\ 11.6 \\ 6.4 \\ 19.7 \\ 3.4 \\ + 18.2 \end{array} $	+ 302 - 170 1160 640 1970 340 + 729	$ \begin{array}{c} - 47 \\ + 4 \\ 122 \\ - 18 \\ 18 \\ + 122 \\ - 133 \end{array} $	$+ 1811 \\ 1515 \\ 581 \\ 861 \\ - 419 \\ + 1369 \\ 2152$	$ \begin{array}{c} -0 & 20 \\ +0 & 53 \\ 0 & 39 \\ -1 & 20 \\ +1 & 10 \\ 2 & 50 \\ 0 & 10 \end{array} $	 Not examined. 0 11
Before 4th do.	"	27th	W	W	87.4	+ 1 587	+41.4	+ 1669	- 47	+ 3209		
After set No. 72	Mar.	. 4th	W S O N U M V	W S M T T M V	91'7 91'8 88'9 88'5 90'4 91'6 95'9	+ 1856 1863 1681 1656 1775 1850 2119	$ \begin{array}{c c} +28.5 \\ -2.9 \\ 12.4 \\ 11.6 \\ 22.3 \\ +19.3 \\ 1.4 \\ \end{array} $	$ \begin{array}{r} + 1149 \\ - 290 \\ 1240 \\ 1160 \\ 2230 \\ + 1930 \\ 56 \\ \end{array} $	$ \begin{array}{r} - 47 \\ + 4 \\ 122 \\ - 18 \\ 18 \\ + 122 \\ - 133 \end{array} $	$\begin{vmatrix} +2958 \\ 1577 \\ 563 \\ 478 \\ -473 \\ +3902 \\ 2042 \end{vmatrix}$	Not examined.	$ \begin{array}{c} +1 & 31 \\ 0 & 22 \\ 0 & 0 \\ +5 & 29 \\ 1 & 18 \\ 0 & 26 \\ 0 & 8 \end{array} $
Afterset No. 124	,,	7th	T	T	86.4	+ 1 5 2 5	— 8·8	- 880	- 18	+ 627		
After 4th mea- surement.	,,	8th	W S O T U M V	W S M T T M K	94'9 93'6 93'5 91'2 91'7 91'3 92'8	+ 2056 1975 1969 1825 1856 1832 1925	$ \begin{array}{ c c c c c } +23.9 \\ -5.0 \\ 15.6 \\ 7.0 \\ 20.5 \\ +18.7 \\ -0.9 \\ \end{array} $	$ \begin{array}{r} + 963 \\ - 500 \\ 1560 \\ 700 \\ 2050 \\ + 1870 \\ - 36 \end{array} $	$\begin{vmatrix} - 47 \\ + 4 \\ 122 \\ - 18 \\ 18 \\ + 122 \\ - 133 \end{vmatrix}$	$\begin{vmatrix} +2972 \\ 1479 \\ 531 \\ 1107 \\ -212 \\ +3824 \\ 1756 \end{vmatrix}$	$ \begin{array}{c} -0 & 25 \\ +1 & 43 \\ -0 & 8 \\ 0 & 10 \\ +1 & 20 \\ -0 & 53 \\ 0 & 10 \end{array} $	$ \begin{array}{c} +2 & 17 \\ 0 & 3^2 \\ -0 & 48 \\ +0 & 7 \\ 1 & 3 \\ 0 & 0 \\ 0 & 15 \end{array} $

The "Error of Collimation" was in all cases determined by Gauss' method, the amount of error being measured by one of the two

The "Error of Collimation" was in all cases determined by Gauss method, the amount of error being measured by one of the order the the dollites. The "Error of Parallelism" was found by means of a scale attached to the horns of the Boning instrument, which was read by the side telescope both "out" and "in", the bar dots being intersected in each position by the microscope. The reading of the scale corresponding to centre of telescope of Boning instrument, i.e. the line of the dots, was known, = d suppose; the i distance between the optical axis of side telescope in both positions = a, c = effect of error of collimation on scale, p = effect of error of parallelism, then acale reading (telescope "in") = d + a + c + p

scale reading (telescope "in") =
$$d + a + c + p$$

"("," "out") = $d - a - c + p$
Sum of readings = $2d + 2p$
whence

$$p = \frac{1}{2} \operatorname{sum} - d.$$

The angular value of p is obtained by dividing by the distance of the microscope from Boning instrument expressed in divisions of the scale multiplied by Sin 1".

Digitized by Google

MICROSCOPE COMPARISONS.

m.i. + 1541 2699 2866 1541 (8) (9) (9) + 2796 2867 2619 **3**761 (16) + 2787 2789 3836 1963 1811 + 3209 2958 3046 (32) **2**/6**2** Error 3137 (23) (23) (23) (24) 4 Temp 86^{.7} 86^{.4} 89^{.9} 85°3 91'4 84'3 0.18 89.0 80.4 85.0 86.0 2.98 **5**.88 86.4 87.4 94'9 88.3 E.16 556 (7) + 1718 2047 1919 1895 (15) + 1986 ... 1756 **m.i.** + 473 647 548 2069 (**2**2) ... + 2043 Error 18 (15) A Temp 86[.]7 88[.]4 89[.]3 1.48 1.88 87°7 88'6 84'9 6.<u>3</u>6 6.98 ... -473 95'9 **4**.16 94.4 ÷ -212 92.8 : 420 307 561 m.i. + 958 704 200 (14) (14) - 419 833 (31) 62 I (6) ... + 661 - 343 (30) Error ÷ Þ 82°6 88°0 87'1 Temp 4.16 86.9 87.3 89.8 o.88 6.98 1.78 92.7 1.16 91.4 : ÷ ; **m.i.** + 820 1582 1301 (5) 1107 Error 867 (89) : ::: : :::: :. : ы , Temp 85.8 87.6 ... 86:4 2.98 8·88 : ::: : :::: : *m.i.* + 1644 1370 1465 1493 (4) 1 1 7 1 (13) + 1677 + 1483 1729 1922 ... + 1/23 ... 1515 1619 (30) I528 (26) Error 8 Temp 89.7 89.6 85.8 87.3 86.6 90.2 **88**.0 *****.88 ..**6** ... 88-9 8.16 ...6 ... 93.6 7.26 : : + 692 702 165 + 563 **m.i.** + 826 85.3 (a) 530 (13) 581 ...+ 646 (19) Error 880 547 (27) 0 Temp | 8.68 1.78 88.9 93.5 。 84:3 8.68 8.98 8.98 6.<u>3</u>6 6.48 **7**.88 6.16 **z**.16 : : ; **m.i**. + 683 363 401 482 (2) + 671 141 433 ... 861 (II) + 403 632 (18) i + + 178 Error + 478 (36) ≿ Temp 86°5 84'9 90'3 87'2 85.4 83.1 87.1 860 £.88 ... 86.3 0.16 : : : + 3903 ... + 1430 1232 (I) + 1234 1352 1036 1369 **m.i.** + 1265 1272 1158 130) (0) 1400 (17) 3824 3863 (25) Error X Temp 86°3 86'8 88'5 90.5 87.6 85.1 87'2 1.18 ... 87:4 **7.96** 9.16 ... : 8.16 9.16 : Before 4th measurement, After set No. 72 ... 124 ... 4th measurement, Before 1st measurement, After set No. 69 " 1st measurement, Means, Before 3rd mesurement, After set No. 70 Меаль, Means, 8rd measurement, When compared Means, 8 2 ... 116 2 9 anom Ħ ш Þ m Messure-

Table of individual Microscope Errors and corresponding Temperatures, from pages X₁₆ and X₁₇, together with the mean values adopted for each measurement. X_19

Norz-The numbers written below the mean values, thue (1) (2) de, are the "reference numbers" by which the adopted microscope errors (and temperatures) are indicated in the equations on page X-19. Digitized by Google

The equations which determine the microscope errors per set (or m.e) are the following :—

Measurement I

		Referen	ice mum	bers.			mi				
$(m.e.)_1 =$	1 +	2 +	4 +	5 +	6 +	$\frac{7+8}{2}$	= 6078 at (62 + 25.4)	applicable	to sets Nos.	ıto g	37 .
(m.e.) ₂ =	τ+	2 +	3 +	4 +	6 +	$\frac{5+7}{2}$	= 5560 at (62 + 25.5)	"	"	38 to 🛛	43
(m.e.) ₈ =	1 +	2 +	3 +	4 +	6 +	$\frac{7+9}{2}$	= 6351 at (62 + 25.6)	>9	"	44 to 12	41
(m.e.) ₄ =	1 +	3 +	7+2	<u>9</u>			= 3755 at (62 + 25.5)	>>	set No.	142	

Measurcment II

$(m.e.)_{5} = 12 + 16 + \frac{13 + 15}{2}$	= 5084 at (62 + 25.7)	"	"	I
$(m.e.)_{6} = 10 + 11 + 12 + 14 + 16 + \frac{13 + 15}{2}$	= 7135 at (62 + 25.0)	"	sets Nos.	2 to 142

Measurement III

$(m.e.)_{9} = 19 + 20 + \frac{22 + 24}{2}$	= 4243 at (62 + 28.9)	"	set No.	142
(m.e.) $_8 = 17 + 18 + 19 + 20 + 21 + \frac{22 + 24}{2}$	$= 6358 ext{ at } (62 + 29.1)$,,	"	117 to 141
(m.e.) $_7 = 17 + 18 + 19 + 20 + 21 + \frac{22 + 23}{2}$	= 6983 at (62 + 29.3)	"	32	1 to 116

Measurement IV

$(m.e.)_{10} = 27 + 28 + \frac{31 + 32}{2}$	= 4548 at (62 + 30.3)	"	"	1
$(me)_{11} = 25 + 26 + 27 + 28 + 30 + \frac{31 + 32}{2}$	= 8546 at (62 + 29.3)	"	sets Nos.	2 to 97
$(m.e.)_{13} = 25 + 27 + 28 + 29 + 30 + \frac{31 + 32}{2}$	= 8935 at (62 + 29.4)	"	"	98 to 142

Hence the total microscope errors are as follows,

Measurement I

In Section	NX = $35 (m.e)_1 = 212730 - 6 \times 35 \times 254 d$	E = 212730 - 5334 dE =	feet of A = 0 ^{.0177} — 5334 dE
>>	$\mathbf{X} \mathbf{V} = \begin{cases} 2 \ (m.e)_1 = 12156 - 6 \times 2 \times 25.4 \ d \\ 6 \ (m.e)_2 = 33360 - 6 \times 6 \times 25.5 \ d \\ 27 \ (m.e)_8 = 171477 - 6 \times 27 \times 25.6 \ d \end{cases}$	$\begin{array}{l} E = 12156 - 305 dE \\ E = 33360 - 918 dE \\ E = 171477 - 4147 dE \end{array}$	
		216993 - 5370 dE =	= 0°0181 — 5370 dE
"	$\mathbf{YZ} = 35 \ (m.e)_8 = 222285 - 6 \times 35 \times 25^{\circ}6 \ d.$	$\overline{E} = 222285 - 5376 \ dE =$	= 0 [.] 0185 — 5376 dE
"	$\mathbf{ZS} = \begin{cases} 36 \ (m.e)_{8} = 228636 - 6 \times 36 \times 25.6 \ dx \\ \mathbf{I} \ (m.e)_{4} = 3755 - 3 \times \mathbf{I} \times 25.5 \ dx \end{cases}$	E = 228636 - 5530 dE E = 3755 - 77 dE	
		232391 - 5607 dE =	: 0.0194 – 5607 dE

Digitized by Google
MICROSCOPE COMPARISONS.

Total microscope errors—(Continued.)

Measurement II

In Section $SZ = \begin{cases} I & (m.e)_6 = 5084 - 3 \times 1 \times 25.7 \ dE = 5084 - 77 \ dE \\ 36 & (m.e)_6 = 256860 - 6 \times 36 \times 25.0 \ dE = 256860 - 5400 \ dE \end{cases}$ $\begin{array}{rcl} m.e. & for even for$

$$X N = 35 (m.e)_6 = 249725 - 6 \times 35 \times 25^{\circ} dE = 249725 - 525^{\circ} dE = 0.0208 - 525^{\circ} dE$$

Measurement III

In Section N X = 35 $(m.e)_7 = 244405 - 6 \times 35 \times 293 dE = 244405 - 6153 dE = 0.0204 - 6153 dE$,, X Y = 35 $(m.e)_7 = 244405 - 6 \times 35 \times 293 dE = 244405 - 6153 dE = 0.0204 - 6153 dE$,, Y Z = 35 $(m.e)_7 = 244405 - 6 \times 35 \times 293 dE = 244405 - 6153 dE = 0.0204 - 6153 dE$,, Y Z = 35 $(m.e)_7 = 244405 - 6 \times 35 \times 293 dE = 244405 - 6153 dE = 0.0204 - 6153 dE$,, Z S = $\begin{cases} 11 & (m.e)_7 = 76813 - 6 \times 11 \times 293 dE = 76813 - 1934 dE \\ 25 & (m.e)_8 = 158950 - 6 \times 25 \times 291 dE = 158950 - 4365 dE \\ 1 & (m.e)_9 = 4243 - 3 \times 1 \times 289 dE = 4243 - 87 dE \end{cases}$ = 240006 - 6386 dE = 0.0200 - 6386 dE

Measurement IV

In Section $SZ = \begin{cases} 1 & (m.e)_{10} = 4548 - 3 \times 1 \times 30^{\circ}3 \, dE = 4548 - 91 \, dE \\ 36 & (m.e)_{11} = 307656 - 6 \times 36 \times 29^{\circ}3 \, dE = 307656 - 6329 \, dE \end{cases}$ $\begin{array}{rcl} 312204 - 6420 \, dE = 0^{\circ}0260 - 6420 \, dE \\ \hline & 312204 - 6420 \, dE = 0^{\circ}0260 - 6420 \, dE \\ \hline & & \\ \end{array}$ $\begin{array}{rcl} X = & 35 & (m.e)_{11} = 299110 - 6 \times 35 \times 29^{\circ}3 \, dE = 299110 - 6153 \, dE \\ 10 & (m.e)_{13} = 89350 - 6 \times 10 \times 29^{\circ}4 \, dE = 89350 - 1764 \, dE \\ \hline & & \\ \end{array}$ $\begin{array}{rcl} 303000 - 6159 \, dE = 0^{\circ}0253 - 6159 \, dE \\ \hline & & \\ \end{array}$ $\begin{array}{rcl} X = & 35 & (m.e)_{13} = 312725 - 6 \times 35 \times 29^{\circ}4 \, dE = 312725 - 6174 \, dE = 0^{\circ}0261 - 6174 \, dE \\ \end{array}$

X____1

Digitized by Google

CAPE COMORIN BASE-LINE: MICROSCOPE COMPARISONS.

Final deduction of the total lengths measured with the compensated microscopes-

In the foregoing reductions, the co-efficient of expansion for brass has been taken at '000,010,417; whereas it appears from page (17) that '000,009,855 is a more probable value. Accepting the latter, it may be found that dE = 3.372 (*m.i*). Hence, remembering that the length measured with a complete set of microscopes is equal to 3 feet of A + the corresponding (m.e) we have,

Total lengths measured with the compensated microscopes

	Measurement I
In section N X comprising 35 sets In section X Y comprising 35 sets In section Y Z comprising 35 sets In section Z S comprising 36 ¹ / ₂ sets	$\begin{cases} feet of A & feet of A \\ = \dots \dots (35 \times 3 + 0177) - 5334 dE = (1050177 - 0015) = 1050162 \\ = \dots \dots (35 \times 3 + 0181) - 5370 dE = (1050181 - 0015) = 1050166 \\ = \dots \dots (35 \times 3 + 0185) - 5376 dE = (1050185 - 0015) = 1050170 \\ = \dots \dots (365 \times 3 + 0194) - 5607 dE = (1095194 - 0016) = 10905178 \\ = \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots = (42400000000000000000000000000000000000$
11 11 5	
In section N:X comprising 35 sets In section X V comprising 35 sets In section V Z comprising 35 sets In section Z S comprising 36 ¹ / ₂ sets	$\begin{cases} = \dots \dots (35 \times 3 + 0208) - 5250 dE = (105 \cdot 0208 - 0015) = 105 \cdot 0193 \\ = \dots \dots (35 \times 3 + 0208) - 5250 dE = (105 \cdot 0208 - 0015) = 105 \cdot 0193 \\ = \dots \dots (35 \times 3 + 0208) - 5250 dE = (105 \cdot 0208 - 0015) = 105 \cdot 0193 \\ = \dots \dots (36 \cdot 5 \times 3 + 0218) - 5477 dE = (109 \cdot 5218 - 0016) = 109 \cdot 5202 \\ = (424 \cdot 6813 - 00061) = 424 \cdot 5781 \end{cases}$
ln N S	
•	Measurement III
In section N X comprising 35 sets In section X V comprising 35 sets In section V Z comprising 35 sets In section Z S comprising 36 ¹ / ₃ sets	$\begin{cases} = \dots \dots (35 \times 3 + 0204) - 6153 dE = (1050204 - 0017) = 1050187 \\ = \dots \dots (35 \times 3 + 0204) - 6153 dE = (1050204 - 0017) = 1050187 \\ = \dots \dots (35 \times 3 + 0204) - 6153 dE = (1050204 - 0017) = 1050187 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1050204 - 0017) = 1050187 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 1095182 \\ = \dots \dots (365 \times 3 + 0200) - 6386 dE = (1095200 - 0018) = 0000 \\ = \dots \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0000 \\ = \dots (365 \times 3 + 0200) - 0$
In NS	$\dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad = (424.58120009) = 424.5743$
	Measurement IV
In section N X comprising 35 sets In section X V comprising 35 sets In section V Z comprising 35 sets In section Z S comprising 36 ¹ / ₂ sets	$\begin{cases} = \dots \dots (35 \times 3 + 0261) - 6174 dE = (1050261 - 0017) = 1050244 \\ = \dots \dots (35 \times 3 + 0253) - 6159 dE = (1050253 - 0017) = 1050236 \\ = \dots \dots (35 \times 3 + 0249) - 6153 dE = (1050249 - 0017) = 1050232 \\ = \dots \dots (365 \times 3 + 0260) - 6420 dE = (1095260 - 0018) = 1095242 \\ = (4246928 - 0006) = 4245064 \\ \end{cases}$
In NS	$\dots \dots

In NS

X____22

Digitized by Google

Extracts from the Field Book of MEASUREMENT I, and calculated heights of sets above the origin.

Adopted heights above mean sea level. North-End = $\frac{1222}{1222}$ feet. South-End = $\frac{12222}{1222}$ feet.

When _	the set	me of a	urs used	Height	ement	Bar	В	When	the set	ne of Ig	rs used	Height	sment scopes	Bar	в
compared 1869	No. of t	Mean ti endir	No. of ba	above origin	Arrange of Micro	62°+T	ť	compared 1869	No. of t	Mean ti endin	No. of bar	above origin	Arrange of Micro	62° + T _b	ŧ
							Sectio	n NX							
Jany. 13th	I	л. т. 7 <u>54</u> л. <u>ж</u> .	6	feet + 2.90	(m.e) ₁	73.88	- '02	Jany. 14th	19	л. т. 3 50 Р.М.	6	<i>feet</i> + 7.78	(m.e) ₁	86 [.] 93	+ .23
	2 3 1 4	928 1148 044 P.M.	6 6 6	3°58 3°75 3°68	>> >>	75°01 80°14 81°42	+ °06 '47 '45	" 15th	20 21 22	11 52 A.M. 0 22 P.M. 0 56	6 6 6	8.09 8.69 8.08	33 31	76.15 77.16 78.20	- °03 + °03
	56	1 33 2 30	66	3.95 3.89	>> >>	83.04 84.23	'43 '29		23 24	I 43 2 18	6	9.13 9.13	>> >> >>	79 ^{.86} 80 [.] 99	•22 •24
" 14th	· 8 9	3 30 4 20 7 25 A.M.	6 6	4 04 5 40 5 2 I	>> >> >>	86.03 75.67	•02 •02		25 26 27	2 47 3 16 3 44	0 6 6	10'20 10'64 10'99	>> >>	81'83 82'35 82'71	·22 ·25 ·26
	10 11 12	8 18 9 9	6 6	5.64 5.73	33 39	75'94 76'85	+ °02 °14	" 16th	28 29	4 17 7 7 A.M.	6	11.19	>> >>	82 [.] 88 73 [.] 37	- ^{•21}
	13 14	952 1153 о 38 р.м.	6	5.44 6.00	>> >> >>	80.93 82.26	.43 .41		30 31 32	7 30 8 18 8 43	6	12.54 12.90	23 23 23	73 52 74.06 74.66	- :04 + :03
	15 16 17	1 30 2 12 2 44	6 6	6°50 7°30 7°47	>> >>	83.73 84.77 85.86	*44 *35 *34		33 34 35	9 10 9 44 0 10 P.M.	6 6 6	13.00 13.3 3	37 38	75 :26 75 :98 70:03	•11 •20 •27
	18	3 15	6	7.44	**	86.36	•29		55		-	-5-9	Mean	79.84	+ '191
The For	• rea: • mea	r-end of s surement	set l s w	No. 1 st ith com	ood ex passes	actly ov at X . se	er the d	lot at North X	-End	l.			-		
Jan	uary	13th and	1 14	th. W	eather	clear a	nd brig	ht througho	ut th	e day wit	h n	uch nor	th win	d chiefly	about
	"	15th. 7 comment	Chre ced	e or fou a little	r hou before	rs heavy e noon.	v rain t	his morning	g fol	lowed by	hea	vily clo	uded s	ky; ope	rations
							Sectio	n XY							
Jany. 16th	36 37 28	0 42 P.M. 1 18 1 58	6 6 6	+ 14.27 14.52	$(m.e)_1$	80.51 81.62 81.77	+ *25	Jany. 18th	54 55	1 36 P.M. 2 1 2 26	6 6 6	+ 18.94 18.60	(m.e)3 "	83°39 84°24 84°27	+ •52
	39 40	2 40 3 9	6	14.98 15.12))))	83.79 84.44	·26 ·22		57 58	2 56 3 26	6	18.74 18.38	37 33 33	85.28 85.66	47 *47 *41
18th	41 42 43	3 42 4 12 7 10 A.M.	6 6 6	15.79 16.25 16.52	" "	84 [.] 85 85.07 74.56	'20 '20 '01	" 19th	59 60 61	348 78 A.M. 735	6 6 6	17°98 17°44 17°48	>> >>	85.76 76.34 76.30	·39 ·01
	44 45	7 54 8 26	6	16.01 16.01	(m.e)3 "	74.57	- °05 - °04		62 63	8 3 8 27	6	17.17 16.74	>> >> >>	76.41 76.72	.03 .15
	40 47 48	8 52 9 17 9 44	0 6 6	17.44 17.95 18.10	>> >>	75.30 75.97 76.62	+ .00 .12 .23		04 65 66	8 52 9 16 9 45	6 6	10.52 15.91 15.90	33 33	77.10 77.56 77.92	•14 •19 •17
	49 50	11 23 11 51	6	18.08 18.23	33 33	79'20 80'11	•33 •34		67 68	11 47 0 13 P.M	6	15.73	33 33	80.33 81.03	*25 *26
	51 52 53	0 38 1 4	6	18.89	27 22 22	81.64 81.66 82.36	-43 -44 -48		09 70	0 44 3 25	6	15.04	·	85.34	•30
որ	a tar	minal noi	nt o	f set N	o. 35 ∎	ras tha r	noint of	l origin for se	t N	36.		•	Mean	80.43	+ '345
For	r mea	surement	ts w	ith com	passes	at V, se	e page 2	X31.					(50) 0		
Jai	iuary	ed gathe	(43) ring	weather about	eratii noon a	rst cloud and by t	ly, after he time	wards bright work closed	t wit	n much no the day a	nd i	for the l	(50) C ast 5	or 6 sets	the sky
	"	19th. (60) (1111	Sunshi	ne and	light cl	ouds, lit	ttle wind.	(62)	and (63)	sk	y overce	ust. (6	7) Sunsl	hine and

X____3

X_____

Extracts from the Field Book of MEASUREMENT I-(Continued.)

NOTE.-In set No. 142, bars A, B, and H were employed.

Digitized by Google

Mean time of ending Arrangement of Microscopes used ы Bed Arrangement of Microscopee Bet Bar B Bar B Mean time (ending Height Height When When of the of the No. of bars of bare of set of set compared compared above above origin origin $62^{\circ} + T_{\delta}$ ŧ 1869 62° + T, 1869 No. No. ŧ No. Section SZ feet feet 79.48 80.83 83.02 85.45 86.47 86.98 .31 Jany. 30th 1.71 1.89 (m.e)5 (m.e)6 Feb. 1st 2 8 2 45 3 15 3 55 4 28 7 5 7 35 8 2 8 35 8 P.M. 9.38 10.12 90°14 91°20 91°94 8 20 6 ·37 ·45 ·58 ·73 ·86 27 + 36 (m.e)6 + 21 6 9 10 '39 '38 34 13 58 2 ,,, 22 6 2.14 10.94 3 " " 97 2.55 6 456 11 666666 .00 23 24 25 26 27 28 11.23 92.70 " 6 .0: 0 31 P.M. 11.40 ,, 93'14 ,, 2nd I 3.02 .13 5 A 6 11.42 77'99 77'63 '04 '04 '08 9 48 " ,, ... 87'18 87'28 11.76 I •24 6 6 3.90 78 ,, 37 37 37 13 •25 11.86 12.07 2 4'59 ,,, 77.49 23 *32 *46 *08 *17 87.55 6 5.31 35 2 77'70 78'38 ō Q 3 >> >> >> >> >> >> .10 9 2 9 50 11 27 11 58 88.05 75.88 76.40 77.22 78.53 6 29 30 31 32 33 34 35 36 30 666666666 12:37 10 .20 378 >> >> >> 29 32 27 18 13.45 13.60 79'32 84'25 85'22 86'38 Feb. 1st 11 40 .м. 6.90 6 7:29 12 15 8 •26 14'10 6666 52 13 14 15 16 **3**7 ,, 0 21 P.M. 0 46 1 12 1 42 14'51 15'16 15'17 15'62 16'06 '33 '34 '21 9 7.20 33 93 37 " " 87.08 87.69 88.19 79.90 10 31 7.69 •06 8.45 оор.м. оор.м. озб і 4 і 34 ,, ,, .13 8.45 8.57 8.87 85.94 87.64 88.86 17 18 .11 6 ·31 ·45 33 39 ,, .07 .26 6 88.51 6 6 +37 2 42 ... ۲g 86.00 Mean - '012 For measurements with compasses at South-End and at Z, see page X_{31} . January 30th. (1) Cumuli, alternate shade and sunshine, E. wind rather fresh. (4) East pardas raised. (8) At this set the east pardas were let down on account of the wind.
 (11) Fine morning, little or no wind, clear sky except towards east. (20) Fresh easterly wind.
 " 2nd. (25) Fine clear morning, light N.E. wind. (32) Strong E. wind, sea breeze, sky clear. Section ZY + 16.64 (m.e)₆ 17.17 ,, + 19'35 18'94 18'80 18'78 88·67 88·80 Feby. 3rd 88.80 56 2 45 P.M. Feby. 2nd 38 20 P.M. 6 + 55 6 41 •46 •52 •63 3 (m.e), ÷ 3 13 3 38 4 0 7 12 7 40 8 29 8 52 9 18 9 41 11 22 ·52 ·02 50 6 88.63 39 40 41 43 44 45 46 47 48 49 51 37788888)))) 33 17.59 8rd وّ 6 6 76.10 6 88.85 .м. ,, >> 76.00 76.14 76.39 .06 6 89.04 76.56 76.14 37 34 " 6 •13 12 A.M. 6 4th 18.47 17.93 100 3 39 39 39 39 " ·17 ·21 17.98 17.80 25 46 18.35 .13 6666666 666666 " " 18.73 76.05 76.36 76.88 76.72 •17 9 10 9 28 9 55 11 25 11 52 0 20 0 45 17.85 .23 19.05 19.56 77'31 78'18 *27 *36 *45 *54 *78 *81 >> >> >> >> >> >> ·23 ·23 ·29 ·32 ·28 77.68 78.81 84.45 85.84 86.92 79[.]20 84[.]28 19.46 17.08 20'04 17.31 85.59 86.75 19.92 666666 17.33 " II 43 0 5 P.M. 0 32 0 53 I 25 ·20 ·06 6 19.71 39 33 20'05 19'98 19'77 19'46 87'42 87'83 88'18 88'36 •72 •51 •30 17.35 45 8 66666 52 53 54 55 .08 87.95 88.83 1 8 1 33 1 58 " 33 .33 16.78 >> >> ,, .30 72 16.36 89[.]4ŏ 33 88.53 2 23 19.72 •34 Mean 83.47 - .036 The terminal point of set No. 37 was the point of origin for set No. 38. For measurements with compasses at γ , see page X₃₁. (40)-Hazy morning, no wind, sky throughout the day covered with thin clouds. (53) Sea February 3rd. breeze set in. (60)—Fine morning, horizon hazy. (71) East wind. 4th. "

Extracts from the Field Book of MEASUREMENT II.

Digitized by Google

X_____25

When	the set	ime of ng	ars used	Height of set	ement oscopes	Bar	В	When	the set	ime of ng	rs used	Height of set	ement occopes	Bar	в
compared 1869	No. of	Mean ti endi	No. of b	above origin	Arrang of Micro	62° + T _b	t	compared 1869	No. of	Mean ti endi	No. of ba	above origin	Arrang of Micro	62° + T _b	t
							Sectio	n YX							
Feby. 4th 30 5th	73456789012345678888888890	b. m. 2 12 P.M. 2 34 3 3 3 3 7 18 A.M. 7 40 4 8 4 9 9 5 9 9 24 9 9 43 11 11 59 0 0 27 P.M. 0 54 1 1 40 1	66666666666666666	feet + 17'44 17'63 17'91 18'44 18'49 18'70 19'15 19'70 19'89 20'25 20'83 20'25 20'83 21'40 21'32 21'40 21'32 21'50 21'84 21'79	(m.e) 37 37 37 37 37 37 37 37 37 37	90°45 90°72 90°89 77°13 76°76 77°01 77°40 77°59 84°54 85°59 86°77 87°78 88°59 88°59 88°59 88°59 88°59 88°59	+ '29 '36 '47 '11 '14 '23 '28 '33 '43 '43 '43 '43 '43 '65 '66 '60 '20 '46 '16 + '66 '22	Feby. 5th " 6th	91 92 93 95 95 96 97 98 99 100 101 102 103 104 105 107	λ . m. 2 4 P.M. 2 24 2 2 4.3 7 3 29 3 58 7 9 A.M. 7 7 5.3 15 8 36 8 15 8 36 8 57 9 38 11 19 11 41 0 10 P.M. 10 10	666666666666666666666666666666666666666	feet + 21'49 21'26 21'38 20'69 20'51 20'22 19'84 19'47 19'08 19'21 18'86 18'25 17'69 17'35 17'23 15'97	(m.e)6 " " " " " " " " " " " " " " " " " " "	89'46 89'59 89'61 89'52 89'34 77'99 77'66 77'61 77'81 78'11 78'11 78'11 78'11 83'86 84'97 86'23 83'08	+ '37 '45 '48 '50 '50 '50 '50 '60 '05 '06 '06 '06 '02 '03 '22 '29 '34 - '091
Fel	r mea oruar "	surement y 5th. (6th. (58 wi (76) (94) (97)	th comp Fine r nenced, Cumu Cloud over h	nornin aftern li and y mor ills to	at X, se oon fine, strati. ning, no west.	e page 2 wind, h cumuli. wind.	K	of c	clouds to prizon haz	east	t and sc strati as	outh. nd cir	(86) Se ro-strati,	a-breeze cumuli
							Sectio	n XN							
Feby. 6th "8th	108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	o 47 P.M. I 12 I 30 I 59 2 22 2 42 3 3 3 23 3 42 7 9 A.M. 7 31 7 51 8 8 8 26 8 50 9 9 9 28 9 49	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+ 16.57 16.34 15.14 15.44 15.41 14.77 14.62 13.50 13.50 13.50 13.20 12.84 12.08 11.14 10.79 10.23 10.18	(m.e)6)))))))))))))	88.01 88.65 89.08 89.46 89.46 90.12 90.13 90.19 90.17 79.14 79.13 79.40 79.79 80.26 81.17 81.95 82.81	- '25 '12 + '06 '19 '40 '47 '50 '53 '55 - '06 '14 '20 '27 '33 '45 '53 '59	Feby. 8th " 9th	126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	11 41 A.M. 0 0 P.M. 0 21 0 45 1 8 1 27 1 47 2 4 2 21 2 41 3 19 3 47 7 4 A.M. 7 24 7 51 8 38	6666666666666 6 66	+ 987 953 967 868 818 783 790 789 781 700 706 663 673 673 673 479	(18.e) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	87-83 89-44 90-30 91-25 91-80 92-20 92-37 92-43 92-41 92-41 92-41 92-41 92-27 92-14 92-07 91-98 81-38 81-38 81-36 81-36 81-36	$\begin{array}{c} - & .75 \\ \cdot & .67 \\ \cdot & .8 \\ \cdot & .24 \\ \cdot & .03 \\ + & .15 \\ \cdot & .28 \\ \cdot & .33 \\ \cdot & .46 \\ \cdot & .51 \\ \cdot & .03 \\ \cdot & .03 \\ \cdot & .03 \\ \cdot & .07 \\ \cdot & .05 \\ + & .040 \end{array}$
Th He Fo Fel	e tern ight r mea oruar "	minal poin of set No sourement y 6th. (8th. (9th. (nt of . 14: .s wi 108) 117) 139)	set No 2 above ith com Sea-b Fine Heav	o. 107 North passes reeze s morni y clou	was the -End = at North set in. ng, cloud ds to N.	point of 2.30 fee h-End, s ds in ho E., no w	origin for s et. ee page X_ rizon, no wir ind.	et N -31° nd.	To. 108. (120) Cir	ri.	(129) \$	Sea-bro	eeze set i	n.

Extracts from the Field Book of MEASUREMENT II-(Continued.)

X_____

Digitized by Google

When	the set	ime of ng	urs used	Height of set	ement scopes	Bar	в	When	the set	ime of ng	trs used	Height of set	ement bscopes	Bar	В
compared 1869	No. of	Mean th endi	No. of ba	above origin	Arrang of Micro	$62^{\circ} + T_b$	t	compared 1869	No. of	Mean t endi	No. of be	above origin	Arrang of Micr	$62^{\circ} + T_{\tilde{b}}$	ŧ
							Sectio	n NX							
Fob. 15th " 16th Foi Fe	1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 res mode brus	h. m. 7 35 A.M. 8 25 8 58 9 27 10 1 11 32 0 1 P.M. 0 29 0 55 1 17 1 50 2 15 2 45 3 9 3 36 4 12 6 54 A.M. 7 21 ar-end of s casurement ary 15 th. 16 b	6 6 6 6 6 6 6 6 6 6 6 6 6 6	feet + 227 293 3'39 3'72 3'88 3'70 4'03 4'73 5'06 4'01 5'06 5'15 5'26 5'26 5'15 5'26 5'26 5'15 5'26 5'26 5'26 5'26 5'26 5'26 5'26 5'2	(m.e)7 " " " " " " " " " " " " " " " " " " "	77'27 76'97 77'40 78'21 79'25 82'86 83'62 84'59 85'61 86'73 87'69 88'77 89'50 90'16 90'59 90'93 78'51 78'17 actly over at X, see up to 1	+ $\frac{17}{12}$ $\frac{19}{24}$ $\frac{30}{23}$ $\frac{23}{21}$ $\frac{09}{10}$ $\frac{10}{14}$ $\frac{24}{27}$ $\frac{35}{32}$ + $\frac{16}{19}$ er the do e page X 0 o'clock	Feb. 16th t at North- 	19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 End.	A. m. 7 46 A.M. 8 16 8 41 9 3 9 59 11 32 0 4 P.M. 0 29 0 51 1 15 1 40 2 5 2 30 2 51 3 22 4 0 1 do not 0 from not	66666666666666666666666666666666666666	feet + 7'36 7'48 8'09 7'97 8'77 9'50 9'69 9'65 10'48 10'87 11'01 11'38 11'76 12'15 12'71 12'83 12'54	(m.e) ₇ ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	77'86 77'79 78'10 78'62 88'00 83'62 84'71 85'59 86'47 87'08 87'09 88'92 89'51 90'64 91'18 84'12	$\begin{array}{c} + & \circ \\ + & 21 \\ & 22 \\ & 24 \\ & 25 \\ & 29 \\ & 34 \\ & 21 \\ & 10 \\ & & 03 \\ & & 10 \\ & & 10 \\ & & & 10 \\ & & & 10 \\ & & & 10 \\ & & & & 10 \\ & & & & & 10 \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & &$
	,,		()				Socti					<i></i>			
Feb. 17th	36 37 39 41 42 44 45 46 78 49 51 52 53	7 4 A.M. 7 28 7 53 8 22 9 14 9 41 11 12 11 36 11 58 0 21 P.M. 0 46 1 9 1 31 2 1 2 26 2 55 3 22	666666666666666666666666666666666666666	+ 13'50 13'84 14'21 14'70 14'76 15'08 15'50 16'00 16'03 16'43 16'58 17'01 17'25 17'69 17'66 18'12 18'12 18'46	(m.e) ₇ ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	77' 33 76' 98 76' 96 77' 31 77' 8 42 79' 36 83' 55 83' 55 87' 25 87' 25 88' 93 89' 33 89' 33 89' 33 89' 33 89' 33 89' 33	+ '14 '15 '16 '18 '23 '29 '36 '23 '15 '08 '23 '15 '08 '23 '15 '08 '09 '14 '27 '26 '27 '30	Feb. 17th , 18th	5455555890123455678901234556789012345567890123455678890	3 54 P.M. 7 7 A.M. 7 31 7 50 8 12 8 36 9 0 9 28 9 50 11 14 11 35 11 59 0 21 P.M. $0^{1}53$ 1 37 2 20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+ 18.28 18.43 17.96 17.89 17.78 17.74 16.27 16.26 16.17 15.61 15.19 14.80 14.96 14.55 13.39	(m.c) ₇ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	90°56 76°53 76°60 76°58 76°58 76°58 76°58 77°22 77°73 78°57 88°57 88°57 88°57 88°52 85°23 85°23 85°23 88°64 88°02 88°64 88°02	- '38 + '11 '13 '15 '20 '25 '32 '33 '17 '11 '01 - '07 '19 '27 '36 '40 + '03!

Extracts from the Field Book of MEASUREMENT III

The terminal point of set No. 35 was the point of origin for set No. 36. For measurements with compasses at \mathbf{V} , see page \mathbf{X}_{31} . February 17th (53) Strong wind all day from N. and N.E. with clear sky. , 18th (68) do. do. do. x___7

÷. به

Digitized by Google

When	the set	ime of ing	rrs used	Height of set	ement oscopes	Bar	в	When	the set	ime of ing	ars used	Height of set	ement oscopes	Bar	В
1869	No. of	Mean t endi	No. of b	above origin	Arrang of Micr	$62^{\circ} + T_{\delta}$	ŧ	1869	No. of	Mean t endi	No. of b	above origin	Arrang of Micr	62° + T _b	t
							Sectio	on VZ							
Feb. 19th Th Fo Fel Wind beco	71 72 73 74 75 76 77 80 81 82 83 84 85 86 87 88 87 88 87 88 87 88 87 88 87 88 87 88 87	Å . m. 7 6 A.M . 7 28 7 49 8 7 8 30 8 54 9 14 9 32 10 5 11 27 11 44 0 2 P.M. 0 27 0 58 1 19 1 38 2 0 minal point asurementary y 19th (7	66666666666666666666666666666666666666	fest + 13'74 13'52 13'44 13'56 14'00 13'96 13'96 13'96 13'96 14'60 14'60 14'50 14'60 14'50 14'60 15'33 15'83 15'75 16'31 * set No th comp Wind m	(m.e)7 "" "" "" "" "" "" "" "" "" "" "" "" ""	76.17 76.10 76.21 76.49 76.96 77.72 78.46 79.16 80.05 83.61 84.24 84.74 85.26 85.88 86.57 87.30 87.92 88.51 88.51 88.51 88.51 88.51 88.51 87.30 87.92 88.51 88.51 88.51 87.30 87.92 88.51 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.30 87.92 88.51 87.300	+ .08 .09 .07 .09 .17 .25 .33 .38 .39 .11 .08 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04	Feb. 19th ,, 20th ,, 20th origin for se (89 90 91 92 93 95 96 97 98 99 97 98 97 98 97 100 101 102 103 104 105	<i>k.</i> m. 2 22 P.M. 2 43 3 5 3 26 3 51 6 57 <i>k.M.</i> 7 16 7 35 7 54 8 34 8 53 9 12 9 33 9 56 11 23 11 58 0. 71. warter but Vind set in	66666666666666666666666666666666666666	feet + 16.19 16.25 16.41 16.70 16.44 16.26 16.04 16.09 15.40 14.57 13.93 13.94 13.25 11.81	(m.e)7 " " " " " " " " " " " " " " " " " " "	89°02 89'43 89'86 90'25 90'47 77'38 77'29 77'37 77'50 77'85 78'30 78'80 79'30 79'33 80'59 83'94 85'05 82'10 82'10	$ \begin{array}{r} - & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $
Fe	bruar	y 20th (1	02)	N.E. wi	ind wit	th clouds	all the Sectio	morning.	-, .			8			
Feb. 20th " 22nd	106 107 108 109 110 111 112 113 114 115 116 117 118 120 121 122 123 124	o 27 P.M. o 56 I 16 I 38 2 17 2 37 3 1 3 37 4 2 7 4 A.M. 7 4 A.M. 7 59 8 16 8 35 8 55 9 14	, , ,	+ 11'98 11'83 11'37 10'48 10'16 9'67 9'26 8'78 8'78 7'86 7'86 7'86 7'86 7'86 7'8	(m.e)7 27 27 27 27 27 27 27 27 27 2	86.37 87.23 87.60 88.03 88.23 88.48 88.68 89.43 89.43 89.43 89.43 89.43 89.43 78.56 78.56 78.56 78.56 78.56 78.56 78.29 79.73 80.20 80.90	- '15 '21 '19 '11 '12 '17 '12 '17 '12 '17 '25 + '04 '04 '06 '07 '04 + '03 '13	Feb. 22nd	125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	9 31 $\textbf{A.M.}$ 9 50 10 4 11 23 11 43 0 5 $\textbf{P.M.}$ 0 22 0 43 1 0 1 19 1 36 1 56 2 16 2 36 2 50 3 6 3 47 4 20	666666666666666666666666666666666666666	+ 4'71 4'52 4'34 3'84 3'39 2'98 2'75 2'37 - '04 91 1'29 1'72 2'30 2'76 2'93	(m.e) ₈ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	81'52 82'26 82'87 85'02 84'86 84'80 84'91 85'63 85'63 85'63 86'31 86'31 86'31 86'13 86'18 86'39 86'95 87'19 84'88	$\begin{array}{r} + & 23 \\ & 28 \\ & 27 \\ - & 13 \\ & 16 \\ & 17 \\ & 22 \\ & 24 \\ & 25 \\ & 16 \\ & 09 \\ & 02 \\ + & 01 \\ & 07 \\ & 0$
The Hei For Fet	e terr ght c mea oruar	ninal poin of set No. surements y 20th. (1 22nd.(1	t of 142 wit 09) 17)	set No. above s h compa Gusty J Sky co	105 v South- asses a N.E. v mplete	was the p End = 1 t South- vind with	oint of 49 fee End, se clouds ed esp	origin for so ot. ee page X ecially towa	et N '31' urds	the east.	(12	2) Sky	cleared	somewi	nat to-
:	n	" (1 (1	28) 34)	wards t Sky age Still clo wind se	ine wer ain clo oudy w tting i	uded con vith wind n strong	npletely from 1 from t	v and rain fe N.E. (136) he cast.	ll at Hea	intervals. vy clouds	(1 and	30) Slig rain.	ht win (139) (d occasio Clear sky	onally. y with

Digitized by Google

Extracts from the Field Book of MEASUREMENT III-(Continued.)

X____8

• ---

When	he set	ime of . 	Height	ement bscopes	Bar	B	When	he set	me of ng	rs used	Height of set	ement oscopes	Bar	в
compared 1869	No. of t	Mean ti endi	above origin	Arrang of Micr	62° + T _ō	t	compared 1869	No. of t	Mean ti endi	No. of ba	above origin	Arrang of Micr	62° + T _ð	t
•						Sectio	n SZ							
Mar. 1st " 2nd	1 2 3 4 56 7 8 9 10 1 1 2 3 4 56 7 8 9 10 1 1 2 1 3 1 4 1 5 6 1 7 1 8 1 9	b. m. 7 50 A.M. 8 40 9 22 9 56 11 38 0 10 P.M. 0 41 1 38 2 13 3 15 3 42 4 7 7 20 A.M. 7 46 8 12 8 39 9 4	<i>feet</i> 3 + 1°54 6 1°89 6 2°42 6 3°34 6 3°34 6 3°34 6 3°34 6 3°34 6 5°76 6 6°63 6 7°27 6 7°27 6 7°67 6 8°00 6 8°65 6 8°80 6 8°85 6 8°82	(m.e) ₁₀ (m.e) ₁₁ """""""""""""""""""""""""""""""""""	6 79'29 80'10 81'41 82'87 86'80 87'95 88'85 89'69 90'34 90'77 91'78 92'39 92'67 80'90 80'90 80'90 80'90 80'90 80'90 80'90 80'90 80'90 80'90 91'78 92'39 92'67 80'90 80'10 81'41 90'34 90'34 90'77 81'41 81'4	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$	Mar. 2nd ,, 3rd	2012232425678901233455637	A. 78. 9 25 A.M. 9 5 2 9 5 2 11 35 11 56 0 18 F.M. 0 41 1 6 1 35 1 57 2 18 2 39 3 1 3 20 3 46 7 5 A.M. 7 54 8 28	666666666666666666666666666666666666666	feet + 9:53 10:41 10:85 11:12 11:33 11:67 11:55 11:73 12:12 12:79 13:33 13:50 13:81 14:44 14:78 15:01 15:08	(<i>m.e</i>) ₁₁	82'24 82'87 86'52 87'19 87'86 88'39 89'55 89'98 90'43 90'55 89'98 90'43 90'50 90'29 90'07 78'69 78'71 79'56	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
F M	or mea Iarch 2 ,,	surement 2nd. (15 (23 3rd. (34	s with com) Cloudy. sun-shine) East bree for rest o) Calm and	passés a (16) S e. (22) eze risin of day. l clear.	at South lightly Overcas ag. (25) (36) S	-End an overcast st. More s light no Sectio	d at Z, see . (17) Mo: un-shine. (rtherly brees on ZY	page re ov 30) S ze wi	X ₃₁ . ercast. Sun-shine. th cirri.	(20 (³	and (21 31) Sun	-) Overa	cast, gle	ams of a breeze
Mar. 3rd " 4th	l 38 39 40 42 43 44 45 47 48 49 50 51 52 53 54 55	9 8 A.M. 9 32 9 57 11 28 11 50 0 12 P.M. 0 32 0 56 1 18 1 37 1 58 2 20 2 44 3 8 3 34 3 57 6 54 A.M. 7 20	6 + 16.13 6 16.74 6 17.33 6 17.70 6 17.70 6 18.36 6 18.36 6 19.83 6 19.83 6 19.83 6 19.83 6 19.83 6 19.63 6 19.63 6 19.63 6 19.53 6 19.53 6 19.53 6 19.53 6 19.53 6 19.53 6 19.53 6 19.53 6 19.55 6 19.55 7 19	(m.e) ₁₁)))))))))))))	81°02 82°04 83°13 87°63 88°61 89°44 90°33 91°50 91°50 91°50 91°50 91°57 92°08 92°21 92°07 91°93 91°73 78°49 78°42	- '40 '43 '47 '54 '14 '26 '14 '26 '14 '23 '33 '33 '48 '57 '65 '78 '81 '07 '01	Mar. 4th	55 58 900 1 2 3 4 5 5 6 7 8 900 1 2 3 4 5 5 6 7 8 900 1 2 3 4 5 5 6 7 8 900 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 42 A.M. 8 7 8 29 8 53 9 15 9 36 10 0 11 31 11 56 0 15 P.M. 0 36 0 53 1 15 1 36 1 57 2 18 2 50	666666666666666666666666666666666666666	+ 18'99 18'83 18'18'17'71 17'96 17'53 17'53 16'58 16'28 16'47 16'79 16'59 16'59 16'59 16'59	(m.e) ₁₁	78.47 78.80 79.43 81.15 82.02 83.16 88.00 89.09 89.81 90.72 91.43 92.47 92.66 92.85 92.90 85.51	- '05 '15 '23 '44 '50 '54 '56 '41 '28 '17 '28 '17 '28 '17 '28 '17 '28 '41 '45 '46 '41 '45 '46 '- '057
T F N	The ter For me March	minal poir asurement 3rd. (39 4th. (54	nt of set N ts with con) Sun-shine) Calm and freshening	o. 37 w passes e. (42) l slight g.	as the p at \mathbf{Y} , se Fleetin by overce	oint of e page y g clouds st. (56	I origin for se X31. (44) East 5) Sun-shine	t No t bree . ({	. 38. eze rising 57) Nort	h b	45) Stro reeze ria	ong brig	ght sun-s (68) Eas	shine. t breeze

Extracts from the Field Book of MEASUREMENT IV.

Digitized by Google

X_____29

When	the set	ime of ing	ars used	Height of set	ement oscopes	Bar	В	When	the set	ime of ing	ars used	Height of set	ement oscopes	Bar	в
1869	No. of	Mean t end	No. of b	above origin	Arrang of Micr	$62^{o} + T_{b}$	t	1869	No. of	Mean t end	No. of b	a bove origin	Arrang of Micr	62° + T _b	t
							Sectio	n YX							
Mar. 5th Th Fo	73 74 75 76 778 81 83 84 85 86 78 89 90 e tere	\overline{b} . m. 6 54 A.M. 7 16 7 38 7 57 8 17 8 35 8 54 9 32 9 54 11 10 11 27 11 49 0 6 P.M. 0 24 0 43 1 1 1 25 minal poir asurement	66666666666666666666666666666666666666	<i>feet</i> + 16.51 16.93 17.19 17.52 17.52 17.58 18.16 18.54 18.40 18.95 19.89 19.82 20.21 20.30 20.63 20.63 20.63 20.80 f set No ith com	(m.e)11 " " " " " " " " " " " " " " " " " "	79.34 79.99 79.10 79.38 79.85 80.44 81.24 81.24 81.24 83.14 84.13 87.98 88.65 89.51 90.15 90.77 91.25 91.63 91.63	+ • • • • • • • • • • • • • • • • • • •	Mar. 5th ,, 6th origin for se	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	λ . m. 1 43 P.M. 2 3 2 25 2 46 3 10 3 30 3 52 6 55 λ .M. 7 20 8 1 8 18 8 18 8 36 9 1 9 20 9 38 10 0	66666666666666666	feet + 20.29 20.46 20.17 19.82 19.54 19.56 19.15 18.64 18.27 18.19 17.67 17.31 16.91 16.56 16.25 15.76 14.73	(m.e) ₁ """"""""""""""""""""""""""""""""""""	91'68 91'69 91'67 91'67 91'72 91'73 91'72 81'32 81'32 81'32 81'32 81'32 81'32 81'46 82'36 82'36 82'36 82'36 82'36 82'38 83'43 84'11 87'46	+ ³² ³⁷ ³⁹ ⁴³ ⁵⁷ ⁵³ ⁵⁷ ⁵³ ⁵⁴ ⁵⁵ ⁵⁴ ⁵⁶ ⁵⁴ ⁵⁶ ⁵⁶ ⁵⁶⁴ ⁵⁶⁴ ⁵⁶⁴ ⁵⁶⁴ ⁵⁶⁴ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶³ ⁵⁷⁷ ⁵⁶³ ⁵⁷⁷ ⁵⁶³ ⁵⁷⁷ ⁵⁶³ ⁵⁷⁷ ⁵⁶³ ⁵⁷⁷ ⁵⁶⁴ ⁵⁶⁴ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷ ⁵⁶⁷ ⁵⁶⁴ ⁵⁶⁷
Ma	nrch "	5th. (88) 6th. (99)) Ea) Ca	isterly b Im and	cloudy	set in. v mornin	(95) Eas g. (10] Sectio	l) North br	e ver eeze	y fresh. beginning	(104) Stil	ll clou	dy.	
Mar. 6th " 8th	108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125	11 27 A.M. 11 45 0 0 P.M. 0 36 0 51 1 7 1 24 1 39 1 52 2 8 2 27 2 48 3 19 3 36 3 52 6 58 A.M.	666666666666666666666	+ 14.87 14.94 14.51 14.05 13.48 13.08 12.93 12.57 12.16 11.64 11.64 11.20 10.73 10.18 9.63 9.23 8.94 8.69	(m.e) ₁₂	86.58 87.21 87.83 88.57 88.57 88.58 89.34 89.54 89.54 89.53 89.93 89.54 89.55 89.77 89.58 89.50 89.58 89.50 81.77	Dectio + '15 '19 '23 '25 '30 '35 '57 '57 '57 '57 '57 '57 '57 '57 '57 '5	n XN Mar. 8th	126 127 128 130 131 132 133 134 135 136 137 138 139 140 141 142	7 20 A.M. 7 37 7 52 8 8 8 23 8 38 8 38 8 57 9 12 9 29 9 46 11 16 11 35 11 54 0 11 P.M. 0 29 0 45 1 20	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	+ 8.07 7.54 7.13 6.68 6.27 6.24 6.24 6.30 5.93 5.38 4.97 5.01 4.62 4.29 3.85 3.00	(<i>t</i> h. <i>e</i>) ₁₂ ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	81-59 81-61 81-78 82-06 82-31 82-67 83-14 83-60 84-22 84-84 83-53 89-12 89-53 89-53 89-53 89-56 90-76 92-23 a 86-03	- '01 '04 '04 '11 '13 '16 '14 '13 '12 '08 '08 + '03 '08 + '03 '08 '08 '08 '17 '19 '42 + '146
Th He Fo Ma	e ter eight or me arch "	minal poir of set No. asurement 6th. (109 8th. (137	nt o . 14 .s w () (of set No 2 above 7 ith comp Calm an and East Southerly	o. 107 North passes d clou breez y wind	was the n-End = at Nort dy. (11 e. l. (138)	point of 2.23 fee h-End, a .0) Occa Passing	origin for et. see page X_ sional sun- g clouds.	set N 31 shine	To. 108. e. (111)	Slig	ght show	e r. (1	112) Sur	1-shine

Extracts from the Field Book of MEASUREMENT IV-(Continued.)

Compass measurements of the distances between the terminal points of the successive measurements, and the points defining the section stations and the extremities of the base.

Let N, S be the points defining the North and South Ends of the base; and let X, Y, Z be points on the brass plates *South* and *West* of all the dots, in each case; and let axes of coordinates parallel and perpendicular to the base be imagined through these.

And let all measurements northward and eastward be reckoned +, and those in opposite directions —

Then the coordinates—in inches—of the terminal points of the successive measurements will be

In respect of length

For Measureme	nt I	N	X + '170	Y + .103	Z + '063	S - 31'10
,,	II	N — '166	+ .085	+.053	+ .103	31.10
,,	III	N	+ .101	+ .154	+ 187	30.88
"	IV	N + '392	+ .475	+ .403	+ .353	30.89

And in respect of direction

For Measurement	Ι	X + 1.10	Y + 1.20	Z + 1.40
,,	п	+ 0.06	+ 0.41	+ 0.32
. ,,	III	+ 1.86	+ 1.87	+ 1.48
,,	IV	+ 0.39	+ 0.03	+ 0.02

If now we write NX. I, XY. I, &c., NX. II, XY. II, &c., &c., to represent the distances between the points laid down by the several measurements then

NX. I = NX - 170 XV. I = XV + 067 VZ. I = VZ + 040 ZS. I = ZS + $^{31'163}$ "II = "- 1251 " II = "+ 032 " II = "- 050 " II = "+ $^{31'203}$ " "II = "- 083 " IV = "+ 072 " IV = "+ 050 " IV = "+ $^{31'243}$ "

Also

NS: I = NS + 31'10, II = ... + 30'934, III = ... + 30'88, IV = ... + 31'282

The compass measurements shown above were made after the operations, independently by Captain J. P. Basevi, R.E., and Lieutenant J. Herschel, R.E.

X_________31

The determination of the mean actual length of the bars during the measurement of each section of the base-line is made in the manner which is indicated in Section 6 of Chapter VIII. The numerical values of the quantities

$$\frac{\left[{}_{o}\mathbf{T}_{b}\right]}{r} + 62^{\circ}, \text{ and } \frac{\left[{}_{o}t\right]}{r}$$

or the mean temperature of the brass component, and the mean excess of temperature of the iron over the brass component, are given at the end of the column of temperatures of bar B, in the extracts from the field book of each measurement of each section. These values are successively inserted in equation (20), which however has been erroneously printed at page (73), and should be

$$\mathbf{L} - \mathbf{A} = \mathbf{X}'' + \left(51^{\circ}4\frac{\left[o^{t}\right]}{r} + 1^{\circ}1\right) + \left(\frac{\left[o^{T_{b}}\right]}{r} - 22^{\circ}6\right)\eta - 21^{\circ}3\,d\mathbf{E}_{a}' - \left(2^{\circ}9\frac{\left[o^{t}\right]}{r} + 0^{\circ}1\right)de_{a}'$$

thus the actual lengths of the bars have been determined; they are given in the table on page (73) and therefore need not be repeated in this place.

The lengths measured by the bars have been determined in the manner indicated in the first para of page (76); the details of the determinations of the lengths measured by the microscopes are given in pages X_{17} to X_{22} , and those of the lengths measured by the beam compass at page X_{31} . The several values of lengths are collected together in the table at page (75), where it is shown that the mean length of the base, at the level of the measurement, is

8912.5904 feet of standard A.

Reduction to Mean Sea Level.

This base-line was measured four times; and as the work commenced alternately at the North and South-Ends, the "heights of sets above origin" recorded at pages X_23 to X_30 are referred there correspondingly to these termini. The heights, in Measurements II and IV, may however be referred to the origin of Measurements I and III, or North-End, by applying to each height the difference between the heights of the two termini: the value of this difference adopted, is (N. End – S. End) = 3.12 feet.* All the heights of sets being thus referred to the N. End as an origin, we have in the notation of page I_{-21}

Digitized by Google

X_____32

^{*} By observations made on four successive days in January 1870, it was approximately determined that the mean Sea level at Tuticorin was 6.03 feet below the G. T. S. Bench Mark on a flagstone in the portico of the Protestant Church Tuticorin. The heights following are referred to this datum and were found by spirit leveling operations. Cape Comorin Base-Line. Height of North-End above mean Sea level 135.07 feet (North-End - South-End) 3.12 "

Reduction to Mean Sea Level-Continued.)

		feet		[<i>h</i>] ₁	a	h_m	δh	C_2	C_1
	H	135'1	I	1640	I	- 3.53	+ 0.41	0021	<u> </u>
Log.	R	7:31785	II	1590	I	- 2.49	- 0.63	- '0047	8912
	h	- 3.15	III	1539	I	- 4.42	+ 1.30	· — · 0049	je (je
	n	141	IV	1484	I	- °'77	- 2.35	0040	~)

Final length of the Base-Line in feet of Standard A.

				Measured length	Reduction to sea level	Length at sea level
North-End	to South-End by	Measurement	I	8912.5926	- ·0630	8912.5296
,,	"	,,	II	•5856	626	•5230
"	,,	**	III	•5892	628	•5264
"	"	"	IV	· 5943	619	•5324
					Mean	8912.5279

From page (75) and the preceding values of C_1 and C_2 there result

Log. 3.950 0009 02

X______33

Description of Stations.

PARMESPURAM TOWER STATION, is situated about 16 miles N.E. of Cape Comorin, the extreme southern point of the Indian Peninsula, and about 32 miles south of the town of Tinnevelly; 'táluk' of Nángúnéri; sub-division of Ráthápuram. The nearest towns and villages are as follows: Nángúnéri 16‡ miles N. by W.; Ráthápuram 2 miles N.W. by N.; Pannagúdi 9‡ miles N.W. by W.; Parmeshwaripuram a small village ‡ mile E. by N.

The station is the North-End of the Cape Comorin base as measured in January, February and March 1869. The Tower. The position was originally selected as that of a Section Station of a longer line, but was subsequently made the Northern terminus of a short base to be repeatedly measured, and the present building was accordingly designed and built by Captain B. R. Branfill, in charge of the Great Arc Triangulation. It consists of a central isolated hollow pyramidal pillar of masonry 25' high, surmounted by a circular slab of sandstone 39" in diameter and 6" or 7" thick. The isolated pillar is surrounded by a hollow conical building $14\frac{1}{2}'$ in diameter at base and 6' at top, round and in contact with which is a tower of sun-dried bricks 20' square at base and 15' square at top. A masoury archway 5' wide and 7' 6" high runs through the basement, in the direction of the measurement, N. and S. nearly.

The mark to which the measurements were eventually referred is a cleanly drilled hole 0".05 in diameter in a silver core to a substantial brass plug, which was run in with lead into the markstone. 1. The Measurement Mark. This stone is a pyramidal block 42" high and 30" square at base, and 21" square at top. This stone is a pyramidal block 42" high and 30" square at base, and 21" square at top. It rests on a bed of sand 6" deep on three courses of bricks in the bottom of a masonry well sunk into the hard gravel subsoil of the place, 3' below the foundations of the tower. Before and after the pier was placed, enough water was poured in to saturate the sand and allow of uniform settlement. The remainder of the well was then bricked up flush with the surface of the stone. The mark is provided with a brass covering plate having a spurious dot and circle on its upper surface.

After the completion of the measurement, a massive granite slab 32" in diameter and 9" or 10" thick, having a square recess countersunk in its lower side and engraved (as in fig.) on its surface, was placed over the mark as a title. In this stone a deep cylindrical hole 1-10th" in diameter was bored rigorously in the normal

2. The Title-stone Mark. and known as the Title-stone mark. In the recess below may be found a parchment record Parchment Record.

rarenment record. feet. The floor of the passage was eventually raised to within an inch or two of the surface of the stone, and the archways bricked up throughout their length, leaving only a central chamber 5' by 4' corresponding to the hollow base of the central pillar. The surface of the stone is 11".00 above the Measurement-mark.

The slab of sandstone which copes the central pillar has a keystone in the middle which contains the mark employed by the trigonometrical Mark. is 24'.87.

X______34

Description of Stations—(Continued.)

After the completion of the base-line operations one of the stone comparing piers was sunk as a Bench-mark for Levelling Bench-Mark. (as in fig.) is flush with the ground-level: and is 0'.47 above the base-line Measurement-mark.

G. T. S.	
B. M.	

SHANGANERI TOWER STATION, is situated 1[‡] miles S. [‡] W. of Parméspuram T.S. to the description of which reference is directed for further particulars. The nearest village is that of Shanganéri [‡] mile W.S.W. in the Nángúnéri 'táluk'.

Shanganéri T.S. is the S. End of the Cape Comorin Base as measured in January, February and March 1869. Its position, which is half-way down the slope of an undulation, was originally selected as that of a Section Station of the intended base, but was subsequently made the Southern extremity of a shorter distance to be repeatedly measured; and the present building was designed and built accordingly by Captain B. R. Branfill, in charge of the Great Arc Triangulation.

It consists of a central isolated hollow pyramidal pillar of masonry 22' high surmounted by a circular slab of sandstone 39" in diameter and 6" or 7" thick. The isolated pillar is surrounded by a hollow conical building 12' in diameter at base and 6' at top, round and in contact with which is a tower of sundried bricks 20' square at base and 15' square at top. A masonry archway 5' wide and 7' 6" high runs through the basement in the direction of the measurement; viz. N. and S. nearly.

Vide ParméspuranT.S. for all particulars with the exception of the following. The Title-stone mark is 8''40Description of Marks.above the Measurement-mark, and the Trigonometrical-mark is $21' 9\frac{1}{4}''$ above the same.

There is a Bench-mark at this station, similar to that at Parméspuram, about 10' N. of the N. face of the tower.

J. T. W. & J. B. N. H.

X_____35

Digitized by Google

APPENDICES.

APPENDIX.

No. 1.

DESCRIPTION OF THE METHOD OF COMPARING, AND THE APPARATUS EMPLOYED.

The comparisons have invariably been made with the aid of micrometer microscopes. When the long 10-feet bars have been under comparison, the microscopes have always been set up on pillars, usually single blocks of stone, about 5 feet high, sunk to a depth of $1\frac{1}{2}$ feet in the ground and carefully isolated from the tread of the observers and the attendants; between these pillars a 'comparing table' is set up, carrying a sliding frame on which the bars are placed, one at a time, and then brought under the microscopes; the legs of this table are sunk to a depth of about 2 feet into the ground, and are also carefully isolated.

Such at least have invariably been the arrangements during the comparisons of the Standard Bar **A** with the Bar **B**, and with the compensated bars, at the several base-lines, and on all other occasions, whether the operations were conducted under tents or in a building. But in the comparisons of **A** with \mathbf{I}_{g} and \mathbf{I}_{g} , in 1867, the microscopes were set up for the first time on carefully built brick pillars, descending to a depth of 6 feet below the ground, between which two other pillars were built to support the 'comparing carriage'; the carriage travelled in a tramway, and it's breadth admitted of two bars being placed on it together.

During the comparisons each bar rests immediately on two 'camels', at one-fourth and three-fourths of it's length. A camel is a strong brass tripod, having an axis which can be raised or lowered in it's socket by a powerful vertical screw; on the top of and perpendicular to the axis there is a sliding frame carrying a pair of small rollers, which the bar rests on, slow motion in the direction of it's length being communicated to the bar by a tangent screw, and in the direction of it's breadth by a screw acting on the frame which carries the rollers, the raising or lowering being performed by the vertical screw which acts on the axis. The camels have foot-screws by means of which they are levelled, and as the axes protrude several inches beyond the plane of the foot-screws, holes through which they are passed are cut in the surface of the comparing table or carriage.

Thus the bars are brought approximately into position by moving the carriage or the sliding frame of the table, and the final adjustments are made by means of the screws of the camel which impart motion in the direction of each of the three co-ordinates.

The comparing microscopes which have been used at all the base-lines, and on almost all other occasions of comparisons of the 10-feet bars, whether standard or compensated, between the years 1832 and 1867, are represented in plate 19 of Colonel Everest's Arc Book of 1847, and were constructed by Messrs. Troughton and Simms. One of them carries a micrometer, while the other carried—until recently—a fixed wire, under which one of the extremities of a bar was brought by means of the tangent screw attached to the adjacent camel, and then the micrometer wire of the other microscope was brought over the opposite extremity of the bar. The length of the microscope from the diaphragm to the object glass is about $5\frac{1}{2}$ inches, and from the object glass to the external focus $2\frac{1}{21,000}$ th part of an inch. The illumination is effected by means of reflectors, working in collars above the object glass.

DESCRIPTIONS OF METHOD OF COMPARING AND APPARATUS.

Of late years the camels have become so much the worse for wear that it is difficult to bring the bars into position under the plain microscope, with sufficient accuracy, by means of the tangent screws appertaining to the camels; a micrometer was therefore added to this microscope in 1867, and was employed in the comparisons for the base-lines at Bangalore and Cape Comorin.

The method of fixing the microscopes on the blocks of stone on which they are set up is as follows;—each microscope is firmly soldered to the end of a gunbarrel about 18 inches in length, below and at right angles to which a bar of iron, 10 inches long, is soldered, at 3 inches from the microscope, thus forming a tribrach which is attached to the head of the stone, and adjusted by sets of pulling and pushing screws at the extermity of each of the three arms.

Each microscope carries a spirit level and is held in a collar in which it can be turned round and adjusted to verticality by means of the screws of the tribrach. The microscopes are brought as nearly as possible into a horizontal line, by setting them to focus on a bar which has been carefully leveled on the camels; afterwards the distance of any bar from a microscope is invariably regulated by raising or lowering the bar until it's surface is brought into the plane of the external focus of the object glass.

With ordinary care to bring the image of the object into the plane of the diaphragm, the object may always be brought within $\cdot 01$ of an inch of the plane of the external focus of either of these microscopes. This is readily proved by examining the *runs* of the microscopes, as determined by several observers; different persons are liable to make different estimates of the focal adjustment which necessarily affect the determination of the run, and, with these microscopes, a change of $\cdot 01$ of an inch in the distance of the object from the object glass will alter the run by less than 2 per cent of its total amount; but the runs obtained by different observers have been rarely found to differ by as much as 1 per cent, showing that the several estimates of focal length have not altered the distance of the object from the object glass by more than $\cdot 005$ of an inch. Thus a special appliance for bringing the bars in succession to precisely the same distances below the object glasses is unnecessary.

When the new Standard Bars $|_{S}$ and $|_{B}$ were constructed, a pair of new micrometer microscopes was also constructed for the operations of this Survey, by the same makers, Messrs. Troughton and Simms. They are similar in almost all respects to the Ordnance Survey microscopes which are described by Captain Clarke at page 5, and figured in plates III to VI, of his *Comparisons of Standards of Length*. Each microscope is held, by two collars, in a gun-metal holder, which is a hollow cylinder having three arms at the middle of its length, with a set of three internal bearings at the upper and another at the lower extremity, for receiving the microscope collars; the three bearings are segmentary, and one of them is pressed by a spring which can be drawn back at pleasure by a screw for the purpose, to admit the microscope, and then relaxed to press the microscope into it's bearings.

The gun-metal holder is attached by foot-screws, at the extremities of it's three arms, to a cast iron plate, which rests on three points projecting from it's under surface, on the stone pier. Thus the microscope is held in its holder, and the holder in the iron casting, without any strain; the microscope can be raised or lowered by the screw attaching it to the holder, and, revolving in it's bearings and having an attached level, it can be made vertical.

The illumination is effected with the aid of a glass prism attached to a collar at the bottom of the tube, and having a perforation through it in the direction of the axis of the microscope.

The length of the tube, from the diaphgram to the object glass, is 13 inches, from the object glass to the external focus, $5\frac{1}{4}$ inches. The value of a division of the micrometer is about the $\frac{1}{25,000}$ th part of an inch.

J. T. W.

Digitized by Google

APPENDIX.

No. 2.

COMPARISONS OF THE LENGTHS OF 10-FEET STANDARDS A AND B, AND DETERMINATIONS OF THE DIFFERENCE OF THEIR EXPANSIONS.

These bars were twice compared under Colonel Everest's superintendence; in his Office at Dehra Doon, in November 1834, and in camp after the measurement of the neighboring Base-line, in February 1835.

The comparisons were as follows (See Everest's Arc Book of 1847, pages 435, and 436)

COMPARISONS OF THE 10-FEET STANDARDS.

	STANI	DAED A.	STAND	ARD B.			STAND	ARD A.		STAND	ABD B.
Date, 1834.	Micrometer Readings 20138'2 div. to 1 inch.	Mean of Two Thermo- meters, Corr ⁿ + 0.0454.	Micrometer Readings 20138 [.] 2 div. to 1 inch.	Mean of Two Thermo- meters, Corr ⁿ — 0*2280.	Date, 1834.	Mec Rea 2013 to	rometer adings 18°2 div. 1 inch.	Mean of Two Thermo- meters, Corr ⁿ + 0 [•] 0454.	Mic Re 2013 to	rometer adings 38.2 div. 1 inch	Mean of Two Thermo- meters, Corr ⁿ -0.2280.
Nov. 13	R. D. I 49'9	65 [°] 300	в. D. 1 78 [.] 0	67 [°] 150	Nov. 14	R. 3	D. 07°7	73 [°] 400	R. 2	d. 94'4	72.675
	I 76.2	67.150	I 93.5	68.300		3	18.0	73.800	3	03.8	73.320
	2 36 [.] 6	70.100	2 38.5	70.475		3	26.0	74.350	3	16.0	73.750
	2 51.2	70.920	2 48 [.] 0	71.100	15	0	76.7	57.950	0	66 [.] 9	57.020
	2 60.5	71.550	2 51.8	71.550		0	73.3	57.300	0	62.1	56.675
	2 70.5	71.850	· 2 67·3	72.025		0	73.0	57:250	0	67.6	56.800
	2 76·9	72.400	2 71°I	72:450		0	79 [.] 6	57.750	0	73 [.] 8	57*400
	2 82.0	72.700	2 75:0	72.700		•	89.2	58.250	o	82.0	57.850
	2 84.6	72'900	2 75.8	72 ° 950		0	9 ^{8.} 4	59.000	0	90 [.] 5	5 ^{8.} 600
14	o 53.9	57.250	o 48 [.] 5	56 [.] 650		г	10,1	59 [.] 75°	I	06 [.] 4	59.500
	o 51.0	56 [.] 900	° 45°5	56.400		т	24'4	60.750	I	17.0	60.400
	o 47 [.] 8 '	55.000	·o 43 °o 4	56.300	1	2	15.4	66°150	2	065	65 [.] 850
	0 51.4	56.825	0 51.1	56.620		2	31.2	67.130	2	20'0	66.000
	o 6 <u>5</u> .5	57:550	0 61 . 0	57.400		2	46 ·4	67 [.] 850	2	34'3	67.500
ſ	o 80∙o (5 81400 1	77 4	·58·300	ſ	2	64.0	68 [.] 850	2	50.1	68.450
	I 92'0	65°8ao .	π бз∙о '	64.300		2	71'1	69.700	2	58.9	69.130
	2 15.5	67.225	1 83·9	65.450		2	89.1	70°675	2	76.1	70'400
	2 32.2	68.350	2 02.6	66.700		3	00'4	71.450	2	88.9	71.000
	2 47.2	69.250	2 .23.0	67.825		3	12.5	72.250	3	02'0	71.630
	2 59.0	70.325	2 39.9	69.200		3	13.0	72.650	3	06.0	72'200
	2 76.0	71.300	2 55.7	70'300		3	25.5	72.950	3	11.2	72.000
	2 91.0	71.950	2 72.4	71.250		3	31.2	73.300	3	16.1	· 72·850
	3 00.5	72.000	2 81 [.] 3	72'000	Mean	2 0	7'324	66 [.] 6167	1 9	7.758	66.3101

	8	TAND	ABD A.	8	STNDA	RD B		8	TAND	ABD A.	8	TAND	ABD B.
Date, 1835.	Micro Read 20168 ⁻ to 1	meter lings 7 div. inch.	Mean of Two Ther- mometers, Correction + 0.0454.	Micro Read 20168 to 1	ometer lings ·7 div. inch.	Mean of Two Ther- mometers, Correction -0.2280.	Date, 1835.	Micro Read 20168 to 1	ometer lings '7 din inch.	Mean of Two Ther- mometers, Correction + 0.0454.	Micro Read 20168 to 1	ometer lings 7 div. inch.	Mean of Two Ther- mometers, Correction -0.2280.
Feb. 11	R. 0	D. 82.6	41.55	R. — o	D. 95 [.] 8	° 40 ^{.7} 5	Feb. 12	R. + 3	D. 51'3	71.60	R. + 3	D. 40°0	71.10
	- 0	70°3	41.80	- 0	81.8	41'30		+ 3	40.0	71.22	+ 3	30.3	71.00
	- 0	57.8	42.75	-0	63.1	42.40		+ 3	40'1	71.15	+ 3	31.0	70.65
	— o	26.0	44*20	- 0	35.2	43.80		+ 3	32.3	70 °4 0	+ 3	10.0	70.00
	— o	02.5	46.25	- 0	08·5	46.25	43	+ 0	09.0	48.70	- 0	16.1	47.75
	+ 0	33'7	48 .65	+ 0	26.1	48.40		+ 0	09.6	48.80	- o	02.5	47'95
	+ 0	88.5	52.35	+ 0	81.3	52.00		+0	27.5	49'70	+ 0	14 .3	49.15
	+ 1	28.0	54.85	+ 1	19.0	54.60		+ 0	51.0	51.30	+.0	42.0	50.75
	+ 3	30 .0	68.35	+ 3	o6·7	67:30		+0	82.0	53.20	+ 0	71.0	52.75
	+ 3	43.2	69.25	+ 3	25.5	68 [.] 35		+ 1	15.2	55.45	+ 1	02.0	55.10
	+ 3	5 8·8	70'40	+ 3	41.0	69.50		+ 1	46.0	57.60	+ 1	37'1	57:30
	+ 3	68·5	71.30	+ 3	50.0	70.20		+ 1	75.4	59.65	+ 1	6 9'7	59:35
	+ 3	70 [.] 5	71.22	+ 3	55 . 9	71.00		+ 3	15.3	68.95	+ 2	95.0	68·05
	+ 3	71.0	71.65	+ 3	57'9	71.02		+ 3	44.2	70.90	+ 3	26.5	70.10
	+ 3	56.2	70'90	+ 3	41.2	70 [.] 45		+ 3	74 [.] 0	72.90	+ 3	65.2	72.45
	+ 3	29 ' 5	69.75	+ 3	17.5	69.45		+ 4	10.2	74.55	+ 3	92.3	74'00
12	- 0	10.4	48.15	— o	28.5	47'20		+ 4	17.1	75°05	+ 3	98.4	· 74 · 45
	- 0	03.0	48'10	- 0	19.3	47:35		+ 4	12.0	75.15	+ 3	<u>99</u> .0	74.20
	+ 0	09.60	48.80	— o	02.2	4 ^{8·2} 5		+4	13.0	74.80	+ 3	93.0	74 ° 45
	+0	28.5	49.95	+ 0	19 .4	49 [.] 60		+ 3	98 [.] 0	74.30	+ 3	84.1	73.75
	+ 0	58.2	51.95	+0	50.0	51.22		- 1	43.3	42.60	- I	35.2	43'35
	+ 0	94.0	54.02	+ 0	86·0	53.62		— 1	36.3	42 .85	- 1	30.0	43.45
	+ 1	27.5	56.30	+ 1	20'0	56.02		- I	22.3	43.60	- I	16.0	44'10
	+ 1	61.4	58.20	+ 1	49 °5	58.10	х. 	- I	00.0	45.00	— o	97'0	45.50
	+ 2	79 [.] 3	66 ·8 5	+ 2	61.9	66.00		-0	71.2	46.65	- 0	68 [.] 9	47'00
	+ 3	08 .9	68.80	+ 2	95.0	68.00		- 0	40'1	48 ·40	- 0	42.5	48.50
	+ 3	27.0	69'90	+ 3	13.4	69.30		- 0	17.0	49`95	- 0	22.0	49.95
	+ 3	42·8	71.02	+ 3	31.0	70'40							
	+ 3	47.6	71.25	+ 3	31.4	70.80	Mean	1 6 ⁴	7'043	59.1723	I 5,	5'957	58.7446

٨.

A AND **B** IN 1834-35.

Digitized by Google

As no direct determinations of the expansions of **B** have ever been made, the difference of the expansions of **A** and **B** has been computed from these comparisons, in both groups of which the range of temperature was sufficiently great to permit of a fairly approximate determination of this unknown quantity, as well as of the difference of the length of the bars.

Putting t_a and t_b for the excess of the temperatures of **A** and **B** over 62°, e_a and e_b for the expansions, x for the value of **B** - **A** at the temperature of 62°, n for a measured value of **B** - **A** at the temperatures of observation, and $y = e_b - e_a$, it follows that the form of each of the primitive equations will be

$$x + t_b y = n - e_a (t_b - t_a).$$

In order to show the degree of precision which has been attained, each of the two groups has been treated separately by the method of least squares with the following results, e_a being taken at 22.669 millionths of a yard, as determined by Colonel Everest, see section 2 of Chapter II.

First Group.

Normal equations.
$$\begin{cases} 45 & x + 179.465 \ y = + 67.597 \\ 179.465 \ x + 2464.674 \ y = -460.666 \end{cases}$$

$$\therefore x = 3.162 \left(d = \frac{1 \text{ inch}}{20138.2} \right) = 4.362 \text{ millionths of a yard}$$

$$y = -0.417 \left(d = \frac{1 \text{ inch}}{20138.2} \right) = -0.575 \text{ millionths of a yard}$$

Second Group.

Normal equations.
$$\begin{cases} 56 \ x - 195^{\circ} 68 \ y = 25^{\circ} 09 \\ - 195^{\circ} 68 \ x + 7967^{\circ} 689 \ y = -647^{\circ} 850 \end{cases}$$

$$\therefore x = 0.171 \left(d = \frac{1 \text{ inch}}{2016877} \right) = 0.236 \text{ millionths of a yard}$$

$$y = -.079 \left(d = \frac{1 \text{ inch}}{2016877} \right) = -.109 \text{ millionths of a yard}$$

By both Groups.

Normal equations.
$$\begin{cases} 101 \ x - 15.603 \ y = 92.531 = P \\ - 15.603 \ x + 10432.363 \ y = -1106.512 = Q \end{cases}$$

the absolute quantities being expressed in terms of $d = \frac{1}{20138\cdot 2}$ of an inch.

From these last equations the values and the weights of x and y have been determined, as follows :----

$$x = \cdot 0000033 P + \cdot 0000148 Q$$

$$y = \cdot 0000148 P + \cdot 0000050 Q$$

and restoring the values of P and Q

$$x = \begin{array}{c} a \\ o \cdot goo, \ the \ reciprocal \ weight \ being = \cdot o o goo 33 \\ y = - \begin{array}{c} o \cdot 1 o 5, \\ 0 \cdot 1 o$$

The errors of the different comparisons resulting from these values of x and y, indicate that the probable error of a single comparison is $= \pm 2^{d}$.

 $x = 1241 \pm 29$ millionths of a yard $y = -0145 \pm 33$, ,

A AND **B** IN 1834-35.

After these calculations were completed the adopted value of the expansion of A was ascertained to be too great. The following differential computation was therefore made to determine the effect of this error on the values of x and y.

Putting de_a for the error of the expansion of standard **A**, dx and dy for the corresponding errors in the preceding values of x and y, and expressing the results in terms of millionths of a yard

for the first group $x - dx = 4^{m,y}$ $y - dy = -5^{m,y}$ for the second group $x - dx = -5^{m,y}$ $y - dy = -5^{m,y}$ for the second group $x - dx = -5^{m,y}$ $y - dy = -5^{m,y}$ $y - dy = -5^{m,y}$ $y - dy = -5^{m,y}$ for both groups $x - dx = -5^{m,y}$ $y - dy = -5^{m,y}$ $y - dy = -5^{m$

putting $de_a = 0.872$, the excess of the value of the expansion of **A** which was determined in 1832, over the value determined in 1870, we obtain finally from all the observations

$$\begin{array}{l} x - dx = & {}^{m.y} \\ 543 \\ y - dy = - {}^{\cdot 1}53 \end{array}$$

W. H. COLE,

APPENDIX.

No. 3.

COMPARISONS BETWEEN THE 10-FEET STANDARDS I, I, AND A.

These comparisons were made in the comparing room at Dehra Doon in April 1867, with the double object of ascertaining whether the relative length of the 10-feet standards A and B had altered since Everest's comparisons of 1834-35, and of connecting A with the European standards of length. The observations were taken early in the morning and late in the afternoon, commencing a little before and ending a little after the maximum and minimum readings of the thermometers suspended in the comparing room had been reached, in order that the momentary variations of temperatures might be a minimum, and that the errors arising also from a *lagging* of the thermometers behind the temperatures of the bars, might be practically cancelled. Illumination of the dots and lines on the bars was obtained by lamps except in the cases where the contrary has been specified.

The comparisons were made with the pair of micrometer microscopes known as **G** and **H**, recently obtained from Messrs. Troughton and Simms, which are described at the end of Appendix No. 1. The runs of these microscopes were determined a few days previously on the inch $[a \ b]$ of the new standard steel Foot **IF** and were as follows :--

1 division of the microscope $\mathbf{G} = 1.1511$ millionths of a yard Ditto $\mathbf{H} = 1.1074$ Ditto

The thermometers employed were for I_B 4215, 4221, 4011, for I_S 4228, 4204, 4202 and for A 4227, 4217; they were compared with the standard No. 4246 immediately after the bar comparisons were completed: this standard was one of those compared by Captain Clarke with the standard No. 4142 which he had already carefully calibrated; see his *Comparisons of Standards of Length, Chapter XVI Section* 2, and Appendix No. 8 of this volume. Comparisons between these two standards were also made at Dehra during May 1867.

The factors of expansion for reducing the observed differences to what they would be at 62° were, for I_B and I_S those given by Captain Clarke p. 216, and for A that determined by Colonel Everest viz. :

for
$$\mathbf{I}_{B}$$
 32'759
,, \mathbf{I}_{S} 21'159
,, **A** 22'669

The comparisons are divided into three groups

25	between	$ _{B}$ and $ _{S}$
36	"	\mathbf{I}_{B} and \mathbf{A}
28	"	I_s and A

Digitized by Google

and are given on the three following on pages.

COMPARISON OF BARS I_B AND I_s

	Initials o at Mice	f observer roscope.	Observed value $I_B - I_S$ in	ue of 1	Correct pera	ed tem- tures.	Correc 62° Fal in	ction to arenheit m.y	s at 62° lionths ard.	
DATE.	٩	н	Micrometer divisions.	Milnths. of a yard.	I _B	Iß	I _B	I _S	$ _B - _B - _B$ in mil of a y	KEMARKS.
22nd April 1867,	J. T. W.	Т. Ģ. M .	90.82 + 111.3y	227.78	70 [°] 35	70.18	273.54	173.08	127.32	Afternoon observations commencing at 44 10m
			85'4 + 119'2	230.31	70'35	70.36	273.54	174.78	131.22	and ending at 5h 27m.
	т. G. M.	J. T. W.	126.5 + 80.5	234.76	70.29	70.48	281.40	179'43	132.79	
			84.1 + 125.3	235.46	70.77	70.61	287.30	182.18	1 30,34	
			124'2 + 86'0	238.19	70.92	70.73	292.21	184.72	130.20	
	J. T. W.	т. G. M.	82.6 + 129.3	238.16	71.03	70 ^{.8} 5	295.81	187.26	129.61	, .,
23rd "	J.T.W.	T. G. M.	107.1 <i>g</i> + 109.7Å	244.78	71.76	71.71	319.73	205.46	130.21	Morning observations
			89.8 + 124.8	241.58	71.68	71.64	317.11	203.98	128.45	and ending 6k 37m.
			92.0 + 132.6	241.66	71.27	71.60	313.20	203.13	131.39	
	Т. G. M .	J. T. W.	113.5 + 99.7	241.07	71.28	71.20	313.83	201'01	128.25	
			111.6 + 101.0	240 '31	71.20	71.48	311.31	200.29	129.69	
			105.7 + 110.1	243.60	71.45	71.40	309.57	198.90	132'93	
	J. T. W.	Т. G. M.	105.8 + 107.8	241'17	71.39	71.36	307.61	198.05	131.61	
9741	TDWIT	NWD		a=9.a =	b (10 -	.				,
2701 39	Ј. Б.М.Д.	ML. WV.D.	108'3y + 138'7#	270-27	74 31	74.11	399'99	250-24	134.52	Afternoon observations commencing at 4h 27m and ending at 6h 11m
			95'4 + 154'1	200'47	74 30	74-31	404'90	250'30	133.93	and ending as 0% 11%.
	MWR	IRNH	1011 + 1490	282'10	74 50	74 33	409 49	200 90	133'09	
			1150 + 1352	284.12	74 07	74 51	415 00	264 70	131 74	
			131.0 + 133.0	286.45	74.03	74.76	41934	260'00	131 03	
				43	14 33	7470	423 50		132.00	
28th "	J.B.N.H.	M. W. R.	142'9g + 63'7h	235.04	71.08	71.26	297.45	195*94	133.53	Morning observations
			119.3 + 89.5	236.44	71.09	71.28	297.78	196.36	135.02	and ending at 8k 47m.
	M. W. B.	J.B.N.H.	101.7 + 106.4	234.89	71.14	71'34	299.42	197°63.	133.10	
			96.9 + 110.2	233.91	71.37	71.44	303.68	199'74	129.97	
			71.4 + 140.2	237.78	71•42	71.22	308.59	202.07	131.36	
	J.B.N.H.	M. W. B.	78.5 + 133.6	238.31	71.55	71.61	312.85	203*34	128.80	
			Means		72.00	71.95			131'40	

ı

COMPARISON OF BARS $\mathbf{I}_{\!_B}$ and a.

,

Dim	Initials o at Mic	f observer roscope.	Observed value $I_B - A$ in	ue of	Correct perat	ed tem- tures.	Correctio Fahrenho	on to 62° bit in <i>m.y</i>	A at 62° lionths yard.	
DATE.	٩	н	Micrometer divisions.	Milnths. of a yard.	I _B	•	I _B	A	$I_B - I$ in mill of a :	KEMARKS.
24th April 1867,	J. T. W.	Т. G. M .	113.0g + 139.8k	284.89	69.90	70.23	258.80	186.56	212.65	Afternoon observations
_			122.4 + 132.8	287.95	69.94	70.32	260.11	188.61	216.45	commencing 4h 10m and ending 5h 9m.
			143.5 + 111.6	288.77	69.99	70.40	261.75	190.42	217.44	Day-light or sun-light
	т. д. м .	J.T.W.	119.5 + 135.1	287.17	70.07	70.22	264.37	193.14	215.94	was employed for these
			143.9 + 109.5	286.91	70.10	70.22	287.31	193.82	213.42	observations.
			126'9 + 130'9	291.04	70.23	70.60	269.61	194.95	216.38	
25th	J. T. W.	Т. G. M.	138 [.] 1 <i>g</i> + 147 [.] 2 ^k	321.98	71.74	71.73	319.07	220.57	223'48	Morning observations
			127.4 + 155.9	319.30	71.71	71.70	318.09	219.89	221'10	commencing 4h 47m
			133.3 + 148.3	317.67	71.65	71.61	316.13	217.85	219.39	The first ten observa-
	т. G. M .	J. T. W.	148.0 + 134.0	318.76	71.61	71.23	314.82	216.03	219.97	tions were taken by lamp-light and the re-
			148.8 + 131.3	316.28	71.23	71.20	322.19	215.35	219.74	mainder by day-light
			143.9 + 140.4	321.13	71.47	71.41	310.33	213.31	224.21	or sun-light. The intensity of the light
			149'4 + 134'6	321.03	71.37	71.31	306.92	211.05	225-13	was changed whenever
	J. T. W.	Т. Ө. М.	154.8 + 122.2	313.21	71.34	71.33	305.97	209.01	216.55	microscopes and ad-
			162.8 + 115.2	314.97	71.18	71.02	300.73	205.15	219.39	justed the prisms to
	т. G. M .	J. T. W.	139.7 + 140.1	315.96	71.12	71.03	299.75	204.70	220.91	appears that this change
			155.5 + 124.6	316.99	70.92	70.81	293.19	199.71	223.51	of circumstances affect- ed the results consi-
	TOT		150.7 + 129.3	310.07	70'91	70.73	291.88	197.90	222.69	derably; though while
	J. T. W.	Т. С. М.	145.4 + 128.3	309.40	70.89	70'73	291.23	197.90	216.13	mained constant the
	там	T m W	$147^{1}5 + 125^{1}5$	300 70	70.87	70.73	290.57	197'90	210.11	results varied very lit-
	1. 0. 11.	J. I. W.	1431 + 1302	218.45	70.84	70 71	280.50	197 45	225.90	to be due to the dif-
			131 2 1 130 4	5-045	/• •4		209 59	19/ 45	220 31	ferent aspects of the dots on standard A ac-
96th	I.B.N.H.	MWR	141.60 + 141.04	320'15	72.75	73.24	352.16	254.80	222.20	more or less highly
			145.4 + 139.4	321.75	72.84	73'33	355.11	256.84	223.48	illuminated. Afternoon observations
			135.4 + 153.1	325.40	72.96	73.43	359.04	259.11	225.47	commencing 3h 46m
	M.W.R.	J.B.N.H.	150'1 + 137'4	324'94	73.13	73.61	364.61	263.19	223.52	and ending on som.
			148.3 + 140.7	326.54	73.26	73.72	368.87	265.68	223.35	
			140.7 + 121.2	329.97	73.39	73.85	373'13	268.63	225.47	
27th 39	J.B.N.H.	M.W.R .	146 · 9 <i>g</i> + 155 · 5 <i>k</i>	341.31	73 ° 45	73.21	375.09	260.92	227.14	Morning observations
			158.6 + 139.4	336.94	73 ° 43	73'48	374.44	260.24	222.74	and ending 9h 6m.
			143.6 + 159.0	341'38	73*42	73'47	374.11	260.01	227.28	5
	M.W.R.	J.B.N.H.	134.4 + 164.3	336.23	73.42	73.48	374'11	260'24	222.66	
			134.8 + 165.1	337'99	73°43	73.47	374.44	260.01	223.56	
			143.5 + 156.3	338.27	73.44	73'49	374.76	260.47	223.98	a
	TRNT	NWD	132.3 + 163.9	333'79	73.48	73.21	370.07	200.92	218.64	Sun-light was employ- for these two differ
	J.D.N.H.	M. W.R.	144'4 + 150'7	339 75	73 51	73'55	377.00	201.83	224.52)	ences.
			Means		71.84	71.95			221.32	

COMPARISON OF BARS I_s and a.

D	Initials o at Mice	f observer roscope.	Observed val $I_S - A$ in	lue of	Correct pera	ed tem- tur es .	Corre 62° Fal in	ction to hrenheit <i>m.y</i>	at 62° onths ard.	
LATE.	a	н	Micrometer divisions.	Milnths. of a yard.	l _s		I _S	•	Is - A in milli of a y	REMARKS.
23rd April 1867,	J. T. W.	т. с. м.	27.7g + 39.9h	76.08	71.02	70.99	190.86	203.79	89.01	Afternoon observations
			40'9 + 24'7	74'45	71.04	71'02	:91.38	204.47	87.64	ending 4h 32m.
1			32.2 + 33.2	. 74'38	71.04	71.04	191.58	204.93	88.03	
	T. G. M.	J. T. W.	32.7 + 30.8	71.75	71.07	71.04	191.92	204.93	84.76	
			34'5 + 33'2	76.47	71.09	71.02	192.34	205.61	89'74	
			31.5 + 30.6	79.76	71.12	71.12	192.97	206.74	93.23	
			44.6 + 21.5	75.15	71.14	71.19	193.40	208.33	90.08	,
944h										
2410 3)	J. T. W.	T. G. M.	36·1 <i>g</i> + 36·4h	81.86	70.61	70.32	182.18	188.01	88.29	Morning observations
			19.6 + 21.0	79'04	7° [.] 54	70.31	180.70	186.11	84.45	ending 5k 50m.
			44'5 + 27'2	81.35	70 [.] 45	70'18	178 [.] 80	185.43	87.98	
	T. G. M.	J. T. W.	42.9 + 34.3	87.37	70'38	70.09	177.32	183.39	93'44	
			38.4 + 36.6	84.72	70.32	70.01	176.05	181.28	90.25	
			38.8 + 36.8	85.41	70.28	69.93	175.20	179.76	89.97	
	J. T. W.	Т. G. M .	51.8 + 22.3	84.32	70.18	69′84	173.08	177.72	88 [.] 96	
95th	TDNU	NWD								
20011 33	Ј.Б. П. Д .	DL. W. B.	28.7 <i>g</i> + 26.9 <i>h</i>	62.83	72.24	72.97	216.67	248.68	94'84	Afternoon observations commencing 4h 0m,
			33.3 + 20.9	61.48	72.31	73.03	218.12	250.04	93.37	ending 51 26m.
1			29.9 + 25.3	62.44	72.47	73.18	221.24	² 53 [.] 44	94`34	
	M. W. R.	J.B.N.H.	23'9 + 27'8	58.30	72.59	73.30	224.08	256.16	90.38	
			27.6 + 25.2	59.68	72.74	73`44	227.25	259.33	91.76	
			26'9 + 25'2	5 ^{8.88}	72.86	73`53	229.79	261.37	90°46	
26th "	J.B.N.H.	M.W.R .	26.6a + 41.0h	76.03	72.63	72.68	224.02	242.10	03.31	Morning observations
			28.3 + 37.0	74.55	72.20	72.67	224.08	220.01	00.08	commencing 64 38m, ending 84 53m.
			34.8 + 30.2	73.40	72.61	72.61	222.30	228.25	80.32	chung on com
	M.W.R.	J.B.N.H.	26.0 + 40.3	74.56	72.49	72.40	221.00	237.80	90.40	
			33'4 + 29'9	71.26	72.49	72.48	221.96	237.57	87.17	1
		· ·	30'5 + 34'6	73'42	72.50	72.47	222.17	237'34	88.59	
			38.1 + 26.1	72.76	72.53	72.52	222.81	238·48	88 [.] 43	
	J.B.N.H.	M.W.R.	39.6 + 25.5	73.82	72.56	72.56	223.44	239.38	89.76	
			Means,	1	71.64	71.71			89.94	

Computing the probable errors on the assumption that there are no constant errors in the foregoing results we have

$$I_B - I_S = 131'40 \pm 27$$
 millionths of a yard
 $I_B - A = 221'32 \pm 44$,
 $I_S - A = 89'94 \pm 33$,

Of the above mentioned groups the first was intended to shew whether the relative lengths of the standards $|_B$ and $|_S$ had sensibly changed from the value obtained by Captain Clarke viz. 131.46 m.y; see Comparisons of Standards of Length, p. 280; the accordance is sufficiently close to warrant the belief that no such change had taken place. Subsequent investigations have shewn that the factor adopted for **A** was slightly erroneous, and the effect of the error on the above determinations has been considered in Appendix No. 7.

W. H. COLE.

Digitized by Google

APPENDIX.

No. 4.

COMPARISONS OF THE SIX-INCH BRASS SCALES OF THE COMPENSATED MICROSCOPES.

Of these scales, known as M, N, P, R, S, T, U, V, and W, the first seven were constructed by the Mathematical Instrument Department at Calcutta, under directions from Colonel Everest; they were made of cast brass and each provided with a micrometer screw, as the microscopes to which they belonged had only fixed wires, and could not therefore be made to measure their own differences from their scales. These scales were first brought into use at the measurement of the Dehra base-line in 1835 and were then compared under Colonel Everest's superintendence with Troughton and Simms' 6-inch standard A. The comparisons and their reduction will be found on pages 14 and 15. The thermometers employed on that occasion were distinguished by the letters of the microscopes to which they appertained; they were compared with two standards named σ and σ_1 and index corrections were obtained to reduce them to the mean of the two latter. The comparing microscopes are described in Appendix No. 1. The run of the micrometer microscope was determined on the inch [7:8] of Cary's scale and found to be = :000,050,841 of an inch, or 1:4123 m.y. The factors of expansion of all the scales were assumed to be :000,010,417 for 1° Fahrenheit, the corresponding linear expansion being 1:736 m.y.

In the year 1866 two new microscopes named V and W, with scales attached, were received from Messra. Troughton and Simms; and the following year all the scales, with the exception of P, which was then in England undergoing repair, were compared with the space [d.l] on the standard foot IF, by five observers employing the microscopes G and H, the linear value of one division of G being = 1.1511 m.y. and of H = 1.1074 m.y. The thermometers made use of were for

Standard Foot IF	•••	4215
Brass scales M, R, U, W, A,	•••	4204
" <i>N</i> , <i>S</i> , <i>T</i> , <i>V</i> , …	•••	4011

These comparisons are given on pages 16, 17 and 18.

COMPARISON OF THE SIX-INCH

A Temperatur	Korr of the	At observed tem- perstures.	cted for ther- meter errors reduced to	lemperation rected for of therm	I tem-	ther- rrors d to	erat d for therr	ett-	
A 64:2	¥	At obe perat	⊽ a∴.		berveć	ted for t leter en reduce	Temp recte of	served t tures.	cted for ti neter err reduced
64.2			Corre mor and 62°	N	At ob Pers	Correc mom and 62°.	P	At ob pers	Corre mor and 62°.
04'5 65'0 667'0 68'8 69'5 70'5 97'7'9 69'9 71'7'9 69'9 71'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'	655007007777009970551002400000428883420037003600777707700370235107255000000000000000000000000000000000	- 3'2'7' 1'38'0' 1'0'0' 4'3'3' 4'0'0'0' 4'3'3' 4'0'0'0' 4'3'3' 4'0'0'0' 4'3'3' 4'0'0'0' 4'3'3' 4'0'0'0' 4'3'3' 4'8' 1'8'3'9'7'0'0' 1'8'8'8'7'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	047 647 6679 6679 6970 6971 6976 6556 6557 688 69770 7008 7001 7001 7056 6778 688 7000 7000 7000 7000 7000 7000	- 99 13:4 11:36 8:5 7:7 13:0 8:5 10:5 5:9 7:3 10:5 7:5 11:30 8:5 7:5 11:30 8:5 10:5 10:5 10:5 10:5 10:5 10:5 10:5 10	- 1007 1447 817 1097 957 957 957 1467 1267 1267 1267 1267 1267 1257 677 767 767 767 1317 1257 927 1447 1327 977 1477 1057 1057 1057 1457 1057 1457 1057 1457 1057 1457 1057 1457 1057 1457 1057 1457 1057 1317 1057 1457 1057 1317 1057 1317 1057 1317 1057 1317 1057 1317 1057 1317 1057 1057 1257 1057 1257 1057 1257 1257 1257 1257 1257 1257 1257 12	04,500,000,380,400,300,500,500,500,500,500,500,500,500,5	- 1131 151 151 151 151 151 151 151 151 151	12 533 12 533 12 533 13 723 13 723 13 733 14 533 14 753 14 753 14 753 14 753 15 733 14 753 15 733 14 753 17 733 17 735
74'3 75'4 75'5 75'8 75'5 77'2 77'4 77'2 78'3 79'0 79'8 80'0 80'0 80'0	74°0 74'8 75'0 75'9 77'9 77'9 77'9 78'9 78'9 79'0 79'3 80'0	·8 ·7 6·6 3·0 - 4·2 + 2·8 - ·7 + 9·3 5·6 6·1 7·5 6·4	87 1.67 + 4.33 3.73 - 7.87 + .73 - 7.87 + .73 4.03 3.33 4.93 5.03 + 0.57	74.0 74.7 75.4 75.8 75.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 78.2 78.4 78.4 78.8 79.1 79.9	83 1298 62 855 113 423 51 72 555 685 65	977 1517 807 747 907 1477 627 1187 627 927 827 927 827 927 827 977 777	74 2 75 0 75 0 75 7 75 7 75 7 77 5 78 1 79 0 78 9 79 3 79 5	7854 5784 1378 1378 1378 1378 1378 1378 1378 1378	- 9'73 ± '35 + 16'53 + 16'33 +
	64'2 64'5 65'0 65'6 67'0 68'8 69'5 70'9 71'7 70'9 69'9 69'9 71'7 70'9 64'3 64'6 65'2 65'8 60'8 70'4 72'5 71'7 70'7 69'8 70'7 70'7 69'8 70'7 70'7 70'7 70'7 70'7 70'7 70'7 70	64'2 65'0 64'5 65'0 65'0 66'7 65'0 68'8 69'5 70'0 70'7 71'5 70'9 71'5 71'7 71'2 70'9 70'3 64'3 65'3 64'3 65'3 64'3 65'3 64'3 65'3 64'3 65'3 64'3 65'3 64'3 65'3 65'2 66'2 65'8 67'4 69'0 70'0 70'3 70'0 70'4 70'4 72'5 70'3 70'7 70'4 70'7 70'4 71'2 70'3 70'7 70'4 71'2 70'3 70'7 70'4 70'7 70'4 72'5 73'0 71'2 77'4 75'5 75'0 75'5 75'0 75'5 75'0 75'8	64'2 $65'0$ $-1'4$ $64'5$ $65'0$ $66'0$ $3'2$ $65'6$ $66'0$ $3'2$ $65'6$ $66'0$ $3'2$ $67'6$ $68'0$ $1'3$ $69'5$ $70'0$ $5'8$ $70'5$ $70'2$ $1'0$ $70'9$ $71'5$ $5'1$ $70'7$ $7'2$ $1'0$ $70'9$ $70'0$ $1'4'4$ $69'9$ $69'7$ $2'3$ $64'3$ $65'3$ $3'2$ $64'3$ $65'3$ $3'2$ $64'6$ $65'1$ $'4'4'0'4''''''''''''''''''''''''''''''$	64'2 $65'0$ $-1'4$ $-1'37$ $64'5$ $65'0$ $3'2$ $2'87$ $65'0$ $66'0$ $3'2$ $2'87$ $65'0$ $66'0$ $1'3$ $2'33$ $67'0$ $68'0$ $1'3$ $'233$ $69'5$ $70'0$ $5'8$ $5'33$ $70'5$ $70'2$ $1'0$ $-'87$ $70'9$ $71'5$ $-5'1$ $5'47$ $70'9$ $70'0$ $+1'4$ $1'57$ $69'9$ $69'6$ $'3$ $-1'37$ $70'9$ $70'0$ $+1'4$ $1'57$ $69'9$ $69'6$ $'3$ $-1'37$ $71'7$ $70'3$ $4'0$ $+'23$ $64'3$ $65'3$ $3'2$ $3'53$ $64'6$ $65'1$ $'4$ $-'07$ $65'8$ $60'2$ $'0'$ $'5'3$ $70'6$ $70'0$ $5'6$ $+3'73$ $70'6$ $70'0$ $5'6$ $+3'73$ $70'6$ $70'0$ $5'6$ $+3'73$ $70'6$ $70'0$ $5'6$ $+3'73$ $70'7$ $70'4$ $-'33$ $-1'67$ $71'2$ $70'3$ $-'88$ $-3'77$ $70'7$ $70'4$ $+2'3$ $+'43$ $70'7$ $70'4$ $+2'3$ $+'43$ $70'7$ $70'4$ $+2'3$ $+'43$ $70'7$ $70'4$ $+2'3$ $+'33$ $70'7$ $70'4$ $+2'3$ $+'33$ $71'2$ $73'0$ $-4'8$ $-7'77$ $75'3$ $75'0$ $-4'2$ $-7'87$ $71'4$ $77'0$ $+2'8$	$6_{4:2}$ $6_{5:0}$ $-6_{5:0}$ $-1'4$ $-1'37$ $64'7$ $6_{4:5}$ $6_{5:0}$ $6_{5:0}$ $3'2$ $2'87$ $65'4$ $6_{7:0}$ $68'0$ $1'3$ $2'3$ $66'4$ $6_{7:0}$ $68'0$ $1'3$ $2'3$ $66'4$ $6_{7:0}$ $68'0$ $1'3$ $2'3$ $66'7$ $60'5$ $70'0$ $5'8$ $5'33$ $69'7$ $70'5$ $70'2$ $1'0$ $-87'$ $69'0$ $70'9$ $71'5$ $-5'1$ $5'47$ $7^{10}0$ $70'9$ $70'7$ $4'1'4$ $1'57'$ $69'7$ $69'8$ $69'6$ $3'3'$ $3'53$ $65'0$ $6'6'8$ $69'4'$ $4'0$ $4'37'$ $6'78$ $6'5'3$ $6'2'$ $4'0$ $4'37'$ $6'78$ $6'6'8$ $6'7'4$ $4'0$ $4'37'$ $6'78$ $6'6'8$ $6'7'4$ $4'0$ $4'37'$ $6'78$ $6'6'8$ $6'7'4$ $4'0$ $4'37'$ $6'78$ $6'7''7''7''7'''7''7$	64:2 65:0 -1:4 -1:37 64:7 -99 64:5 65:0 65 1707 64:5 134 65:6 66:7 +1:7 +2:33 66:4 11'3 67:0 68:0 '1 '43 67:9 106 67:8 69:0 1'3 '23 68:8 8'5 69:5 700 5'8 5'33 69:7 7'8 70:5 702 1'0 -87 69:7 8'5 70:7 71:5 -5'47 7100 13'8 70:7 71:3 '5' 2'27 69:7 8'5 60:9 69:7 3'3 3'5' 65:0 69 60:9 69:7 3'3 3'5' 65:0 69 60:8 69:6 '3 -1:37 69:3 9'2 71.7 70'3 4'0 +'33' 5'5' 6'3 13'1 6:6 6:7 4'2 97 65:8 13'2 6:7 8:5 70'3 10'5 5'4 7'	64:2 65:0 -1:4 -1:37 64:7 -9:9 -1:0.7 64:5 65:0 66:0 3'2 287 65:4 13'4 14'7 65:0 66:0 3'2 287 65:4 13'4 10'7 65:6 66:0 1'3 '43 66'4 11'3 10'97 66:8 69:0 1'3 '23 66'8 8'5 9'57 66:8 69:0 1'3 '23 66'8 8'5 9'57 70:5 70:3 70'3 1'0 13'8 14'0'7 70:7 71'3 -5'1 5'47 7'0'0 13'8 14'0'7 70'7 71'3 -5'1 5'47 7'0'0 13'8 14'0'7 70'7 70'3 4'0 +'33 70'0 5'5 9'57 64:3 65'1 1'4 -0'7 6'3'8 9'9 9'27 64:5 65'1 1'4 -0'7 6'5'8 13'1 13'1 70'7 70'3 5'6'8 13'1 13'1'1'7 13'7'	64:2 65:0 - 1:3 64:7 - 99 - 1:007 64:7 65:0 65:0 65:0 73 287 65:4 134 14:47 64:7 65:0 65:0 67:0 65:0 17 + 273 66:4 11:3 10:07 69:0 67:0 68:0 11 + 273 66:7 17:3 10:07 69:3 69:5 70:0 57 937 69:4 77:8 84.7 69:4 70:5 70:5 71:7 10:3 13:6 14:67 71:3 69:4 71:3 69:4 70:9 70:5 51:1 547 71:0 13:8 14:67 71:0 13:8 14:67 71:0 13:8 14:67 71:0 13:8 14:67 71:0 13:8 14:67 71:0 13:8 14:67 71:0 13:8 13:1 10:2 11:27 69:3 90 91:0 11:27 69:3 90 11:27 69:3 90 11:27 69:3 69:1 12:0 13:1 13:11 13:17	64:2 6:0 $-1'4$ $-1'37$ 6:4'5 $-10'7$ 6:4'7 $-11'37$ 64:5 6:5'0 3'2 $3'87$ 6:5'4 7'8 8'7 6:5'6 6:5'0 6:5'1 $+3'3$ 6:5'4 1'8 1:5'1 1:5'1 6:5'0 6:5'1 $+3'3$ 6:5'8 8'7 6:5'7 6'7'0 1'3' 6:5'1 5'33 6:5'7 7'8 9:3'7 6:5'4 7'3 1'3'7 6:5'5 7'0'2 1'5' 6:7'1 8'5'1 1'1'7 1'3'3 1'3'7 6:5'1 5'1' 5'1'7 7'3'3 1'3'7 6:7'3 1'3'7 6:5'1 5'3'3 3'3'5'5'5' 6'3'3 1'3'7 6'5'1 1'3'1 7'1'7 7'3'3 4'0'5' 5'3'3'5'5'5' 9'3'7'5'7'5'7'7'7'3'7'5'5'7'5'7'7'7'7'7'7

۹

14

.

	64.5 66.8 69.9 69.5 66.8 7.0 9.5 6.5 6.5 6.5 6.5 6.4 7.0 9.7 7.7 7.7 7.5 6.8 9.4 0.8 7.7 7.5 7.5 6.8 9.4 7.7 7.5 7.5 6.8 9.4 7.7 7.5 7.5 6.8 9.4 7.7 7.7 7.5 7.5 6.8 9.4 7.7 7.7 7.5 7.5 6.8 9.4 7.7 7.7 7.5 7.5 6.8 9.4 7.7 7.7 7.5 7.5 6.8 9.4 7.7 7.7 7.7 7.5 7.5 7.5 7.5 7.5 7.5 7.5	Temperatu & rected for i	re uncor- ndex error nometer.
	$\begin{array}{r} + & 2^{\cdot 8} & 0 & 7 \\ - & 5^{\cdot 7} & 4 & 5 \\ - & 5^{\cdot 7} & 4 & 5 \\ + & 2^{\cdot 21} & 1 & 5 & 5 \\ + & 2^{\cdot 21} & 5^{\cdot 7} & 4 & 6 \\ + & 1^{\cdot 8} & 1^{\cdot 2} & 5^{\cdot 7} & 4 & 0 \\ + & 1^{\cdot 5} & 5^{\cdot 21} & 1^{\cdot 1} & 5^{\cdot 7} & 1^{\cdot 3} & 3^{\cdot 1} & 1 \\ + & 1 & 5^{\cdot 7} & 3^{\cdot 3} & 1^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 4} & 5^{\cdot 7} & 1^{\cdot 3} & 3^{\cdot 4} & 1^{\cdot 1} & 5^{\cdot 7} & 3^{\cdot 3} & 2^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 7} & 3^{\cdot 4} & 1^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 4} & 5^{\cdot 7} & 1^{\cdot 3} & 3^{\cdot 4} & 1^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 4} & 5^{\cdot 7} & 1^{\cdot 3} & 3^{\cdot 4} & 1^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 4} & 5^{\cdot 7} & 1^{\cdot 3} & 3^{\cdot 4} & 1^{\cdot 1} & 0 & 4^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 4} & 3^{\cdot 6} & 4^{\cdot 7} & 1^{\cdot 8} & 4^{\cdot 7} & 1^{\cdot 3} & 4^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 4} & 1^{\cdot 7} & 1^{\cdot 3} & 2^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 4} & 1^{\cdot 7} & 1^{\cdot 3} & 2^{\cdot 1} & 1^{\cdot 9} & 1^{\cdot 1} & $	At observed tem- peratures.	A in millio ys
- 2 .58	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Corrected for ther- mometer errors and reduced to 62°.	- R onths of a ard.
	644588312074266080520089821594828008288800033382188080 4455883120742660805200899900777776666971777775555776777788897990	20 Temperation of them	re uncor- ndex error aometer.
	+ 114251117202541142876759870828404239177859861148365223 -+ 5357113548365223 -+ 5357133527102334	At observed tem-	A in millio ye
+ 2.08	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Corrected for ther- mometer errors and reduced to 62°.	- S onths of a ard.
	6448010080607666666666666666666777777777777	Temperata rected for of ther	tre uncor- indet error aometer.
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	At observed tem- peratures.	A in millio ys
+ 2.71	+ $3'01$ - $1'59$ + $3'71$ 7'11 5'41 3'21 5'41 - $4'09$ 2'69 2'69 2'19 + $5'1$ - $4'81$ 6'41 3'41 2'11 4'01 5'41 3'11 3'41 3'11 3'21 3	Corrected for ther- mometer errors and reduced to 62°.	- T nths of a ard.
	6 0 0 58 9 9 9 4 2 0 1 7 0 1 1 9 8 7 38 0 1 0 8 0 0 0 1 0 0 9 9 5 0 7 8 2 7 2 1 7 7 5 5 6 6 2 1 2 9 0 3	Temperature rected for i	re uncor- adex error iometer.
	- 355458 496 50 5111 31 90 71 42 554 3411 128 26 2 14 2 5978 0 1 4 - 38 40 5 34 53 46 5 554 36 1 2 396 2 1 4 2 5978 0 1 4 - 534 554 36 1 2 396 2 1 4 2 5978 0 1 4 - 534 554 36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	At observed tem- peratures.	A in million yr
- 7'86	- 1766 14774086666666666666666666666666666666666	Corrected for ther- mometer errors and reduced to 62°.	U nths of a urd.

BRASS SCALES IN 1835.

COMPARISONS OF THE SIX-INCH BRASS SCALES

a yard	Mean of each ober.	-6.39	-7.64	41.4-	2 6.01 –	98.6-	-8:44 ± .56
[<i>d.l</i>] – A llionths of	at 62° Fah.	- 7.85 - 6.51 - 6.68 - 5.30	- 8:35 - 8:35 - 8:21 - 9:09 - 4:91	- 7:21 - 9:09 - 7:25 - 5:14	- 10'54 - 9'46 - 10'88 - 12'80	- 9.84 - 9.35 - 9.35 - 9.59	
ii ii	at obed. temp.	- 11'49 - 11'20 - 11'05 - 9'69	- 14°17 14°08 14°54 10°35	- 12°15 14°51 12°63 10°90			
ected	24	66 ^{.12} 67 ^{.08} 67 ^{.15} 67 ^{.34}	68.37 68.72 68.62 68.70	68.16 68.59 68.68 69.36	70°19 70°33 70°58 70°75	72°04 71°92 71°82 71°82	
Corr tempe	[<i>d.l</i>]	65.32 65.90 66.32 66.61	66'95 67'47 67'71 67'85	67.43 67.68 67.87 68.62	67.73 6813 68966 68955	70.23 70.33 70.40 70.49	
yard	Mean of each obar.	-10'08	- 12.50	- 14°72	-13'28	- 0.30	-11'98
$\begin{bmatrix} d.l \\ - \end{bmatrix} - \begin{bmatrix} J \\ N \end{bmatrix}$ on the of a	at 62° Fah.	- 11°22 - 7°58 - 10°74 - 10°79	— 11.82 — 12.10 — 13.55 — 12.54	- 13.42 - 14.55 - 15.78 - 15.78	- 12'99 13'61 13'16 13'16	- 12°71 - 8°77 - 8°02	· п
ilim ni	st obsd. temp.	- 16'74 - 12'84 - 16'43 - 16'38	- 15.82 - 16.54 - 16.57 - 16.63	- 18'47 - 19'44 - 21'17 - 20'37	- 16'95 - 17'52 - 17'53 - 17'60	— 16°05 — 12°59 — 12°13 — 12°15	
ected	Ň	69.09 69.43 69.86 69.91	67.46 68.08 66.41 67.59	68°76 68°91 69°40 69°46	67.39 67.51 67.96 67.98	66.56 66.99 67.03 67.45	
Corr temper	[<i>d.l</i>]	68.41 69.21 69.69 69.69	67.17 67.78 66.38 67.30	68°32 68°71 69°24 69°28	67 · 10 67'37 67 54 67'78	66.32 66.57 66.77 67.03	
a yard	Mean of each ober.	L9.2 —	- 4.69	- 5*25	- 3.93	41.1 -	-3.54 ± .49
[<i>d.l</i>] – <i>M</i> liontha of a	at 62° Fah.	- 3.22 - 1.93 - 1.27 - 4.24	- 5°73 - 4°53 - 4°25 - 4°24	- 5'31 - 5'90 - 5'00 - 5'00	- 3'71 - 4'29 - 4'43 - 3'27	- 2.53 - 3.31 + 2.65 - 1.48	al mean de error
in mil	st obsd. temp.	- 7.50 - 7.45 - 6.75 - 9.92	- 9.19 - 8.57 - 8.05 - 8.05	- 9.75 - 10.51 - 9.43 - 11.28	- 7:58 - 8:65 - 8:68 - 7:84	- 6°09 - 6'70 - 1'35 - 5'28	Gener Probal
oted	M	67.91 69.58 69.58 69.96	67.15 67.85 67.82 67.82	68.41 68.75 69.37 69.66	67:34 67:77 67:83 68-16	66.69 66.74 67.21 67.26	
Corrected	[4.1]	69.69 69.53 69.63	67°17 67°78 66°38 67°30 67°30	68:32 68:71 69:28 69:28	67.10 67.37 67.54 67.78 67.78	66.32 66.57 67.03 67.03	
Observer's	initi ale.	M. W. R.	W. J. H.	Т. G. M.	J. B. N. H.	н. в. т.	

16

COMPARISONS OF THE SIX-INCH BRASS SCALES IN 1867.

OF THE COMPENSATED MICROSCOPES.

Obeerver's	Corre	xted stures	ů Bul	[<i>d.l</i>] – <i>S</i> lionths of a	, yard	Corre temper	oted	ilim ni	d.l] - T on the of a	yard	Corre tempen	ected stures	ilim ni	$\begin{bmatrix} d_{*}I \end{bmatrix} - U \\ \text{ionths of } t$	yard
initials.	[<i>d.1</i>]	82	at obsd. temp.	at 62° Fah.	Mean of each ober.	[<i>q</i> . <i>t</i>]	EI	st obsd. temp.	at 62° Fah.	Mean of each obsr.	[<i>T</i> .b]	a ·	at obed. temp.	62° Fah.	Mean of each ober.
M. W. R.	65.32 65.90 66.61 66.61	65.43 65.68 66.16 66.35	- 2.51 + 0.58 + 0.26 + 0.26	+ 2.93	86.0 +	69.08 69.54 69.83 70.10	70.39 71.15 71.50	- 5.68 - 7.57 - 5:43 - 4:19	+1:39 +0:26 +3:72	o6.1+	69°08 69°54 69°83 70°10	68'91 68'92 68'93 68'94	- 13'48 - 12'16 - 13'11 - 13'11 - 11'18	- 8 [.] 98 - 8 [.] 14 - 9 [°] 37 - 7 [°] 7	-8.55
W. J. H.	66'95 67.47 67'85 67'85	66.56 66.84 67.33 67.45		+ 1.93 + 2.21 + 2.65 + 58	, + 2.84	68-83 6921 69284 69799	70.23 70.34 70.72 70.75	- 4°25 - 2°84 - 3°71 4°22	+ 2.81 + 4.00 + 3.13 + 2.51	11.6+	68.83 69.21 69.84 69.99	68.63 69.41 69.74 69.85	- 12.82 - 16'22 - 14'04 - 15'67	- 8·54 - 11'00 - 8'90 - 10'50	-9'74
Т. С. М.	67.43 67.68 67.87 68.62	67 .23 67.36 67.78 68.43	- 1.13 - 1.53 - 1.53 - 1.10	+ 1.76 + 0.74 + 3.06	29.1 +	69:39 69:80 70:21 70:46	70.71 70.96 71.58 71.58	- 4:31 - 3:77 - 5:08 - 4:66	+ 3.09 + 3.53 + 3.53 + 3.15	91.6+	69:39 69:80 70:21 70:46	69'11 69'91 70'55	- 12°04 - 13°43 - 13°59 - 15°01	- 7:53 - 7:96 - 7:47 - 9:13	-7.97
J. B. N. H.	67.73 68 ^{.13} 68'95 68'95	67.90 68.45 68.51 69°04			4 0.0	66°20 66°71 67°08 67°34	66'54 67'63 67'85 68'39		-0.40 +1.16 -0.55 -0.74	£1.0 -	66°20 66°71 67°08 67°34	66.52 66.75 67.45 67.56	- 15.45 - 16.90 - 15.67	- 12°05 - 13°64 - 11°65 - 11°67	06.21 —
н. к. т.	70 ² 3 70 ³ 3 7040 7049	84.00 69.00 69.72		++2.17 ++2.58 +3.06	+ 2.40	69.03 69.62 69.87 69.87	56.04 14.04 50.04	5:23 3:56 - 4:85 - 5:18	+1.30 +3.55 +2.20 +2.03	62.2+	69.03 69.63 69.87 69.87	68.57 68.85 69.36 69.50	- 16.62 - 14.63 - 16.11 - 16.48	-12.66 -10.56 -11.40 -11.79	0 9.11 —
/ · ·			Gen	eral mean able error	+ 1°59 + 33										—10°03 ± •56

COMPARISONS OF THE SIX-INCH BRASS SCALES IN 1867.

Digitized by Google

17

ı.

COMPARISONS OF THE SIX-INCH BRASS SCALES

		ľ			Ī					ſ					ſ
	Corre temper	sted sture.	lim ni	[d.l] - V lionths of a	yard	Correc tempers	cted tures.	in mil	d.l] - W ionths of a	yard	Corre temper	cted sturés.	im ni	[d.l] - A lionthe of a	yard
Courver s initials.	[d.b]	4	at obed. temp.	at 62° Fah.	Mean of each obsr.	[<i>d.b</i>]	Æ	at obed. temp.	at 62° Fah.	mean of each obsr.	[4.1]	Y	st obsd. temp.	st 62° Fah.	Mean of each ober.
M. W. R.	68.43 69'01 69'38 69'38 69'71	69'23 70'29 70'81	+ 0.95 + 0.95 - 1.06 - 1.96	++++ 6.69 ++++	+ 5'94	68.43 69°01 69°38 69°71	68-44 68-66 69-35 69'38 69'38	+ 0.68 + 0.68 - 0.06 - 2.41 - 2.63	+ + 5.05 + + 5.05 + 2.36 + 2.03	+ 3.38	67.82 68 [.] 14 68 [.] 18 68 [.] 18 68 [.] 42	68-74 68-76 68-74 68-76 68-76		+ 2°14 + 1°13 + 0°09 + 0°91	20,I +
W. J. H.	67.07 67.55 67.97 68:32	67.60 68.72 68.89 68.89 69.45	- 0.42 - 0.13 - 1.18 - 1.88	+++ 3.93 +++5.66 ++36	+ 4.60	67°07 67°07 67'97 68'32	67.00 67.21 67.97 68'09		+ 1.83 + 2.78 + 1.34 + 2.49	11.6 +	65.94 66.53 66.56 67.00	60.09 60.35 60.80 60.80 60.97	+ 6.47 + 6.12 + 6.12 + 4.46	+ 9.40 + 9.87 + 9.76 + 7.79	+8.96
т. с. м.	69.23 69.46 69.63 69.84	70.68 70.53 70.83		+ + 1.24 + 0.67 + 2.89	∠9.1 + ⁶	69.23 69.46 69.63 69.84	68.95 69.08 69.46 69.56			oб.o —	67.57 67.75 67.80 67.97	67.50 67.56 67.77 67.82	+ 0.77 + 0.88 + 0.45 + 2.69	+ + + + + + + + + + + + + + + + + + + +	+4.91
J. B. N. H.	66-86 67 ¹³ 67 ³ 7 67 ⁶ 2	67.76 68.20 68.31 68.64	- 1.76 + 0.22 - 1.47 - 2.95	+++ 3.80 2.63 2.63	+ 3.77	66-86 67-13 67-37 67-62	66.50 66.59 67.10 67.22		+ 1.53 + 3.82 + 0.24 + 0.55	+ 1.54	66'14 66'97 67'04 67'39	66°39 66°68 67'22 67'34	+ + + + 4.01 + + 4.23 + 4.26	+ 7:25 + 7:10 + 7:25 + 7:82	+ 7:36 .
Н. В. Т.	68.48 68.81 69°03 69°20	69°14 69°64 69°75 69°75	- 0.38 + 0.39 + 0.16	+ 5°16 + 6°44 + 6°16 + 5°80	+ 5.89	68-48 68-81 69-03 69-20	68.42 68.61 68.91 68.91 69.01	- 1'33 - 0'23 - 1'42 - 1'02	+ 2.96 + 4.04 + 3.13 + 3.52	+ 3.41	66'34 66'45 66'70 66'70 66'75	66°17 66'53 66'52 66'92	+ 1.21 + 2.24 + 3.50 + 3.61	+ 3.85 + 5.39 + 6.54 + 6.12	+ 5.48
			Gent Probs	mal mean ble error	+ 4:37 + 53					16.1 +					+ 5:55 + 90

18

COMPARISONS OF THE SIX-INCH BRASS SCALES IN 1867.

Collecting the results we have

by Colonel Everest in 1835.

by observations at Mussoorie in 1867.

$[d.l] - M = - 3.54 \pm .49 m.y.$
$[d.l] - N = -11.98 \pm .67$
$[d.l] - R = - 8.44 \pm .56$
$[d.l] - S = + 1.59 \pm .33$ "
$[d.l] - T = + 2.06 \pm .37$
$[d.l] - U = -10.03 \pm .56$ "
$[d.l] - V = + 4.37 \pm .53$
$[d.l] - W = + 1.91 \pm .53$ "
$[d.l] - A = + 5.55 \pm .90$

These results are fully discussed in Section 8 of Chapter III. It only remains to state that the above probable errors of the results were determined, for the observations of 1835, from the differences between the individual comparisons and the mean of all; for the observations of 1867 they were determined from the differences between the results by each observer and the mean of the results by all the observers. Fifty comparisons with the standard were taken on the first occasion and only twenty on the second, which accounts in some measure for the probable errors of the first comparisons being apparently less than those of the second. But this circumstance is more likely to be due to more observers having been employed in the second instance than in the first, and consequently to the influence of the personal equations in increasing the magnitude of the discordances between the individual results; see Section 1 Chapter III. On the other hand, where there is a liability to personal equations, the result of the mean of the observations of several observers is in reality preferable to that of a single or a few observers.

No details are forthcoming as to the persons by whom the comparisons in 1835 were made; for the subsequent comparisons the initials of the observers have been given.

The probable error of observation for each observer, in a single comparison of any one of the scales with the standard of reference, is as follows :--

J. B. N. H.	± 0.60
W. J. H.	± 0.00
T. G. M.	± 0.11
H. R. T.	± 0'92
M. W. R.	± 0.03
Observers in 1835	± 2.35

The probable error of observation, for each scale, in a single comparison with either standard by any one of the observers is,

	in 1835.	in 1867.
M N P R S T U	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

W. H. COLE.
APPENDIX.

No. 5.

DETERMINATION OF THE LENGTH OF THE INCH [7.8] ON CARY'S 3-FOOT BRASS-SCALE.

The inch [7.8] on this scale was, prior to the year 1868, employed at all base-line measurements to determine the runs of the micrometers of the microscopes; but it was not until the recess season of 1869 that a favourable opportunity offered itself for investigating its relation to the 10-foot standard **A**. This investigation was then rendered simple by the possession of the standard foot **IF**, on which Captain Clarke had carefully determined the linear value of the inch [a.b] in terms of the ordnance standard yard \mathbf{Y}_{55} ; and as the length of **A** relatively to that yard had been recently determined, see Chapter 3 section 6, it only remained to compare [7.8] with [a.b] to obtain the required relation.

Six observers were employed in taking the necessary observations; and it having been found that the microscopes **G** and **H** could not be set up at a less distance apart than five integral inches, the 5 and 6 inch spaces [b.g] and [a.g] on **IF** were selected and compared with the corresponding spaces [8.13] and [7.13] on Cary's scale. These comparisons are given in the following tables. The runs of the microscopes were

1 division of $\mathbf{G} = 1.1511 \text{ m.y.}$ 1 division of $\mathbf{H} = 1.1074 \text{ m.y.}$

The thermometers employed were 4218 on $|\mathbf{F}|$ and 4217 on Cary's scale, the bulb of the former was let into one of the wells in the foot and contact was secured as usual with olive oil, the latter could only be made to touch the scale externally, no hole having been bored for the reception of a thermometer; the mean of the two thermometers, after correcting for errors, was assumed as the temperature of both bars for the comparison concerned. As both scales were compared in a room subject to very slight variations of temperature, the error introduced by the assumption may be considered as insignificant. The factor made use of for $|\mathbf{F}|$ was 000,006,347,8, or Captain Clarke's second factor for $|_{e}$, and it was assumed that the factor for Cary's scale was $\frac{10}{6}$ of the factor of $|\mathbf{F}|$. These assumptions are sufficiently approximate for the result sought and were made in compliance with Colonel Walker's directions.

DETERMINATION OF LENGTH OF INCH [7.8] ON CARY'S SCALE.

1

		[b.g] - [8. observed	18] I.	mpera-	to 62° sit.	.8] at	sech in	
Date.	Observer's initials.	In Micrometer divisions.	In <i>m.y</i> .	Corrected ter ture.	Correction (Fahrenhe	$[b.g] - [8^{\cdot 1}]$ 62°.	Mean of (observer m.y.	Remarks.
1869. Sept. 7th	J. B. N. H.	- 0.8 <i>g</i> - 16.3 <i>h</i> 1.9 16.6 0.3 18.4 1.5 16.6 1.8 18.3	- 18.97 20.56 20.72 20.10 22.35	° 68·3 68·3 68·3 68·3 68·3	m.y. + 4 [•] 44 4 [•] 44 4 [•] 44 4 [•] 44 4 [•] 44	m.y. - 14.5 16.1 16.3 15.7 17.9	- 16.1	h. m. ` Commencing 2 45 Р.М. Ending 3 45 »
" 8th	т. G. M.	$\begin{array}{r} - 2.1g - 19.7k \\ 3.9 & 18.4 \\ 0.2 & 22.5 \\ + 5.3 & 27.6 \\ 2.1 & 23.4 \end{array}$	-24 [.] 24 23 [.] 86 25 [.] 14 24 [.] 44 23 [.] 47	67°1 67°2 67°3 67°4 67°5	+ 3°59 3°67 3°74 3°81 3°88		- 20'5	Commencing 0 15 P.M. Ending 1 41 "
" 8th	С. L.	$\begin{array}{r} + 3.7g - 25.5h \\ 0.8 & 21.8 \\ - 1.3 & 19.0 \\ + 0.1 & 20.3 \\ + 2.6 & 22.6 \end{array}$	-23`99 23`23 22`55 22`37 22`04	68·2 68·4 68·6 68·7 68·8	+ 4 [.] 37 4 [.] 52 4 [.] 66 4 [.] 72 4 [.] 80	- 19 ^{.6} 18 ^{.7} 17 ^{.9} 17 ^{.7} 17 ^{.2}	- 18.3	Commencing 2 50 P.M. Ending 4 38 "
,, 9th	H. R. T.	$- 4^{\cdot 1}g - 19^{\cdot 4}h$ 1^9 21^3 + 0^3 22^3 + 3^1 25^4 - 5^0 16^7	-26.19 25.77 24.36 24.56 24.23	66.7 66.8 66.9 67.0 67.1	+ 3.32 3.38 3.46 3.53 3.59	- 22 [.] 9 22.4 20.9 21.c 20.6	- 21.0	Commencing 11 35 A.M. Ending 0 45 P.M.
" 9th	Н. К.	+ $1^{2}g - 18^{\circ}oh$ 2^{\circ}0 19^{3} 2^{7} 17^{3} 0^{8} 17^{\circ}6 0^{0} 15^{2}		67°3 67°7 67°5 67°6 67°7	+ 3°74 4°02 3°88 3°95 4°02	- 14 [.] 8 15 [.] 1 12 [.] 2 14 [.] 6 12 [.] 8	- 13.9	Commencing 2 30 P.M. Ending
" 10th	Т. Т. С.	+ 1.1g - 21.3h 0.5 18.4 3.3 24.0 10.0 31.0 13.2 32.9	-22'32 19'82 22'77 22'82 21'23	65.1 62.8 66.0 66.1 66.1	+ 2.19 2.68 2.82 2.89 2.89	- 20'1 17'1 20'0 19'9 18'3	- 10,1	Commencing II O A.M. Ending I 15 P.M.
\		Mea	ns	67.4			- 18.3	

2 F

1

artegegetet 🗛 🗠 Toget

-7

		[<i>a.g</i>] - [7 observed	13]	npera-	0 62° it.	.3] at	ach in	
Date.	Observer's initials.	In Micrometer divisions.	in <i>m.y</i> .	Corrected ter ture.	Correction t Fahrenhe	[<i>a.g</i>] - [7·1 62°	Mean of e observer su.y.	REMARKS.
1869 Sept. 10th	J. B. N. H.	$\begin{array}{c} - & 0.5g - & 6.7h \\ + & 4.1 & 11.1 \\ 14.5 & 19.7 \\ 4.0 & 11.0 \\ 0.1 & 6.8 \end{array}$	- 7'99 7'56 5'12 7'58 7'43	66·3 66·3 66·4 66·4 66·4	<i>m.y.</i> + 3 ^{.04} 3 ^{.04} 3 ^{.10} 3 ^{.10} 3 ^{.10}	m.y. 5 °0 4 °5 2 °0 4 °5 4 °3	- 4'I	h. m. Commencing 2 20 P.H. Ending 3 20 "
" 13th	Т. G. <u>М</u> .	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 3.78 3.95 2.57 3.09 4.30	64·4 64·5 64·6 64·7 64·8	+ 1.69 1.77 1.83 1.90 1.98	- 2'I 2'2 0'7 1'2 2'3	- 1'7	Commencing 11 30 A.M. Ending 0 30 P.M.
,, 13th	C. L.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	- 7 ^{.24} 6 ^{.6} 3 7 ^{.6} 9 6 ^{.58} 6 ^{.64}	65.4 65.6 65.9 66.0 66.2	+ 2°40 2°54 2°75 2°82 2°97	- 4 ^{.8} 4 ^{.1} 4 ^{.9} 3 ^{.8} 3 ^{.7}	- 4.3	Commencing 2 50 P.M. Ending 4 17 "
" 14th	H. R. T.	- 2 [.] 2g - 8.4h 1.7 8.9 0.5 10.6 1.3 9.7 0.9 10.2	-11.83 11.83 12.32 12.24 12.34	65°0 65°2 65°3 65°4 65°5	+ 2°12 2°25 2°33 2°40 2°47	- 9'7 9'6 10'0 9'8 9'9	- 9.8	Commencing 11 45 A.M. Ending 0 40 P.M.
" 14th	Т. Т. С.	$\begin{array}{rrrr} -12.0g + 5.5h \\ -14.1 + 8.0 \\ + 7.9 & -13.9 \\ -17.2 & +12.9 \\ + 25.5 & -30.4 \end{array}$	- 7'72 7'38 6'30 5'51 4'32	66°1 66°2 66°4 66°5 66°2	+ 2.89 2.97 3.10 3.17 2.97	- 4 ^{.8} 4 ^{.4} 3 ^{.2} 2 ^{.3} 1 ^{.4}	- 3.5	Commencing 2 O P.M. Ending 3 5 ,,
" 15th	Н. К.	- 0'3 <i>g</i> - 5'6k 0'3 6'4 0'3 8'2 0'4 8'7 0'9 5'6	- 6.55 7.33 9.44 Jo.10 7.24	65.5 65.6 65.7 65.7 65.9	+ 2.47 2.54 2.61 2.61 2.75	- 4°1 4°8 6°8 7°5 4°5	- 5.2	Commencing 11 50 A.M. Ending
		Mean	3	65.7			- 4.8	

Digitized by Google

DETERMINATION OF LENGTH OF INCH [7.8] ON CARY'S SCALE.

From the preceding comparisons it appears that

			17	ı.y .											
	[b.g] -	[8.13] =	- 18	•2											
	[a.g] -	[7.13] =	- 4	.•8											
and	[a.b] -	[7. 8] =	+ 13	'4 ±	: *98	 	 • •	•	 •	•	•	 •	•	 1	

The probable error has been computed from the differences between the values of [a.b] - [7.8] obtained by each observer and the general mean of the same.

From page (29) of this Volume,

 $[a.b] = \frac{1}{120} \mathbf{A} - \mathbf{1} \cdot 30 \pm \mathbf{0} \cdot 076 \dots \mathbf{2}$ hence by equations 1 and 2 $[7.8] = \frac{1}{120} \mathbf{A} - \mathbf{1} \cdot 4 \cdot 7 \pm \mathbf{0} \cdot 983$

In forming equation 1 the computers fell into the error of using a table of expansion for six-inches on IF for reducing the five-inch spaces to 62° Fahrenheit, and this was not discovered till recently; the effect however is so slight that it has not been thought advisable to alter the computations, which would necessitate minute corrections in a large amount of work already disposed of. It will be seen from the comparisons of the five-inch spaces that

$$[b.g] - [8.13] = -18^{\circ}2 m.y.$$

the mean temperature of observation being 67° . The correction for difference of expansion which was employed was .705 m.y. per 1° Fahrenheit, whereas it ought to have been .588 m.y., and the difference $.117 \times 5.4$ gives a correction = -.6 m.y. to be added to the above value of [b.g] - [8.13] which thus becomes -.188 m.y.

therefore
$$[7.8] = \frac{1}{120} \mathbf{A} - 153 m.y.$$

As the runs of the micrometers are less than $\frac{1}{20,000}$ of an inch to one division and seldom more than 200 or 300 divisions are made use of, the error caused by a difference of 6 m.y. in the value of the inch would be less than $\frac{6 \times 300}{200,000} m.y$. in 300 divisions of the micrometer, or 000 m.y, a quantity which is practically of no importance.

Observer's Ini	tials.	[a.g.] - [7.13]	[b.g.] — [8·13]	[a.b.] - [7.8]
Т. G. M.		- 1.7	- 21'1	+ 19'4
J. B. N. H.	·	4 'I	16.8	12'7
н. к. т.		9 *8	22'I	12'3
С. L.		4'3	10.0	14.2
н. к.		5:5	14.2	9.0
т. т. с.		3.3	19.5	16.3
		- 4.8	- 18.8	+ 14.0

The table given on page (22) when corrected for the above-mentioned error becomes as follows :----

The changes here made have no appreciable effect on the results deduced on page (23).

W. H. COLE.

Digitized by Google

APPENDIX.

No. 6.

COMPARISONS BETWEEN THE 10-FEET STANDARD BARS I_s and a for determining The expansion of bar A.

These experiments were made at Masuri on the Himalaya mountains, in Lat. N. 30° 28', Long. E. 78° 7', Height above sea level about 6900 feet, during January and part of February 1870. Preference was given to this hill site, because a lower natural temperature could be commanded here than at the smaller elevation of the plain country below; and the event proved that the precaution was essential, for the winter was exceedingly mild, so that even at the altitude chosen, the lowest temperature to which the bars fell was only about 50°. For low temperatures, the natural cold prevailing was accepted. Heat was supplied by means of hot water.

(2.) The only room available for the purpose, was one built some 4 year before for Pendulum experiments. It was $14 \times 12 \times 10$ feet in dimensions, and for comparisons of bars 10-feet in length was much too small. Further, standing on the crest of a hill, it was exposed to the influences of the sun and wind. On the other hand, the walls were so much as 2 feet thick and the roof was a solid structure of slates, bricks, gravel and lime. The doors and windows also were all double, excepting the window to the west, which during the experiments was adopted as an entrance; but as the window opened into a small transit room with a suitable outer door, this opening was also well secured.

• (3.) With the exception of the western window, all the other outlets were permanently closed and stout paper pasted over the crevices. For purposes of ventilation, a tin tube 6 inches in diameter was passed through the southern wall. Its outer mouth could be partially or completely uncovered as desired : the inner orifice opened upwards, near the roof, about the centre of the bar room. Externally, the entire building (the roof as well as the walls) was coated with thatch at least 9 inches deep. And after these precautions had been taken, it was found, that the range of temperature within the closed bar-room, during the 24 hours, did not exceed 1° Fahrenheit. Owing however to the smallness of the room, this range was increased to some 2°, during a visit, by the presence of the observers and the heat from the lamps, as appears in the tables of comparisons hereafter given.

(4.) The apparatus in the bar-room was copied or adapted from that used by Captain A. R. Clarke, R.E., C.B. Ordnance Survey and described at length in his volume entitled "Comparisons of the Standards of length 1866." The comparing microscopes stood east and west of one another on slabs of stone, which were placed on solid frustums of stone pyramids isolated and sunk into the ground some 22 inches. Symmetrically between the pyramids and about 5 feet apart two beams ran meridionally across the room and were let into the walls, their continuity to the south being broken at will by the raising and lowering contrivance (or bar-trap) constructed after Captain Clarke's design. The beams carried well planed iron rails on which the bar-carriages worked easily and regularly. For greater rigidity the beams were propped up by uprights directly under the line joining the microscopes, and this was all the more necessary that the bar-carriage during observation, as at other times, stood on the beams. The bar-carriage was simply a deal plank 7.5 feet $\times 12$ inch $\times 3.3$ inch mounted on well turned brass wheels. The camels stood on the plank and they in turn supported the carefully packed case (or bar-box) containing the bar.

Digitized by Google

EXPANSION EXPERIMENTS

(5.) The bar-box was made up as follows. A deal plank $11' \times 12'' \times 2''$ represented the bottom of the box. The upper surface of this plank was covered over with stout country felt. Through this felt, along the middle longitudinal line, two brass rollers were screwed to the plank, at the required points of support; so that when the bar rested on them, its mid-height agreed with that of the surrounding water boxes. On both sides of the bar and also around its butts there ran the water boxes, which in transverse section were $2\cdot6'' \times 5\cdot3''$. The water boxes-were coated externally with felt, and a wooden case fastened down over them to the bottom of the bar-box. Every crack or hole in this outer wooden case was carefully stuffed with paste and wool, and finally the whole box was enveloped in a double blanket jacket. The bar was thus almost hermetically sealed, at the same time that it touched nothing but its rollers and so was perfectly free to expand and contract. The thermometers let into the bar were read through panes of glass fixed in the cover of the box, and the lines (or dots) were viewed through conical tubes similarly fixed, whose smaller ends, terminated about $\frac{1}{4}$ inch above the bar, and were some 0.2 inch in diameter.

(6.) The supply and overflow pipes, were placed on a side of the box about its mid length as in Captain Clarke's construction. The discharge pipes however protruded through the *bottom* of the bar-box at the ends of the water boxes. The supply pipe was connected by means of a flexible tube with a tap, fixed in the eastern door. The tap in turn was connected with the hot water tank of which further mention is hereafter made. The overflow and discharge pipes (each with a tap) were all connected by flexible tubes with an iron pipe laid down east and west along the floor of the room, and it was so arranged that the latter pipe discharge its water into a tub placed alongside of the hot water tank. As the tub filled, the water was returned to the tank, and thus the heat acquired was economised as far as practicable. A speaking tube admitted of communication between the bar and tank rooms.

(7.) The water boxes, contrary to requisition, were unfortunately made of thin sheet zinc, so that when the boxes were full and water was flowing through them in a continuous stream, the sheet zinc bulged at various places towards the bar, and the internal sides of the water box, next to the bar, no longer presented plane surfaces. Had time permitted the water boxes would have been replaced by others made of more rigid material, but in the absence of such improvement the tendency to bulge was anticipated and partially checked by contrivances which need not be enumerated. It was however agreed that by increasing the space between the bar and the sides of the water box, the irregularities of the latter surfaces would have smaller effect in heating the bar unequally. Accordingly these spaces were increased to 0.8 inch; and it was found after the experiments, that owing to the yielding of the zinc, they now varied from 0.8 to about 0.6 inch. The increased space naturally lead to the difficulty, that intentional changes in the temperature of the water were taken up very slowly by the bar, and it thus became necessary to maintain the temperature of the tank continuously by day and night.

(8.) It remains to notice an evil in connection with the water boxes, which from want of time could not be remedied. It was found that the end pipes did not discharge at an equal rate; and this was traced to the circumstances that the orifice of the supply pipe was not the highest point in the water box. Thus air collected at certain higher passages and obstructed the flow. This evil was controlled as far as practicable by careful watching, so that its effect became nearly constant in nature. It is however to the unequal discharge at the end pipes, that the difference in reading between the two thermometers of each bar when hot, is to be chiefly ascribed.

(9.) The tank and boiler were set up in two little rooms adjoining one another, which were built up roughly east of the bar-room. These two rooms were separated from the bar-room by an open passage some 8 feet in width, and as the boiler stood east of the tank, the fire place was thus removed as far as practicable from the bar-room.

(10.) In shape the boiler was the frustum of a cone 12" deep, 9" lower diameter and 12" upper diameter. It was made of iron and its upper surface terminated in a bent tube with flanges. The tank for hot water was a rectangular box constructed of sheet iron $3' \times 2' \times 2'$ in dimensions and enclosed in a wooden case. A bent iron tube was passed through and rigidly attached to the bottom of the tank: the end which opened inside the tank was covered by a perforated plate (or strainer) while the outer extremity terminated in flanges. A connecting tube, with flanges at both ends, was fixed by bolts and nuts to the tube at the top of the boiler and to the other tube at the bottom of the tank. Thus the boiler was a completely closed reservoir, and could be filled only through the tank. The connecting tube was 4' long and 2" in diameter. The side of the tank furtherest from the boiler was fitted near the bottom of the box with a discharge pipe whose inside orifice was covered with a strainer : this tube fed the water-boxes. The tank was also provided with a cap, which could be removed at pleasure, and with paddles for mixing the water. Its upper surface was pierced at three of the corners and fitted with short tubes. Into two of these tubes funnels with strainers were introduced. The third tube contained a thermometer by which the temperature of the warm water was ascertained. Of the funnels, the larger one served to receive the warm water from the tub as it returned from its circuit through the water-boxes (Art 6), while the smaller funnel was fed at pleasure from a tap communicating with a cistern of cold water. Thus the temperature could be increased or decreased at will by regulating the fire under the boiler, and it could be further diminished by resorting to the cold

EXPANSION EXPERIMENTS

water tap. It was found however that the latter aid was unnecessary, excepting to restore such small volumes of water as ran to waste. The large difference between the solid measures of the boiler and tank (about 1 to 14) and the small surface which the former exposed to the fire, secured the result that sensible variations in the intensity of the fire produced but little change in the temperature of the tank. Thus a common laborer, under occasional directions, could feed the fire with sufficient nicety to maintain the hot water within $\pm 0^{\circ}5$ of any required temperature.

(11.) From what has been stated, the following description of procedure with respect to the water supply will be readily apparent. The tank (including boiler) was in the first instance filled with water and a brisk fire lighted and maintained. As the water began to heat, the supply and discharge taps in the bar-room were opened and subsequently adjusted, so as to secure a small but decided discharge from the overflow pipe, as well as an equal discharge at the two end pipes. After these adjustments had been made, it was ascertained that were the supply cut off, the water box would empty in about 4 minutes. At the same time that the boxes were in course of filling, additional water was poured into the tank; so that in the end, the water boxes were full and discharged at the regulated rate; the discharge in the receiving tub near the tank was caught and restored back to the tank, and the water level in the latter was maintained, as required, at a constant height. It now only remained for the assistant at the thermometer in the tank to raise the temperature of the water and maintain it at the required heat. This was done gradually, the assistant (an intelligent native) as well as the workmen being relieved at intervals. As already mentioned (Art 7) it was necessary to maintain the heating process by day and night, without intermission, throughout the series or set of observations. Thus for series No. 1 (both bars hot) the heating was maintained continuously from about the evening of 4th to 13th January. In series No. 2, both bars being cold, the fire was extinguished, the supply and discharge pipes stopped, and both water boxes kept full of water which gradually settled down to the temperature of the room. For the remaining series, Nos. 3 and 4, the heating was maintained continuously from about the evening of 20th January to the 4th February.

(12.) Returning now to the bar-room. The following particulars may be collected together in this place. The counterpoises working the sliding frames in the bar-traps weighed 641 lbs. The considerable weight of the bar-boxes implied by that of the counterpoises, lead to a satisfactory amount of stability in the bars when under the microscopes. Owing to the great width of the bar-boxes, they were moved longitudinally on the camels by hand, instead of by the slow motion screw, when being brought under observation; a procedure which their weight facilitated. Even the transverse motion was obtained chiefly by moving the carriage, lest a liberal use of the screw should distroy the equilibrium of the camel. The thermometers were read through reading lenses because the air tubes in the water boxes were erroneously placed, so that the thermometer reading-tubes could not be employed. The lines (or dots) on the bars were illuminated by means of artificial light; each observer being supplied with a small oil lamp, which he used for this purpose as well as for reading the thermometers. This entailed the re-setting of the lamp to suit the prism of the microscope after every thermometer reading, a necessity which in the absence of experience at first caused some delay. It was however deemed of importance that no more lamps should be introduced into the bar-room during work than were absolutely necessary, so that the removal of the lamp from the microscope to the thermometer and vice versa became unavoidable.

(13.) The bars compared were the two 10 feet standards I_{a} (steel) and A (iron). They are described at pages (2) and (3) of Section 1 Chapter I. Each bar was supported at two points on brass rollers, the points of support for I_{a} being determined by Mr. Airy's formula $\frac{a}{\sqrt{n^2-1}}$ where a is the length of the bar and n the number of supports. A was supported at $2\frac{1}{2}$ feet on either side from its centre, these being the points on which this bar has always rested since its construction. Two thermometers were introduced into each bar, in the existing cavities at about $2\frac{1}{2}$ feet from its centre, and contact between the thermometer bulb and the bar was secured by means of ordinary salad oil. The thermometers had bent bulbs so that the stems were laid flat on the bar. They were graduated on the glass to every half degree from 20° to 100° Fahrenheit. The comparing microscopes employed (G. and H) were the new pair by Messrs. Troughton and Simms described at page 2 of the Appendices. They were set up so, that the distance between their zeros was always *less* than the length of either bar, and thus an increment in the reading of the microscopes denoted an *increase* in the length of the bar. Throughout the four series of bar comparisons, the microscopes were never moved or disturbed accidentally or otherwise in any way: their adjustments needed no alteration and their stability was excellent. The errors of the thermometers (see Appendix No. 8) and the linear values of the micrometer screws were ascertained directly after the conclusion of the bar comparisons. A thermometer protected by a glass case, perforated at the bottom, was hung within the room, and a similar one was suspended outside in the shade north of the building.

(14.) Owing to certain mechanical defects in the construction of the bar-boxes, it was found more convenient to adapt the bar-box of I, for lowering into the bar-trap, to make the other bar pass above it, and to commence a

comparison by always placing bar A first under the microscope. A comparison comprised 4 groups of observations as follows :---

1st Group o	f observations or	Bar A	
2nd	"		Giving one comparison
3rd	"		orving one comparate
4th	39	A J	

Each group of observations consisted of the following readings, the observers being understood by h and c:-

• •	w:	EST	Еле	S T	
Order	Microscope H	Thermometer	Thermometer	Microscope G	Order
1 2 3 4 5 6 7 8 9	k k k c c c	<i>h h c</i>	c c h k	 c c c k k k	1 2 3 4 5 6 7 8 9
10	•••••••	C	76		10

The above readings in each horizontal line were made simultaneously, and this condition was essential in the case of the micrometer readings, because the bar when under observation could not be isolated (Art. 4), as was done during Captain Clarke's experiments. It will also appear from the foregoing, that in the table of comparisons given hereafter, each mean temperature is obtained from 16 readings, and each micrometer result from 24 readings (12 with each microscope). Hence the 120 bar comparisons taken, involved 3840 readings of the thermometers and 5760 of the micrometer.*

(15.) The Bar room was visited by the observers daily at about 9 A.M. and 21 M.P. Commencing with the former hour; work was begun by reading the outside thermometer. The external door was next opened and closed before the observers entered by the western window (Art. 2.) The thermometer hanging in the room was read, the lamps lighted and bar A brought into position and focus. A bar once brought into good focus would generally remain well adjusted in this respect for days, though in the interim it had been wheeled to and fro several times, besides being sunk into the bartrap. After taking a group of observations on A, the bar gave place to I, on which two groups were taken. I, in turn gave place to A, on which a group of observations being taken, one comparison stood completed in some 45 minutes of time. In general three comparisons were taken at each visit, at the end of which, the bars, when hot, were wheeled away as far as practicable from the microscopes and left in this position; after this the inside and outside thermometers were read and recorded. The temperature of the tank was now generally raised some 1 a degree, an increase of heat sufficiently small for the bars to acquire during the short absence of the observers. Remarks similar to the preceding apply to the visit at $2\frac{1}{2}$ P.M., with this difference, that on leaving the bar room for the night, the temperature of the tank was decreased by about $2\frac{1}{2}$ degrees, a change to which the bars adapted themselves before work was resumed next morning. In fact no large changes of temperature were practicable within the intervals of successive visits, for owing to the considerable space (0.8 lnch) between the bar and water box, the former was exceedingly slow in receiving changes of temperature. Of the two bars I, was far the slowest in this respect, as was to be expected. Under an alteration in the tank of 2 degrees, this bar has been noticed to take so much as 2 hours in parting with the last 1 degree of altered temperature.

(16.) The bars were compared under four different conditions viz :---

Series No.	1	30	comparisons,	both bars hot.
,,	2	30	- ,,	both bars cold.
,,	3	30	,,	\mathbf{I}_{s} hot and \mathbf{A} cold.
,,	<u>4</u>	30	"	s cold and A hot.

these comparisons are given in the following tables.

• The Bar and Thermometer comparisons and the Micrometer runs involved in these experiments were all taken by the same observers, i.e. by J. B. N. Hennessey, Esq. and W. H. Cole, Esq., M.A.

COMPARISONS between the 10-feet Standard Bar Is and A. Series No. 1; both Bars hot.

		Mean	• (98.38	6°.	•	8	86.46	ic d ic d	8 8	3	.41	44.		ş	og.	S S.	19.	20.	22.80	64.	8 <u>5</u> .	<u>چ</u>	<u>8</u>	06.04	† 1.	Le.	88.	16.	Le.		95.40	31.90			97.42
for erron	•	4228	• ,	98.156	001.	+G.	018.16	-863	522.	640 679		198.	·644	295.	2 83.	189.	015.	.459	- 60.	192.80	.445	825.	409.	129.	820.20	90.044	.158	325.	182.	910		95.330	404 404			
corrected		4327	•	98.600	000 Y	4	481.	00 I.	616.16	90.074	* fo	885.16	-845		119.	23¥.	282.	855.		110 of	925.	583.	. E83.	-580	911.yu	6	.373	487.	174.	622.	1	95.462	120	cc		
r readings		Mean	•	o6.52	4	64	-54	-22.	.49	4	+	.‡	83.	65.	.63	24.	94.	44.		56.0	00.46	40.90	96.	.63	9	94 /0 28:	s.e	21.30	C- CK	. e		<u>8</u>	ST.			61.96
ermomete	_"	4217	۰	96.842	848	108.	88 3	616.	008.	814.	z 60.	689.	* 84.	.148	654.	108.	160.	196.		360.46	060 123		660. 660.	160.	1	150.56	601 812.	aye.	oge.	.436	2	445	966.	oof.		
Ţ		7345	•	261.96	9 80.	411.	202.	122.	941.	681.	££1.	942.	182.		.64	063.	5.5 873	445.		144.		408.	-88-	128.		112.76	809.			396.	>	† 16.	8 08 4 08	<u>858</u> .		
btures	V - '	hd	+	24.15	22.43	30.64	36.08	36.77	\$9.9E	36.18	32.74	43.08	40.06	00.1 7	14		47.07	49.72		43.45	34.33	02.00	20.38 20.38	66.Se		37.47	51.50		37 73 28.46	96.68		<u>бо.</u> 19	55.18	04.14		38.31
ved tempen	A-D*	nths of a y		1346.32	1344.36	1340.52	1228.06	1328.63	1325.94	86.5251	1329'4I	1313.32	10,0101	1319 05	90.4181		1310.24	1314.85		1321.60	1327 35	<pre></pre>	1335 53	1335.28		1275'02	1277 44		1203.00	10.1821		1256.44	22.1921	1274 ³⁹	1	Mean
At obser	1 -D*	Millio		1370.47	1366.79	1367-16	20.1 yr 1	1266.30	1362.59	91.2921	1362.15	1356.40		1359'03	1362.06		1303'91	1364.57		30.5981	1305.31	-6 000-	1305'03	42.1921	•	1312.49	1314.83	1310 49	1320.73	1321-10	CK	1317.53	06.9181	1316.15		
Jo	persture JaneT	m9T	•	7.101	-	. 2		2	: :	: :	5.101	2		2	2	2	2	2 3	R	:	2	2	2	a 1	:	3.66	:	2	:	2	2	*	2	2		
ide meter	8	aibaA	•	o.yr	. :	0.6£		:	: :	::	:	:		:	:	:	47.5	: :	:	:	:	:	:		2	:	:	:	:	:	:	:	:	49.5		
Outs	Sait	Begin	•	•	9.17	:		43.0		; :	:	9.23	>	+ 6 +	:	:	:	:	:	1.9†	:	:	:	:	:	47.0	:	:	:	:	:	48.6	. :	:		
ide ometer	2	RibaX		9.19	8.19 9.19	62.3		03.0	03.2	2 2 3	63.5	:		62.6 6	03.0	03.0	ê3.2	03.5 62.8	030	6.£9		04.4	:	y		:	:,	04:3	:		4 40	:	: :	64:3		
Therm	Sai	naizoA			5 I Q	7. 19		0.89		0.00	; :	0.89)	† .19		03.0	4.29		03.5	2 .29	:	:	63'3	:	:	63.5	:	:	:	:	:	9.29	:	:		
e		gaibaU		A. #.	3 0 F.M.	5 35 4	+	IO 51 A.W.	11 49	2 0 F.M.	• •		0	10 56 A.M.	o g P.M.	1 8	3 46	4 v	5 30	TO SO A.W.	11 46	0 45 P.M.	3 36	4 27	5 15	4	0 40	1 30	3 29	4 14	4 59	IO KE A.M.	0 14 P.M.	9 1		
Π	Sai	Beginn		Å. m.	0 45 P.M.	2 23 2 26	000	9 50 A.M.	10 53	0 I5 P.M.	2 35 3 4 1	. •	•	9 43 A.K.	10 58	0 13 P.M.	a 45		4 40	10 6 A.M.	10 55	11 49	2 45 P.M.	3 38	4 27	II 17 A.M.	0 4 P.M.	o 45	2 49	3 29	4 <mark>1</mark> 4			0 26 P.M.		
	Date			1870	6th Jan.	:	:	7th "	:	:	: :	, The	" 1710	10th "	:	:	:	:	:	11th		:	:	:	:	12th	:	:	:	:	:	184	4 TIOT	::		
noai	i compar	muper o	- - м			21 03	>	4	10	91	- 00) ;	2	10	Ħ	18	13	14	12	16	1	18	19	ន្តរ	21	22	នេ	24	25	88	5	g	88	38		

EXPANSION EXPERIMENTS

* D here stands generally for the distance between the zeros of the two micrometers, reckoned as constant during each comparison only.

COMPARISONS between the 10-feet Standard Bars Is and A. Series No. 2; both Bars cold.

noaira		Ti	BG	Insic Thermo	le meter	Outaic Thermon	de meter	Jo	At obse	rred tempe	ratures	The	rmometer	r reading:	s corrected	l for erro	E
qm 00 10 19 0	Date	8aiaai	Saibi	- zaiaai	Saibt	Qaiaai	Suip	orutaroqu AnsT	- D•	A -D•	- A					•	
umN		Beg	uM I	Beg	પ્લ	Beg	ug	төТ	Milli	onths of a	yard	7345	4217	Mean	4227	4228	Mean
	0481	k. m.	Å. m.	0	٠	0,	•	:			+	0	•	•	0	•	•
818	l6th Jan.	11 21 A.M.	0 16 P.M.	5 5'2		27:6	:	:	451.46	362.46	00.68	54.441	54.435	54.44	54.416	54.368	54.39
38	::	0 55	1 47	::	55.55 55.55	::	54.8	::	452.00	303'41 364'19	86'96 86'96	54.457 54.457	54 429 54 423	54.44	54'401 54'410	54:362 54:368	54:38
28	:	₩ 4 80 m	358 515	54.0 55.5	5.55 55.5	53'3 	::	::	452'44 454'66	364.78 363.29	87'66 87'56	54'447 54'471	54 446	54.45	54.414	54.396	54.41
y	17th	0 66 A.W.	TO 11 A.W.	0.03	2.5.2				77.0.1					-		001 10	
35		10 45 0	11 20	53.5	63.69 63.69	, t	::	::	410.00	320.70	06.16	52.330	52.338	52.33	52.258	52.278	52.37
88	:	yz 11	11 55 0 20 P W	23.6	53.7	:	:	:	418.93	326.40	92.53	52.345	52.327	52.34	52.275	52.274	22.27
3	:	06 11		:		:	543	:	418.50	£4.02E	82.16	52.350	52.314	52.34	22.303	162.23	52.30
33	18th "	9 33	10 '8 A.M.	50.8 50.8	52.6	6 170	:	:	415'13	333.57	95.16	608.15	658.15	81.83	989.15	894.15	\$1.73
19	::	10 42	11 20	5.85	5.55	::	: :	: :	414.20	322.15	11.10	264.13	51.840	51.82	189.15	194.15	21.12
3 :	:	18 11	11 54	52.5	25.2	:			414.86	323.03	91.83	\$1.766	51.835	08.15	0/0.15	51-750	14.13
\$;	:		0 28 P.M.	52.5	9.83	:	44.5	:	412.82	321.79	£0.16	154.15	51.826	64,15	51.674	51.756	51.72
38	::	3 30 F.M.	3 10	51 0 53 0	::	47°5 53°2	::	::	415°09 414'08	325.23	98.68 97.10	\$04.13	91815 91813	94.15	959.15	51.745	02.15
47	:	3 54	4 33	53.2	23.3	:	42.4	:	414.78	322.14	92.64	21.693	608.15	51.15	51 049 51 650	51.743	60.15
8	19th "	9 33 A.M.	10 16 A.M.	51.0	0.23	43.5	:	:	405.38	22.918	91.68	£11.1\$	951.13	51.13	S11.1S	51'133	2 1.13
28	::	10 57	11 29) 	52'4	: :	::	: :	404 00 404 IK	315.50	80'24 80'18	51.104	611.13	11.15	111.15	221.12	21.15
52	:	11 30 8 7 W	0 6 P.M.	52'4		:		:	405.19	314.77	90.43	101:15	51:114	11.15	201 100 51 100	51.132	51.12
	:		• •		0 •		50.0	:	404.04	314.40	90.54	101.15	S11.15	11.15	601.13	51:147	£1.13
32	: :	3 23	355		52.5		::	::	405.29	310.00	80'23	660.13	911.13	11.15	011.15	51.153	£1.13
8	:		4 30	52.5	53.6	:	42.4	:	405.34	315.76	89.58	201.15	\$1.13	21.15	521.12	101 15	51.14
8	20th "	9 46 A.M.	IO 34 A.K.	49.5	:	0.14	:	:	35.568	¥9.†0£	16.06	50.223	50.358	65.05	412.05	60.377	K0' 30
28	: :	11 25	11 133		515	: :	:	:	394.97	304.01	96.06	50'182	50.354	20.57	20.303	50.364	50.28
60	:	11 36	O IO P.M.		:	:	::	: :	18.166	303.13	69.88	201.02	50 320	50.25	50'20I 50'184	50'359 50'353	50'28 50'27
3	:	0 11 F.W.	0 45	:	5.15	:	:	:	393.70	302.84	98.06	20°164	20.322	20.24	20.177	50.343	92.05
					- <u></u>					Mean	90.48		•	21.87		,	\$1.84
	- -						1										

WITH THE STANDARDS I_S AND **A**.

29

• D here stands generally for the distance between the zeros of the two micrometers, reckoned as constant during each comparison only.

•	C	5	
	ç	5	
	1	C	
-			
1			
	,	2	•
-			
c	ç)	
		5	
2			
<		ċ	
C	040		
•	,	2	
5	I S GLT N		
Cun J J	DIGTIGTIC		
10 2.1	1991-11		
12.	L D P		
2 -4	nogariou		
010 0 0 F G			
1 41200			

1

,

ors		Mean	ę	51.49		* 9	.73 .75	20.25	7 0	24	.48	23.	53 .04	01.	11. 62.	38	40	1 9	899 899	e4.	61. 51.	86.	54.02	8 :	 -	91.		86.25
d for err	A	4228	•	51.583	040 403	174.	820 820	\$2.134	9/1.	286	528	569	060.85	041.	-214 -270	405	439	\$19.	eel. 190.	611.	558. 997	54"038	1 90.		1/1	3 14	1	
s correcte		4224	•	51.406	420	.530	•29 •28 •	600,25	120.	121	624.	.475	666.	83.058	581.	355	302	ŝ	020 (935	699.	.728 827	186.	846.	140 40	071.	t r <i>x</i> .		•
r reading	-	Mean	•	97.29	4 5 4 5	5	55.	96.41	. 49	59 65	92.	z.L.	63.39	42.	12.	02.	02.	10.16	ē 8	41.		89'22	92.	5×		64.		63.26
ernomete		4217	•	97.156	633.	544	.595 .560	965.9 6	699.		916.	8 38	93.575	414.	.347 .337	198.	EOE.	451.16	E70'	652.	595. 298	89.238	692.		846 201	-858	1	
The		7345	•	97.431	3386	.356	.531	o£2.96	1 .230	410 410	E 19.	509.	803.208	281.	ɛ 6o. 101.	8°0.	160	426.06	526.	640.16	Ez1. E11.	89'200		0/4 • 44	600 <i>L</i> .	914.		
ratures	۲-"I	yard	+	10,0'88	16.6001	1068'03	1065.58 1065.58	1034'44	1034.77	1035.72	1031.24	1030.02	22.236	949.51	947 [.] 61 945 . 28	641.93	10.146	886.50	886-82	26.888	887:34 887:54	836-85	839.23	8.0.0	848.92	848.48		88.556
rr ed tempe	A -D•	onths of a		328.71	330'4ª	2 2. 13 2	333'13 334' 10	18.985	337-05	339°81 339°81	345.96	346.46	35558	356-93	358 og 359'23	36.195	£9.10£	¥1.49£	305.07 364.22	364.90	36579 36654	270'92	370.53	40 4/0 101040	372.76	373.38		Мевп
At obse	• Q - - •	Milli		65.6651	41.8651	1399.35	1401.71 1399°79	\$2.14E1	1372.42	1375.53	1377.20	1377'43	1,308-80	1306.44	1305.70	1 303.84	1303.44	1 350.64	10.1521	1253.82	1253 04 1254 08	11.1021	1209.76		1221 68	96.1221		
30	autaisequ Ansl'	nto T	•	0.201	::	:	::	0.101	:	::	:	:	98.0	:	::	:	:	5.26	::	0.96	::	9.16	:	3,70	; ;	:		
side iometer	ងឃ្មា	ba A	•		:;		::	:	:	49.8	:	:	:	:	, 64 9		1 2	ł	: :	ł		:	: •		: ;	5.24		
Out Thern	Suiar	ugaH		36.0	::	:	1.68	45.3	į	::	' :	:	9. 44 .9	:	::	45:9	;	49:5	::	48:0	! :	41.4	:			:		
sìde ⁻ nontet er	Suil	Enc	•	:	:;	54.9	65.0	ų	:	55.7	;	2 60	į	.:	ۍو.ع تو.3	6.55	20.0	:	5.95	!	 26.7	:	8.y		13	5 6·8		
In Thern	Suin	Begu	•	54.5	545 54'5	54:9	24.0 	£4.5	0.55	55.5	54.6	5 5.6	\$5.4	55.8	50.0 56.4	54.7	55.9	5.55	50 I	o. 55	56.3	55.3	20.0 20.0 20.0	1.33	4.90	56.6		
Time	Jug Sug	rigeU on M	m. ň. m.	57 A.M. 10 47 A.M.	40 11 20 34 0 13 P.M.	14 P.M. 0 49	30 8 4 4 8 4 4 8 4 4 8 4	33 A.M. 10 32 A.M.	23 11 0	50 0 33 P.M.	30 P.M. 4 12	14 4 51	33 A.M. IO 17 A.M.	18 IO 57	58 11 40 48 0 25 F.M.	17 P.M. 4 3	4 4	7 0 45	4e 1 29 30 2 2 2	16 3 53	54 4 40 41 5 17	33 A.W. TO I3 A.W.	14 10 54 EF 11 45	50 P.W. 2 22 P.W.	33 4 14	15 4 50		
	Dete		1870 4	ud Jan. 9	<u>•</u>	•	: : :	th 9	<u>•</u>	::		•	th 9	o ₁	<u>9</u> :::	;	•	th "		3	•••	8 8	<u>0</u> <u>0</u>		- m	•		
trosinaq	luoo j a p	od attur V		61 22		3	88	67 24	88	8 2	5	32	72 25	74	22	£2	2	79 26	818	83	32	96 271	**	. 88	8	8		

EXPANSION EXPERIMENTS

30

• D here stands generally for the distance between the zeros of the two micrometers, reckoned as constant during each comparison only.

COMPARISONS between the 10-feet Standard Bars Is and A. Series No. 4; Is cold and A hot.

Time Inside Thermometer	Time Inside Thermometer	me Inside Thermometer	Inside Thermometer	de meter	I	Outsi Thermor	de neter	10 0	At obse	erved tempe	ratures	Ê	ermomete	r reading	s corrected	l for erro	E
gaian Baian Baian	Saiat Saiat	Suinc Saint Sa	Saiar Baiar	8u		Saiac	9 a	rutsrəqa AasT	•d-,	A-D*	l, – A					۲	
Begin Begin Begin Begin Fradi	Begin Endin Begin Begin Endi	Endi Begi Endi Begi	ibaH ibaH	ibaX 	ú39A		ibaA	поТ	Mill	ionths of s	yard	7345	4317	Mean	4237	4228	Mean
		0	0	•			. 0	•			I	•	۰	•	•	۰	۰
29th Jan. 2 12 F.M. 3 8 F.M. 55.8 50	2 12 F.M. 3 8 P.M. 55'8 50	3 8 Р.Ж. 55.8 50	55 ^{.8} 50	20 	20	4	:	0.201	430.66	1334.44	893.45 800'e I	1980.2 23.861	52.884	63.00 183.00	98'34' '207	900.86 0703 0	41.86
3 10 3 55 57 0	3 10 3 55 57 0	3 55 57'0	27.0	57.0	:		:	:	•0 • 6 •	61 6461	• ⁶ 260	2		ŝ	· ·	60414	
81st " 9 49 A.M. 10 41 A.M. 58.0 45'	9 49 A.M. 10 41 A.M. 58.0 45'	10 41 A.M. 58'0 45'5	28.0 45.1	45'5	45.5		;	5.101	10.44	1328'50	851.49	199.55 .661	129.53	55.63 .66	825 806	98.624 100-	
10 46 11 27 563 11 28 0 10 P.M. 58'5 58'6	II 28 0 IO P.W. 58 3	11 27 58.3	58.3 58.5 58.6	58.6	::		53.6	::	478-44	69.2281	849.25	041.	.733	, t	. 946	465.	
1+ Teh in in in 12 A.M. 68.3 61'1	10 10 53 A.W. 68:3 61:1	10 52 A.W. 58'3 51'1	1.13	1.19	1.13		1	0.00	488-66	16.1421	783.25	26.390	56.356	26.37	96.568	£60.96	96.33
	IO 54 11 24 58'5		20.2 		:		: :	::	487.89	21.1/21	783.23	014	374	68.	.570	380.	.33
11 25 11 51 58.7 59.0	11 25 11 51 58.7 59.0	··· 26.0 28.1 28.0 ···	28.7 59.0	20.0	:		58.0	:	487.42	28.1221	704.45	420	390	•	5/5	8	55
3 7 P.W. 3 41 P.M. 58'2 56'2	3 7 P.M. 3 41 P.M. 58'2 56'2	3 41 P.M. 58'2 56'2	28.3 ··· 56.3	··· 26·2	2 6.3		:	5.66	494.43	1284.01	789.58	620 620	041 641	į, Š	020.26	• • •	9 9 9
3 42 4 14 590	3 42 4 14 59'0	4 14 59'0 4 55 59'3	59'0 59'3		: :		48:5	::	494 90	1285.43	189.87	592.	e+4.	51.	88	669.	6
			.0.2	ġ	8			o.yo	43.003	12.1021	103.64	\$7.130	57.123	81.45	93.288	93,313	93.45
			20.0 20.3 ···				::		11.105	11.7021	00.804	191.	e É1.	SI.	£83.		4
11 8 11 41 59'2	20.3			:	:		:	:	500.94	1204-66	103.73	<u>561.</u>	191.	61.	228	0.00	68.
11 42 0 12 P.M. 59'4 59'5	11 42 0 12 P.M. 59'4 59'5	0 12 P.M. 59'4 59'5	59'4 59'5	26.5	: ;		53.0		502.27	n/ 4021	108-19	•		? ;	£41.70	- 20 	10,70
			58'I 50'	50.	5	_	:	305	50/02	10 9121	61.904	1.54	164	- 1	231. 231.	8 558	; 8 ;
		5 29 59°6 47°	29.6 47.	59.6 47	47	ŝ	• 7	::	11.805	1215.88	+4.LoL	484	914.	; ‡	441.	847	8
3ml 0 11 A.W. 10 17 A.W. 68'C	0 41 4.16 10 17 4.16. c8.c	10 17 A.M. 68'5	c%.c	5				0.20	10.303	90.4811	50.589	380	996.	.37	90.564	683.06	90.58
	10 18 10 49 50°0	··· 0.65 0.67 0.01		. :	l :	•	::	2:	65.505	1136.64	631.05	89E.	3 64	.37	5 85.	580	85.
10 50 11 24 59'1 59'2	10 50 11 24 59'1 59'2	26.1 20.3	··· 2.65 1.65	··· e .65	:		55.6	:	\$04.3ę	85.8611	634'02	.370	304	.37	020.	100	ē
2 29 P.M. 2 56 P.M. 58.6 56'9	2 29 P.M. 2 56 P.M. 58.6 56'9	2 56 P.M. 58.6 56'9	58.6 ··· \$6.9	6.95	6.9 S		:	93.6	506.77	1150'13	643°30	0F7.	.43I 122	43	91.355	410. 420.16	61.16
	2 57 3 21 59 2 3 22 3 50 59'3 59'5	3 50 59'3 59'5	59'3 59'5		::		::	::	206.70	22.1511	22.779	450	.457	45	341	110.	.18
4th 0 42 A.M. 10 14 A.M. 68'6 61'3	0 42 A.K. 10 14 A.K. 68'6 61'	10 14 A.K. 58'C 61'	5.13 		(. I Y	~	:	8	804.38	1077'35	20.213	698.	.334	.35	9 8.030	87.756	68.48
10 15 10 47 58'9	IO IS IO 47 58.9	10 47 58'9	6.85		:			.:	503.53	¥6.LLOI	574.41	3.53	.335		540. 5880.	-780 281	
10 48 11 14 59'0 59'0	10 48 11 14 59'0 59'0	11 14 500 590	0.65 0.65	20.0 ····	:		0.9	:	503.63	50 0/01	5/4 94	C+C	• • • •	• v	3 3	Co/	
2 IS P.M. 2 45 P.M. 57'9	2 If THE 2 45 P.M. 579	2 45 P.M. 57'9	57'9	:	:		:	9.06	205.68	60.4801	581.41 E80.60	300	375.	9 .	491	501.00	12.
2 40 3 19 507 1 3 20 3 51 59'1 59'5 1	2 40 3 19 507 1 3 20 3 51 59' 59' 1	3 51 59'I 59'Z	50.7		::		:4	::	505.44	1086.51	EI.185	328			.175	121.	
										-			•				
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·		<u>.</u>					-	Mean	05.601			\$6.72	_		63.30
														İ			.

WITH THE STANDARDS I_s AND **A**.

* D here stands generally for the distance between the zeros of the two micrometers, reckoned as constant during each comparison only.

31

EXPANSION EXPERIMENTS

(17). Suppose now, that $I_s - A = z$ when both the bars I_s and A are at the temperature τ ; also let the expansion of I_s for 1° Fahrenheit = x_1 and its lengths at temperatures τ and T respectively = L_{τ} and L_{T} . Similarly for A, let its expansion be denoted by y, and its lengths at temperatures τ and t respectively by l_{τ} and l_{t} ; then

$$(T - \tau) x - (t - \tau) y = (L_T - l_t) - (L_T - l_T)$$

(18.) The circumstances of the comparisons of series No. 2, when both bars were cold, are most favorable for determining the difference of length between the bars. The mean results of this series give $I_s - A = 90.48 m.y$ when the temperature of I_s was 51°.87 and that of A was 51°.84. Adopting Captain Clarke's value for x = 21.159 m.y, it is found, that $I_s - A = z = 89.85$ m.y, when both the bars are at the temperature $\tau = 51^{\circ}.84$.

(19.) Substituting these values of z and τ , there results, from each of the comparisons Nos. 1 to 30 and Nos. 60 to 120, an equation in x and y similar to (1). The numerals of these equations may be conveniently tabulated as follows; where, for instance the first horizontal line, under "both bars hot," when read as an equation, is represented by 44.68 x - 46.54 y = -65.70 m.y, and so on of the others.

Se	ries No.	l; both k	oars hot	s	eries No.	3 ; I _s hot,	A cold	Series No. 4; I _s cold, A hot				
. of trison	Co-eff	cient of	8	of trison	Co-eff	ficient of	8	of trison	Co-effi	cient of	8	
No. compe	x	у		No. compe	x	у		No. compa	x	у		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 21 22 24 25 6 7 8 20 21 22 24 25 27 28 27 28 20 21 22 23 24 25 27 28 20 21 22 23 24 25 27 28 20 21 22 23 24 25 27 28 20 21 22 22 23 24 25 27 28 20 21 22 22 23 24 25 27 28 27 28 29 20 21 22 22 23 24 25 27 28 28 27 28 27 28 27 28 27 28 27 28 28 27 28 27 28 27 28 28 27 28 28 28 28 28 28 28 28 28 28	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	46.54 55 56 16 14 01 02 04 45.63 90 78 76 45.63 90 78 76 45.63 90 78 76 45.63 90 78 76 45.63 90 78 76 44 20 30 43 54 43 54 43 55	65.70 67.42 63.21 53.87 53.08 53.20 53.67 57.11 40.77 49.88 48.76 45.76 42.18 41.70 40.13 46.40 51.89 55.52 60.35 60.35 60.35 52.38 52.47 53.80 52.38 52.47 53.41 52.12 51.39 49.89 28.76	61 62 66 66 66 77 72 73 74 75 77 78 90 81 23 84 85 87 88 88 88 88 88 88 88 88 88 88 88 88	+ 45.75 .70 .61 .74 .71 44.57 .56 .75 .92 .88 41.55 .43 .37 .36 .39.20 .17 .16 .33 .37 .37 .38 .42 .92	$\begin{array}{c} + & 0.35 \\ & 31 \\ & 20 \\ & 20 \\ & 11 \\ & 09 \\ - & 23 \\ & 34 \\ & 40 \\ & 64 \\ & 68 \\ & 1.20 \\ & 26 \\ & 33 \\ & 39 \\ & 54 \\ & 56 \\ & 777 \\ & 81 \\ & 88 \\ & 91 \\ & 95 \\ & 2.14 \\ & 18 \\ & 24 \\ & 31 \end{array}$	+ 981.03 980.06 977.90 978.18 978.73 975.84 944.59 944.59 944.59 944.59 944.39 945.87 941.39 945.87 941.39 945.87 941.39 945.87 941.39 945.87 941.39 945.87 945.99 945.92 79.94 79.95 79.95 79.97 75.99	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 114 113 115 116 117 118	+ 1.03 3.78 .90 4.53 .55 .57 .81 .85 .91 5.29 .53 .53 .53 .53 .53 .53 .53 .55 .57 .50 .51 .50 .52	46.33 ·28 ·88 ·91 ·93 44.49 ·49 ·49 ·49 ·49 ·49 ·45.02 ·03 ·05 41.61 ·60 ·55 ·55 42.17 ·16 38.74 ·77 39.35 ·34 ·36 ·09 ·10 ·49	983·30 980·36 941·34 940·40 939·10 873·10 873·08 873·30 873·30 873·30 879·43 880·19 879·43 880·19 879·43 879·43 880·19 879·72 793·49 792·85 793·57 792·34 798·04 796·04 797·59 723·87 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·21 733·30 734·37 662·92 664·26 664·67 671·26	
30 30	·31 ·28	•71 44:31	34 ^{.07} 48 . 09	89 90	•93 •95	-32 -32	759°07 758°63	119 120	•51 •51	•47 •46	07 0 .44 670.97	

(20) Accepting these 90 equations as all of equal weight, and proceeding by the method of least squares, there result the normal equations

$$y = \cdot 0000082404 \ a + \cdot 0000136126 \ \beta$$

$$\begin{array}{c} m.y \\ x = 21^{2}903, \text{ with weight reciprocal} = \cdot 0000138886 \\ y = 21^{7}965, \quad n \quad n \quad = \cdot 0000136126 \end{array}$$

(21) Substituting in the equations tabulated, the numerical values of x and y from (3), the following residual errors are obtained

		No.	of Series			No. of Series					
	1		3		4		1		3		4
No. of Comp.	Residual Error	No. of Comp.	Residual Error	No. of Comp.	Residual Error	No. of Comp.	Residual Error	No. of Comp.	Besidual Error	No. of Comp.	Besidual Error
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{r} - 2.54 \\ - 2.98 \\ + 1.03 \\ + 0.58 \\ + 0.29 \\ - 0.95 \\ + 0.29 \\ - 2.51 \\ 1.74 \\ 1.95 \\ 3.05 \\ 1.94 \\ 2.46 \\ 1.74 \\ 1.25 \end{array}$	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	$\begin{array}{r} - & 0.63 \\ + & 0.33 \\ 1.18 \\ 2.77 \\ 2.51 \\ 0.70 \\ 0.69 \\ 2.32 \\ 2.19 \\ 1.85 \\ - & 1.02 \\ + & 0.43 \\ 4.92 \\ 5.00 \\ 5.76 \end{array}$	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105	$\begin{array}{r} + 4.60 \\ 3.68 \\ 0.00 \\ 0.75 \\ 0.78 \\ 0.18 \\ - 0.22 \\ 1.87 \\ 0.56 \\ 1.95 \\ 2.33 \\ + 0.83 \\ 0.84 \\ - 1.82 \\ 1.44 \end{array}$	16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	- 1'34 0'71 0'18 2'41 1'88 4'63 3'18 2'58 5'03 2'96 3'76 4'62 2'02 4'02 3'74	76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	$ \begin{array}{r} + 4.95 \\ 5.08 \\ 5.19 \\ 0.65 \\ 1.60 \\ 3.35 \\ 2.70 \\ 1.13 \\ 1.99 \\ - 2.19 \\ + 0.22 \\ - 0.21 \\ + 2.41 \\ 2.10 \\ 1.23 \\ \end{array} $	106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	+ 2.53 3.89 2.12 4.76 5.76 3.44 5.47 4.86 3.67 5.54 5.28 5.08 6.58 7.17 6.42

(22) The sum of the squares of these residuals is 884.32; so that the probable error of a single comparison, or

$$p = 0.6745 \sqrt{\frac{884.32}{90-2}} = 2.1382$$

and the probable error of
$$x = 2.1382 \ \sqrt{0000138886} = \pm 00796$$

 $y = 2.1382 \ \sqrt{0000136126} = \pm 00788$

Hence, in the notation of page (12) Section | Chapter II

which are the adopted values (see page above quoted).

EXPANSION EXPERIMENTS

(23) The preceding values are arrived at by combining together all the 90 equations of series Nos. 1, 3 and 4. If however the 30 equations of series No. 1, when both the bars were hot, be excluded, and the remaining 60 equations of series Nos. 3 and 4 be proceeded with by the method of least squares; using z = 89.85 m.y and $\tau = 51^{\circ}.84$ as before; there result the normal equations

(24) Substituting in the equations tabulated, Nos. 60 to 120, the numerical values of x and y from (7), the following residual errors are obtained

	No. of	Series		No. of Series				No. of Series				
	3 4		4	3			4	3		4		
No. of Comp.	Residual error	No. of Comp.	Residual error	No. of Comp.	Residual error	No. of Comp.	Residual error	No. of Comp.	Residual error	No. of Comp.	Residual error	
61 63 63 64 65 66 67 68 69 70	$ \begin{array}{r} - 2.74 \\ 1.78 \\ 0.93 \\ + 0.65 \\ 0.39 \\ - 1.43 \\ 1.40 \\ + 0.24 \\ 0.09 \\ - 0.26 \end{array} $	91 92 93 94 95 95 97 98 99 100	$\begin{array}{r} + 2^{\circ}27 \\ 1^{\circ}35 \\ - 2^{\circ}48 \\ 1^{\circ}75 \\ 1^{\circ}71 \\ 2^{\circ}23 \\ 2^{\circ}63 \\ 4^{\circ}28 \\ 3^{\circ}00 \\ 4^{\circ}39 \end{array}$	71 72 73 74 75 76 77 78 79 80	$ \begin{array}{r} - 3.14 \\ 1.69 \\ + 2.92 \\ 3.07 \\ 3.76 \\ 2.95 \\ 3.08 \\ 3.20 \\ - 1.27 \\ 0.32 \end{array} $	101 102 103 104 105 100 107 108 109 110	$ \begin{array}{r} - 4.77 \\ 1.46 \\ 1.47 \\ 4.12 \\ 3.75 \\ + 0.19 \\ 1.55 \\ - 0.22 \\ + 2.60 \\ 3.60 \\ \end{array} $	81 82 83 84 85 86 87 88 89 90	$\begin{array}{r} + & 1^{\circ}43 \\ & 0^{\circ}77 \\ - & 0^{\circ}79 \\ + & 0^{\circ}07 \\ - & 4^{\circ}03 \\ & 1^{\circ}64 \\ & 2^{\circ}07 \\ + & 0^{\circ}53 \\ & 0^{\circ}21 \\ - & 0^{\circ}66 \end{array}$	111 112 113 114 115 116 117 118 119 120	+ 1.28 3.27 2.66 1.47 3.50 3.25 3.06 4.52 5.11 4.36	

(25) The sum of the squares of these residuals is 395.57, so that the probable error of a single comparison, or

$$p = 0.6745 \sqrt{\frac{395.57}{60-2}} = 1.7615$$

and the probable error of $x = 1.7615 \ \sqrt{0000191199} = \pm 00770$,, , $y = 1.7615 \ \sqrt{0000195098} = \pm 00777$

Hence, in the notation of page (12) Section | Chapter II

 $\begin{array}{c} \mathbf{m}.\mathbf{y}.\\ \mathbf{x} = \mathbf{E}_{\mathbf{s}} = 21^{\circ}3369 \pm 0077 \\ \mathbf{y} = \mathbf{E}_{\mathbf{s}} = 21^{\circ}7472 \pm 0078 \end{array}$

(26) We may also deduce from series Nos. 1 and 2 a value for the *difference* of expansion between $I_s - A$. Now, to find the difference of length between the two bars both at temperature **T**, we have in the notation of article 5 Appendix No. 7

$$(\mathbf{I}_s - \mathbf{A})_{\mathbf{T}} = (\mathbf{I}_s - \mathbf{A})_{\mathbf{0}} - (t_{\mathbf{a}} - \mathbf{T})(E_s - E_s) + dt_s E_s$$

(27) In applying this expression to the comparisons of series Nos. 1 and 2, I shall adopt values of **T** for these series respectively of $97^{\circ}.42$ and $51^{\circ}.84$, which represent the mean temperature of **A** during each group of **c** imparisons. For the expansions I employ the values on page (14) viz $E_a = 21.797$ m.y and $E_s = 21.225$ m.y so that $E_s - E_a = -0.572$ m.y. Under these conditions we obtain the following,

$\left[\right]$	Series No. 1; both Bars hot								Series No. 2; both Bars cold						
rison		Observed	l	Fah.				rison		Observed	l	Fah.			
f compa	Temp	erature		97°-42	dt _s	I ₈ - A at 97°.42	'Residual Error	compa	Tempe	rature	ι _ Δ	51°-84]	dt _s	I, - A at 51°.84	Residual Error
No. 0	١.	A	', A	-1. ⁹⁶		F 8. 0.		No. of	١,	A	- <u>-</u> - A	- _ه د ا		ran.	
1 2 3 4 5 6 7 8 9 10 11 13 14 15 6 7 8 9 10 11 13 14 15 6 7 8 9 10 11 12 23 24 25 27 8 20 21 22 23 24 25 20 20 20 20 20 20 20 20 20 20	9 9 5 47 54 54 54 54 54 54 54 54 54 54	98.38 399.40 585 865 888 47 74 50 55 55 95 98.27 49 58 60 50 55 55 55 56 60 95 98.27 49 58 60 50 55 55 55 55 55 55 55 55 5	m.y 24'15 22'43 35'98 36'77 36'65 36'18 32'74 43'08 39'97 41'09 47'67 48'15 49'97 44'09 47'67 48'15 49'72 43'45 37'96 34'33 29'50 29'38 25'99 37'47 37'38 34'44 37'73 38'46 39'96 61'09 55'18	• • • • • • • • • • • • • •	• 1.86 1.92 1.91 1.46 1.41 1.46 1.47 1.03 1.03 0.97 0.78 0.79 0.78 0.79 0.78 0.79 1.03 1.03 0.97 0.78 0.79 1.49 1.64 1.67 1.25 1.18 1.05 1.25 1.18 1.05 1.25 1.18 1.05 1.25 1.18 1.05 1.25 1.18 1.05 1.25 1.18 1.05 1.25 1.18 1.05 1.25 1.18 1.05 1.25 1.18 1.05 1.0	m.y 64:18 63:73 67:75 67:30 65:77 65:79 64:20 64:20 64:97 64:78 64:28 64:28 64:28 64:33 64:53 64:33 64:33 64:33 64:33 64:33 64:57 64:38 65:40 65:40 66:57 64:38 62:11 63:42 64:58 62:60	$\begin{array}{r} - & 0^{*}36 \\ & 81 \\ + & 3^{*}21 \\ & 2^{*}76 \\ & 2^{*}48 \\ & 1^{*}23 \\ & - & 0^{*}43 \\ & - & 0^{*}43 \\ & - & 0^{*}43 \\ & - & 0^{*}43 \\ & - & 0^{*}43 \\ & - & 0^{*}44 \\ $	31 2 3 3 4 3 5 5 3 6 7 8 3 9 4 0 4 1 2 3 3 4 4 5 6 4 7 8 9 5 0 1 5 2 3 5 4 5 5 5 6 5 7 8 5 5 5 6 5 7 8 5 5 6 0 5 7 8 5 7 8 5 7 7 8 5 7 7 7 7	• 54'44 '44 '45 '48 52'33 '34 '34 51'83 '83 '83 '83 '83 '79 '75 '75 '75 '75 '75 '75 '13 '11 '11 '11 '11 '12 50'29 '27 '25 '24 '24	• 54'39 '38 '39 '41 '44 52'27 '27 '30 51'73 '72 '72 '72 '72 '72 '72 '72 '72	m.y 89'00 89'47 86'96 91'37 91'96 93'53 91'78 91'78 91'78 91'83 91'78 91'83 91'83 91'83 91'83 91'64 89'84 89'84 89'84 89'84 89'54 89'54 89'54 89'58 90'96 88'59 90'86 90'86	• + 2°55 2°57 2°56 0°43 0°44 0°12 0°12 0°12 0°14 0°15 0°14 0°15 0°14 0°15 0°14 0°15 0°14 0°15 0°14 0°15 0°15 0°14 0°15 0°15 0°15 0°14 0°15 0	• - 0 05 05 04 06 06 06 07 04 10 09 09 09 09 09 09 09 09 09 0	78.9 80 ,400 89 ,65 87 ,36 88 ,28 92 ,01 90 ,94 92 ,08 91 ,29 91 ,19 80 ,38 89 ,92 80 ,12 80 ,38 89 ,92 80 ,45 80 ,048 80 ,022 80 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,028 80 ,038 80 ,038 80 ,048 80 ,024 80 ,024 80 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,024 90 ,026 80 ,038 80 ,038 80 ,038 80 ,038 80 ,038 80 ,038 80 ,048 80 $\begin{array}{c} - & 0.45 \\ & 2.20 \\ 2.249 \\ 1.57 \\ + & 2.16 \\ 1.09 \\ 2.23 \\ 1.34 \\ - & 0.47 \\ + & 0.73 \\ - & 0.38 \\ 1.34 \\ + & 0.73 \\ - & 0.38 \\ 1.34 \\ + & 1.65 \\ - & 1.31 \\ - & 1.31 \\ - & 1.35 \\ + & 3.77 \\ - & 0.61 \\ - & 0.49 \\ $	
Mea	n 96°19	97.42	38.31			64.54		Меа	n 51.87	51.84	90.48			89.85	

(28) Hence for series No. 1 the probable errors are; of a single comparison \pm 1.09; of $(I_s - A)_{97}^{\circ}_{429} \pm 20$. And for series No. 2 the corresponding probable errors are respectively ± 76 and ± 14 . Therefore in the preceding notation

$$(I_{s} - A)_{51} \cdot _{84} = 8_{9} \cdot 8_{5} \pm \cdot I_{4}$$

$$(I_{s} - A)_{97} \cdot _{49} = 6_{4} \cdot 5_{4} \pm \cdot 2_{0}$$
and
$$(E_{s} - E_{s}) = -\frac{25 \cdot 3I \pm \cdot 2_{4}}{45 \cdot 5^{8}}$$

$$= -0 \cdot 555 \pm \cdot 005$$

From the concluded values at page (14)

36

$$(E_{\bullet} - E_{\bullet}) = -0.572.$$

Micrometer Runs.

(29) Experiments for determining the linear values of a division of the micrometers, attached to the microscopes **G** and **H**, were made on the 10th and 11th February 1870; directly after the expansion experiments had been concluded. These values or "runs" were taken on the inch (a.b) of the standard steel foot, which space is divided into 20 parts each of 0.05 inch. Focus was found on the lines about the middle of the inch, and each of the 20 spaces measured in succession with the micrometer. The focus was then deranged and the process repeated by the other observer. Each space was thus measured 6 times in all, focus being found as many times, after which the run of the other microscope was found similarly. These experiments give the following linear results, which have been employed in reducing the bar comparisons.

1 Division of Micrometer G = 1.15163 m.y of A

1 ,,
$$H = 1.10777$$
 ,

(30) The errors of the working thermometers employed during the bar comparisons, will be found recorded in Appendix No 8.

J. B. N. HENNESSEY.

October 1870.

APPENDIX.

No. 7.

FINAL DETERMINATION OF THE DIFFERENCES IN LENGTH BETWEEN THE 10-FEET STANDARDS I_B , I_S AND A.

The particulars of the comparisons between the bars I_B , I_S and A made in 1867 are given in Appendix No. 3, where however the differences of length at 62° Fahrenheit are calculated with the *original* values of expansion for these bars (see page 8). To find these differences in terms of the *adopted* values of expansion (see page (14)), we proceed as follows.

2. Let any two bars, say F and G, be compared respectively at temperatures t_f and t_g , the observed excess of F above G being denoted by $(F - G)_o$, and the similar excess when both bars are reduced by calculation to 62° Fah: by $(F - G)_{65}$. Then if the expansions employed in these reductions be E_f for F, and E_g for G,

$$(\mathbf{F} - \mathbf{G})_{62} = (\mathbf{F} - \mathbf{G})_0 - (\mathbf{t}_f - \mathbf{62}^\circ) \mathbf{E}_f + (\mathbf{t}_g - \mathbf{62}^\circ) \mathbf{E}_g \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \mathbf{[1]}$$

and differentiating this equation with respect to the expansions

$$d (\mathbf{F} - \mathbf{G})_{62} = - (\mathbf{t}_f - 62^\circ) d\mathbf{E}_f + (\mathbf{t}_g - 62^\circ) d\mathbf{E}_g \quad \dots \quad \dots \quad \dots \quad [2]$$

3. Collecting the numerical values required, for calculating the corrections to the differences of length at 62° Fah : given in Appendix No. 3, we have the following

From page 8, original values of expansion ,, page (14), adopted ,,	E _B <i>m.y</i> 32`759 32`759	E ₃ <i>m.y</i> 21 159 21 225	E _a m.y 22 [.] 669 21 [.] 797	•••	• [3]
$\therefore d\mathbf{E}_{\mathbf{B}} =$	= 0.0	$dE_s = 0.066$	$d\mathbf{E}_{a} = -0.872$		
		•		18.V	

From page	9, comp	arisons of	B	and I _s	$(t_s - 62^\circ) = 9.95$	$(_{B} - _{S})_{63} = 131.40$	
>>	10,	"	\mathbf{I}_{B}	and A	$(t_{a} - 62^{\circ}) = 9.95$	$(I_{B} - A)_{63} = 221.32$	[4]
•,,	11,	"	I _s	and A (t.	$(- \delta_2^{\circ}) = q^{\circ} \delta_4; (t_1 - \delta_2^{\circ}) = q^{\circ}$	$71; (I_g - A)_{sg} = 80.04$	

4. From [2], [3] and [4] there result

.----

and from [4] and [5] we obtain the required differences of length between the bars at 62° Fahrenheit as follows, the expansions employed being the *adopted* values of page (14),

$$I_{B} - I_{g} = 131.40 + 0.66 = 132.66$$

$$I_{B} - A = 221.32 - 8.68 = 212.64 \cdot 0.0$$

which are the values given at page (25) deduced from the comparisons of 1867 only.

5. Again in Appendix No. 6 comparisons of 1870, series No. 2, the mean results show, that when I_s and A were respectively at the temperatures $51^{\circ}.87$ and $51^{\circ}.84$, the former bar was longer than the latter by $90^{\circ}.48 \text{ m.y.}$ Now in the notation of [1]

$$(I_{s} - A)_{62} = (I_{s} - A)_{o} - (t_{s} - 62^{\circ}) E_{s} + (t_{a} - 62^{\circ}) E_{a}$$

or since $(t_s - t_s)$ and $(E_s - E_s)$ are both small, we may put $t_s = t_s - dt_s$ and write more conveniently

$$(I_{s} - A)_{62} = (I_{s} - A)_{o} - (t_{s} - 62^{\circ}) (E_{s} - E_{s}) - dt_{a} E_{a} \dots \dots \dots [7]$$

substituting in [7], the adopted values of expansion from [3] and the mean results above quoted, we have

6. From what has been here stated and proceeding as on page (25), the following are the final resulting differences at 62° Fah :

$$\mathbf{I}_{B} - \mathbf{I}_{S} = \mathbf{1}_{31}\mathbf{1}_{46}^{**,y}$$
 determined by Captain A. R. Clarke, R.E.

$$\mathbf{I}_{S} - \mathbf{A} = \mathbf{82}\mathbf{1}_{52}^{*}$$
 mean of comparisons in 1867 and 1870
Hence
$$\mathbf{I}_{B} - \mathbf{A} = \mathbf{213}\mathbf{1}_{3}$$

J. B. N. HENNESSEY.

Digitized by Google

November 1870.

APPENDIX.

No. 8.

ON THE THERMOMETERS EMPLOYED WITH THE STANDARDS OF LENGTH.

The standard and working thermometers, employed in determining the temperatures of the standard bars when under comparison, may be suitably described under two classes or kinds; *i.e.* thermometers which are read on their attached metal scales, and those with scales marked on their own glass tubes. The former kind of thermometers were received with the base-line apparatus in 1830, and were employed up to the year 1866 when they gave place to excellent thermometers of modern construction.

Thermometers with metal scales, in use 1830 to 1866.

2. The two standard thermometers were constructed by Messrs. Troughton and Simms and were marked in this country σ and σ_1 . There is reason to believe that they were precisely similar to one another in construction, so that a description of the latter, which alone is now (1871) forthcoming, may be considered to include the former. Thermometer σ_1 is about 16"1 in length, terminating in a glass-hook at the upper extremity and in a spherical bulb 0".6 in diameter at its lower end. It has a straight-bulb, a term, in contradistinction to bent-bulb, by which it is intended to express that the centre of the bulb is in the prolongation of the straight line defined by the glass tube. The thermometer is attached to a brass plate or scale by means of the glass-hook which to a certain extent acts the part of a steady-pin, and two bent metal bands which embrace the tube near its extremities and are themselves screwed down to the metal plate. The scale is graduated to half degrees from 5° to 222° Fahrenheit and the distance between the 32° and 212° strokes is 12".3. Thermometers σ and σ_1 have been assumed as errorless, in the absence of experiments during the period of their employment for finding their errors : nor could the omission be now supplied, for the glass-hook has a play in its socket of quite a quarter of a degree, by which quantity any errors which could at present be determined may be affected. Besides this, the important variations of their zero errors cannot now be ascertained retrospectively.

3. The 4 working thermometers were, it is believed, all similar to one another: those on standard bar \mathbf{A} were marked a and β and they are the two thermometers on which the observed temperatures of this bar depend during the comparisons at the Calcutta, Debra Doon, Sironj, Bider, Sonakhoda, Chach, Karachi and Vizagapatam base-lines. The thermometers on standard \mathbf{B} were marked γ and δ ; they were employed with this bar, only during the comparisons of 1834-35 between standards \mathbf{A} and \mathbf{B} , and were sent back to England in 1843-44 with the latter bar. It is therefore sufficient to add that γ , δ , σ and σ_1 were all compared with one another in April 1835, when 25 readings of each thermometer were taken between the temperatures of 73° to 79° Fahrenheit. The mean difference gives

$$\frac{\sigma+\sigma_1}{2}-\frac{\gamma+\delta}{2}=-0^{\circ}\cdot 228.$$

39

Thermometers with metal scales, in use 1830 to 1866-(Continued.)

4. As regards the important working thermometers a and β , a description of either will answer for the other since they are exactly alike in appearance. Thus a has a *bent bulb*; the tube terminates at its upper end in the usual glass-hook which was found in December 1855 to be slightly loose in its socket, so that the tube had a longitudinal play estimated at 0°.2 as a maximum. The liability to displacement was checked by the introduction of a minute wooden wedge and the thermometer used with this precaution in the comparisons which were subsequently made. The tube is 7" in length reckoning, from the glass-hook to the angle at the bend, and is attached to a brass plate (or scale) in the same way as the tube of σ_1 . The bulb is spherical and 0".4 in diameter; its centre is 1".1 below the brass plate, so that the bulb when in position is situated slightly $below_{(1)}$ the centre of a transverse section of the standard $A_{(9)}$. The thermometer is graduated only to integral degrees from 5° to 140° Fahrenheit and the distance between the 32° and 140° strokes is 5". The maker's name is not registered on a or β , but it is believed that these instruments were constructed by Messrs. Troughton and Simms.

5. The thermometers a and β were compared with certain standard thermometers on three occasions, *i.e.* in 1833, in 1854 and in 1867.

6. The comparisons of 1833 were taken by $Captain_{(3)}$ G. Everest, whose register of these experiments does not show the circumstances under which they were made; but it may be conjectured that the thermometers σ , σ_1 , a and β were suspended near one another in a room where the temperature was tolerably equable and thus observed. The readings recorded are as follows:

1833	Time	Standard σ	$\underset{\sigma_1}{\operatorname{Standard}}$	a	β	1833	Time	Standard σ	$\frac{\text{Standard}}{\sigma_1}$	a	β
June 13, 14,	h . m. 9 0 10 15 12 0 1 15 3 0 8 30 10 0 11 0 12 15 4 30 5 30	88°.9 90°.0 91°.1 91°.7 92°.4 90°.2 92°.6 92°.8 94°.7 95°.8 97°.1	89 [°] 2 90 [°] 1 91 [°] 2 92 [°] 0 92 [°] 5 90 [°] 4 92 [°] 7 93 [°] 0 94 [°] 6 95 [°] 8 97 [°] 0	88°9 90°0 91°1 91°8 92°5 92°5 92°5 92°5 92°5 92°5 92°5 92°5	89°0 90°0 91°0 91°7 92°4 90°5 92°8 92°8 94°2 95°8 90°8	June 15, 16	h. m. 7 30 8 30 9 30 10 0 12 0 6 30 8 0 9 0 11 0 12 0 5 0 Means	87'3 89'3 90'5 91'6 92'5 87'8 89'9 91'5 93'1 93'4 95'5 91'805	87.5 89.3 90.5 92.0 92.7 88.1 90.1 92.3 93.9 94.0 95.6 92.023	87°4 89°1 90°5 91°5 92°7 88°2 90°0 91°5 93°6 93°6 93°6 95°5 91°855	87'3 89'0 90'3 91'3 92'8 88'2 89'9 92'0 93'9 94'0 95'7 91'882

TABLE I of 1833.

And from the mean readings $\frac{\sigma + \sigma_1}{2} - \frac{\alpha + \beta}{2} = + \circ^{\circ} \circ_{45}$

(1.) See description of standard A page (2).

(2.) In this respect these old thermometers have an advantage over most modern bent-bulbs. The bent arm carrying the bulb is generally too short in the latter instruments to reach down to the centre of the bar, and even the thermometer-wells in the bars are not always bored to a sufficient depth.

Digitized by Google

(3.) Afterwards Colonel Sir G. Everest C.B.

Thermometers with metal scales, in use 1830 to 1866—(Continued.)

7. In 1854 Major₍₁₎ A. Strange compared σ_1 a and β with one another. The thermometers appear to have been attached to "a light frame of deal wood" and "the whole immersed in a large wooden tub containing sufficient water to "completely cover them." The water was "thoroughly agitated by means of a wooden paddle in order to obtain equal-"ity of temperature throughout." The results are as follows:—

N E	comparison	Readings of Standard σ_1	$\sigma_1 - \frac{a+\beta}{2}$	a — B	No. of comparison	Readings of Standard σ_1	$\sigma_1 - \frac{\alpha + \beta}{2}$	a — B
		•	0	o		0	o	o
	1	39'40	+ 0.20	- 1.40	3	53.50	+ 0.10	- 1.00
Į.	2	39.75	+ 0·83	- 1.15	4	53.25	- 0.02	- 0.80
		The water was	now raised to	a temperature	e of 108	° and allowed t	to cool down gr	adually
	5	95.30	- 0.43	- 0.45	9	75.00	- 0.13	- 0.35
	6	90'20	- 0. 30	- 0.40	10	70.20	— 0.18	— 0.22
	7	85.22	- 0'20	<u> </u>	п	62.30	- 0.25	- 0'70
	8	80.32	- 0.13	— o [.] 85	12	62.60	- 0.10	<u> — о'бо</u>

TABLE II of 1854.

Note.—"Stirring the water makes a difference of 1° occasionally".

8. The comparisons of 1867 were made under the directions of Colonel J. T. Walker, R.E. by J. B. N. Hennessey, Esq. and W. H. Cole, Esq. M. A. The procedure followed on this occasion will be found described further on in this paper under the head of "Thermometers with scales marked on their own glass-tubes"; it is sufficient to premise in this place that the Standard 4246 is an instrument of modern make, constructed with the skill and improvements now in practise and that its errors are all known. The experiments under notice give the following results :---

No. of comparison	Corrected readings of Standard 4246	4246 — σ ₁	$4246-\frac{\alpha+\beta}{2}$	$\sigma_1 - \frac{a+\beta}{2}$	a—B	No. of comparison	Corrected readings of Standard 4246	4246 — σ ₁	$4246 - \frac{\alpha + \beta}{2}$	$\sigma_1 - \frac{\alpha + \beta}{2}$	a-ß
	o	0	o	0	0	[o	۰	0	•	0
I	60.82	— o [.] зб	— ° · 47	— 0.11	- 0.94	8	75.00	— 0'42	— o [.] 58	— 0.1Q	- 0.22
2	62.90	<u> </u>	0.48	— 0.18	- 0.71	9	77.09	— oʻ38	— o [.] 63	- 0.52	- 0'71
3	64.80	— 0 [.] 37	— 0 [.] 49	— 0'12	— 0·53	10	<u>7</u> 8·75	- 0'42	— o•56	- 0'14	- 0.20
4	66-93	— oʻ38	- 0.20	- 0'12	— 0 [.] 61	11	80.83	— o · 39	— 0 [.] 57	- 0.18	- 0.62
5	69.01	— °'45	— o'48	— 0.03	— o · 57	12	82.86	— 0 · 43	- 0.21	— o·o8	- 0.22
6	70.83	- 0'42	- 0.24	- 0'12	— o'47	13	84.92	— 0 [.] 37	— o.21	- 0'20	— o·55
7	72.28	- 0.41	- 0.24	- 0.13	- 0.24	14	86.86	— 0.30	- 0.62	- 0.32	- 0.42
						15	88.93	— 0 [.] 33	- 0.05	- 0.50	- 0'40
I - <u></u>						of σ °	i of a	of β °			
			Read	lings in m	elting ice	32.35	31.6	32.8			

TABLE III of 1867.

(1) Now Colonel A. Strange.

Thermometers with metal scales, in use 1830 to 1866-(Continued.)

9. The correction to $\frac{a+\beta}{2}$ of + 0.045 from Table I, was applied in the first instance to the observed temperatures

of Standard A taken during the bar comparisons at all the base-lines measured prior to 1866; *i.e.* the lines of Calcutta, Dehra Doon, Sironj, Bider, Sonakhoda, Chach (or Attok), Karachi and Vizagapatam. Subsequently on a discussion of the subject by Colonel Walker, it appeared that means were available by which an improved value of the correction might be obtained for the base-lines at Karachi and Vizagapatam. Thus from Tables II and III the following may be deduced

From	n TABL	E II cf 1854	4.	From TABLE III of 1867.					
Comparisons	Temper- ature	$\sigma_1 - \frac{a+\beta}{2}$	α — β	Comparisons	Temper- ature	$\sigma_1 - \frac{\alpha - \beta}{2}$	α — β		
Nos. 11 & 12 9 & 10 8 & 7 5 & 6	° 62.5 72.8 83.0 92.8	o - 0.18 .16 .17 .37	° - °.65 :45 :68 :43	Nos. 1 & 2 6 & 7 12 & 13 15	° 61.9 71.8 83.9 88.9	o - 0.15 13 14 29	° °83 51 .56 .46		

It will be seen on comparing the values of $\sigma_1 - \frac{a+\beta}{2}$ and of $a-\beta$ determined at about the same temperatures

in 1854 and in 1867, that the identity between these corresponding differences is sufficiently close, to justify the assumption, that the zero errors of these thermometers were sensibly identical at the two epochs of observation; and hence that the errors determined in 1867, by comparisons with a well established thermometer and under improved appliances for equalizing and sustaining the temperature, are fairly applicable to the base-lines of Karachi measured in 1854-55 and of Vizagapatam measured in 1862-63. Such retrospective application was not considered desirable to the earlier operations, both on account of the defect in a described in art. 4 and also for the more important reason, that during the period of these prior operations the zeros of the thermometers were more liable to change, as at that time a and β were comparatively of recent construction.

10. Nor, in the bar comparisons at Karachi and Vizagapatam base-lines, does it appear, that by correcting each observed temperature for its assigned error, a sufficient improvement would be gained to justify the labor involved. Accordingly, the mean temperature of Standard A at the Karachi base-line being about 68°, we find by taking a mean from comparisons Nos. 1 to 8 (Table III) that Standard $4246 - \frac{\alpha + \beta}{2} = -0^{\circ}.51$; and similarly, the corresponding temperature for the Vizagapatam measurement being nearly 75°, the correction to $\frac{\alpha + \beta}{2}$ is $-0^{\circ}.55$ from comparisons Nos. 4 to 11 of Table III. As however a correction of $+0^{\circ}.045$ had already been applied in the reduction, we find eventually

Correction to the mean temperature of Standard **A** at Karachi base-line = $-\circ^{\circ}.56$ ", ", ", ", ", Vizagapatam", = $-\circ^{\circ}.59$

the linear values corresponding to these thermal variations will be found duly applied at pages VII___18 and VIII___16 of this volume.

Standard Thermometers with scales marked on their own glass-tubes, in use 1866 and subsequently.

11. The apparatus for comparing the thermometers with one another is similar to that adopted by Captain A. R. Clarke, R.E., C.B. and described at pages 7 and 8 of his volume entitled "Comparisons of Standards of length." I. consists of a water-tight trough with a tap for discharging and a funnel for admitting water. The thermometers rest on a frame which is immersed in the water, and are read through glass windows in the trough by means of a microscope

Standard Thermometers with scales marked on their own glass-tubes, in use 1866 and subsequently—(Continued.)

and a rectangular glass slide. The latter has eleven converging lines marked on it and is placed in the focus of the eyepiece, so that when the outer lines are made to coincide with the image of a degree, readings of the mercury can be obtained with accuracy to J or 2 in the second place of decimals. All these are copies of Captain Clarke's contrivances. But in the absence of appliances for heating up the comparing room to the temperature imparted to the water, the trough employed was made of larger dimensions than the one in use at Southampton. Thus Captain Clarke's trough was $29^{"} \times 9^{"} \times 9^{"}$ giving a cubic measurement of 2349 inches, while the one under notice is $40^{"} \times 14^{"}\frac{1}{4} \times 26^{"}\frac{1}{2}$ or 15,105 cubic inches in its contents. It may also be remarked that in the absence of slides similar to Captain Clarke's for moving the microscope in rectangular coordinates, other means are adopted, of sufficient rigour, for maintaining the required conditions of accuracy. The water in the trough can be thoroughly agitated and mixed by means of paddles provided for the purpose.

12. The five Standard Thermometers are numbered 4140, 4141, 4142, 4246, and 4347; they were constructed by Mr. L. Casella, in the year 1865 (or 1864) and received in India about the middle of 1866. Of these instruments 4347 alone has a bent-bulb; the other 4 have straight-bulbs. The bulbs are all nearly cylindrical in shape and rounded off at top and bottom. The scales in every case are marked on the glass tubes, but for protection and support each tube when in use is mounted on a metal plate. Nos. 4142 and 4246, have their scales and numerals cut into the upper surface of the glass-tube as usual, while a strip of white enamel runs along the opposite surface and furnishes an opaque back ground to the lines. In 4140, 4141 and 4347, the scale and numerals are cut on the upper surface of the tube as above and besides a corresponding scale is marked on the opposite or lower surface of the tube, each line of the lower scale being in the transverse section through its corresponding line on the upper scale^{*}. The thermometers all terminate at the upper extremity in the usual glass-hook, and the hollow within the tube, at the same termination, ends in a small safety reservoir in which the mercury may collect under temperatures above the boiling point⁺.

Number	I	ength	Tube	B	ulb	Range of	
IN UILLOEL	Entire	32° to 212°	diameter	Length	Diameter	graduation	
	"	"	"	"		• •	
4140	20.55	16.28	0.22	1.22	0'40	25 to 215	
4141	20.45	15.94	0.23	1.50	0.31	20 , 220	
4142	18.95	15.02	0.28 .	1.02	0'28	25 , 215	
4246	20.35	15.14	0.38	1.10	0.22	15 , 220	
4347	23.20	20'14	0.22	1.02	0.71	30 , 215	

13. The following facts have reference to the five Standard thermometers :

the shorter bent arm of 4347 is $1\frac{1}{2}''$ in length.

* The corrections given hereafter are applicable to the *upper-scale*. This system of duplicate marking, by which the plane of a transverse section through each *upper* line is indicated by a corresponding line below, was suggested by me as a ready means for placing the reader's eye in the position which it should occupy. The precaution is redundant and even voratious in the presence of Captain Clarke's excellent reading microscope and glass-slide; but when these aids are not employed, as in the use of ordinary thermometers, the advantages of duplicate marking will be apparent. (J. B. N. H.)

+ This safety reservoir is a nuisance. The column of mercury is very apt to be broken off and get detached from the bulk of the quicksilver in the bulk, and when this happens the metal is sure to run into the reservoir and pertinaciously resist all efforts to dislodge it. If the reservoir once gets quite full, no amount of tapping and coaxing will induce the mercury to descend, and in this case the hook-end of the tube must be gradually subjected to the flame of a candle when the quicksilver will readily run down. The remedy involves violence and risk, which would not be incurred, if in place of the reservoir the glass-tube and hollow were continued for 2 or 3 inches above the boiling point, supposing this to be essential ?

Standard Thermometers with scales marked on their own glass-tubes, in use 1866 and subsequently—(Continued.)

14. These thermometers were handed by the makers to Captain A. R. Clarke, R.E., C.B., of the Ordnance Survey, who subjected them to elaborate examination and comparison with the aid of the appliances detailed in his Chapter XVI of "Comparisons of Standards of length." Selecting 4142 he found its corrections for calibration, or c; its correction for error in the relative positions of the boiling and freezing points, (*i.e.* correction to mean degree) or m; and its correction for reading of freezing point (*i.e. index* correction), or *i.** He then compared 4142 with the Ordnance Survey Standard 3241 having previously found c and m for the latter thermometer. Subsequently, the corrections to the 4 working thermometers, employed by Captain Clarke in determining the expansions of the 10-foot Standard bars I_B and I_S , were found by him from comparisons with 4142; but these working thermometers were most unfortunately all broken on their way from England to Dehra Doon in India, so that a considerable portion of the time and labor expended on them was thus lost. The results of the foregoing comparisons are given in the volume and chapter above quoted and will be copied from thence into this paper.

15. But besides these *published* results, Captain Clarke found *m* for 4140, 4141, 4246 and 4347, and, excepting 4347 because it was too long for his trough, he compared them with 3241, and 4142. These results were furnished by him through Colonel Sir Henry James, R.E., Director of the Ordnance Survey to Colonel J. T. Walker, R.E., Superintendent Great Trigonometrical Survey of India with his letter dated October 1865.

16. Subsequently, Captain Clarke's comparisons last named were extended to lower and higher temperatures than those included in his series, by J. B. N. Hennessey, Esq. and Lieutenant M. W. Rogers, R.E., at Colonel Walker's Head-quarters' office. The following are the numerical results of the experiments enumerated in arts. 14, 15 and 16.

Temper-	Values of	Temper-	Values of	Temper-	Values of
ature	c	ature	c	ature	c
37 42 47 52 57	+ [°] 023 °068 °068 °016 °036	62 67 72 77	+ [°] 035 '029 '046 - '044	82 87 92 97	- ⁰ 020 012 005 073

TABLE IV. Calibration corrections₍₁₎ of Standard Thermometer 4142.

(1) See "Comparisons of Standards of length" p. 191.

* If R be the observed reading and T the corresponding deduced true absolute temperature, then in the notation here adopted

T = R + c + m + i

where it will be noticed that c and m are constants in respect to time, whereas i, in the absence of evidence, must be expected to prove a variable. The variations of i are, generally, all in the same direction; *i.e.* i is always negative and increases numerically for some considerable period after construction. It may also be disturbed if the thermometer is subjected to extreme degrees of temperature in either direction; the more so, probably, if the extreme reading is attained to suddenly and therefore violently, instead of by a process of gradual change. The following readings of 4246 in melting ice are not without interest.

1865,	October	32.00	by	Captain	Clarke at Southampton.	
1867,	A pril	32.28	by	Messrs.	Hennessey, Rogers, and Cole a	t Dehra.
1867,	November	32.30	by	Messrs.	Hennessey and Rogers.	
1870,	February	32.36	by	Messrs.	Hennessey and Cole.	23
each of the above readings is the	mean of not	t less then 6 c	biei	vations.	-	

Standard Thermometers with scales marked on their own glass-tubes, in use 1866 and subsequently—(Continued.)

TABLE V. Actual Thermometer readings of the Standards 3241 and 4142 corrected by $(c+m+i)_{(2)}$

Reference No.	324 1	4142	Reference No.	3241	4142
1 2 3 4 5 6 7 8 9 10	97'34 94'66 92'05 90'39 87'11 85'23 82'17 80'14 77'35 75'01	97 ³ 3 94 ⁶ 9 92 ⁰ 5 90 ³ 5 87 ⁰ 9 85 ² 0 82 ¹ 8 80 ¹ 5 77 ³ 5 75 ⁰ 0	11 12 13 14 15 16 17 18 19	72.00 70.01 67.18 65.05 62.13 60.15 57.46 55.52 52.16	72°03 70°04 67°16 65°08 62°14 60°16 57°49 55°53 52°20
Readings	in melting	; Îce		32'41	32.00

(2) See "Comparisons of Standards of length" p. 193.

Taking now the true temperature to be the mean of those indicated by the two thermometers in Table V, we have the following residual errors :

Reference Number	3241	4142	Reference Number	3241	4142
1 2 3 4 5 6 7 8 9 10	+ 0.002 + 0.	$\begin{array}{c} & & & \\ & - & 0.002 \\ + & 0.012 \\ & 0.000 \\ - & 0.020 \\ & 0.012 \\ + & 0.002 \\ & 0.002 \\ & 0.002 \\ - & 0.005 \end{array}$	11 12 13 14 15 16 17 18 19	$ \begin{array}{r} & \circ \\ & \circ $	$+ \circ \circ \circ 15$ $- \circ \circ 010$ $+ \circ \circ 015$ $\circ \circ 005$ $\circ \circ 005$ $\circ \circ 005$ $\circ \circ 020$

TABLE VI of residual errors.(3)

(3) See "Comparisons of Standards of length" p. 194.

45

Standard Thermometers with scales marked on their own glass-tubes, in use 1866 and subsequently—(Continued.)

					· · · · · · · · · · · · · · · · · · ·			
1865	Thermometer	Observed boiling point	Barometer corrected and reduced to 32°	Ercess over the Stan- dard pressure	Error of boiling point	Observed freezing point	Error in relative posi- tion of freezing and boiling point	Corresponding correc- tion to thermometer readings at Temp: $t = m$
October 2nd March 20th October 2nd ,, 4th	4140 4141 4142 4246 4347	0 212 ² 27 212 ² 21 212 ² 20 212 ¹ 15 212 ² 25	inches. 29:854 29:854 29:917 29:854 30:055	inches. `051 `051 + `012 `051 + `150	+ 0'36 + 0'30 + 0'18 + 0'24 + 0'00	31'92 32'00 32'00 32'00 32'00 32'00	o + 0°44 + 0°30 + 0°18 + 0°24 - 0°06	$\begin{array}{c} -\cdot 0024 \ (t^{0} - 32^{0}) \\ -\cdot 0017 \ (t - 32 \) \\ -\cdot 0010 \ (t - 32 \) \\ -\cdot 0013 \ (t - 32 \) \\ +\cdot 0003 \ (t - 32 \) \end{array}$

TABLE VII. Determination of the correction for error in relative positions of Freezing and Boiling points for Standard Thermometers 4140, 4141, 4142, 4246, and 4347(1).

(1) From Captain Clarke's letter, see art. 15 of this paper.

ace number	mber of parisons	Observed readings of thermo- meter	Total correc- tion = $(c + m + i)$	Corrected Reading	absolute perature	Total correction = $(c + m + i)$	Correction for constants $= (c + m)$	bservers
Referen	Nui	3241 4142 4246 4140 4141	3241 4142	3241 4142	True tem	4346 4140 4141	4246 4140 4141	ō
1	2	57°15 56°66 56°71 56°61 56°70	-:::::::::::::-	6° 57 56' 58	\$6.57	° ° ° ° -'14 -'04 -'13	• • • • • • • • • • • • • • • • • • •	
2		6.62 62.12 62.14 62.14 62.18	- 50 - 00	50 57 50 5-	62.02	-'11 -'08 -'15	'00 - '08 - '07	186
ĩ		67.64 67.14 67.20 67.12 67.18	-61 - 10	67:02 67:04	67.02	-17 -10 -15	061007	
4	-		- 01 - 10	0/03 0/04	07 03	-17 -12 -13		. н
ן <u>ה</u> ו	4	72 07 72 10 73 17 72 15 72 15	-05 -00	72 03 72 05	7202		-04 - 13 - 05	н 6
D	4	77 97 77 45 77 40 77 47 77 44	0017	77.31 77.28	77:29	-17 -18 -15		R.H.
6	4	82.74 82.24 82.27 82.20 82.23	0410	82.10 83.08	82.09	-18 -17 -14	071700	urke. uster
7	4	87.66 87.19 87.22 87.23 87.22	2312	87.07 87.04	87.05	121812	001800	5N
8	4	92.88, 92.41 92.42 92.44 92.44	6214	92.26 92.27	92.26	191818	021810	ptair Artei
9*	4	32.20 32.09 33.11 33.00 33.08						22
10	2	42'45 42'55 42'61 42'60	-'12	42'33			+.071307	
11	2	47.51 47.64 47.61 47.65	13	47'38		·26 —·23 ·27	.03 .08 .01	867.
12	2	52.30 52.38 52.33 52.39	18	52.02		.3651 .52	07 .06 .07	8
13	2	56.31 56.48 56.31 56.40	17	56.14		·34 -·17 ·26	·05 ·02 ·06	<u> </u>
14	2	87:30		87.05			1	58. E.E
15	2	92.63	25	92.38				ey.] (efs,
16	2	97.49 97.52 97.42 97.50	-'32	97'17	!		061013	Rog
17	2	100.26 100.60 100.60	32	100'24		36 .36	·07 ·16	Hen.
18	2	100.20 100.21	-:32	100.18		- '33	18	N.M.
19*	2	33.18 33.30 33.12 33.30						leu.
~~	-	0 <u>0</u> 9 00 <u>0-</u>			i			78

TABLE VIII. Comparisons between the Standard Thermometers (3)

* These readings were taken in melting Ice.

(2) The comparisons denoted by the reference numbers 1 to 9 are taken from Captain Clarke's letter, see art : 15 of this paper.

17. It will be noticed that standard 4347 (bent-bulb) is absent in the comparisons of 1867 Table VIII. In fact however this thermometer was compared with 4142 at regulated intervals between 42° and 100° in 1867; but as the resulting corrections were not required earlier, they were deduced only recently (1871). Unfortunately they prove unsatisfactory, exhibiting comparatively rapid variations in the corrections: they are therefore withheld until an opportunity offers for making verificatory comparisons.

Digitized by Google

Working Thermometers with scales marked on their own glass-tubes, in use 1867 and subsequently.

18. The working thermometers are all of the bent-bulb pattern and have their scales marked on their own glasstubes: they are mounted as usual on metal plates. At the bulb end, the tube is first bent at right angles to itself in a *horizontal* direction and then *downwards*: the horizontal piece is some $\frac{1}{4}$ " long and the bottom of the bulb is about $\frac{3}{4}$ " beneath the metal plate. The glass-tubes are some 10" in length, the hollow within, for the play of the mercury, terminating in the small safety reservoir mentioned in describing the standard thermometers. All the working thermometers resemble one another in the foregoing respects: otherwise they may be classified under the heads of "Long range" or "L. R", "Low range" or "l. R" and "High range" or "h. R". The L. Rs. are graduated to half degrees, from about 20° to 100°. The l. Rs. and h. Rs. read to tenths of degrees, the former from about 45° to 65° , the latter from about 60° to 85° . All these instruments were constructed by Mr. L. Casella and received in India early in 1867. They comprise the second batch of working thermometers obstained for use with the standards of length, the *first* batch having reached their destination broken with hardly an exception from careless packing.

19. Numerous comparisons have been made for determining the corrections to the working thermometers. The thermometer compared with was the Standard 4246, and this instrument was adopted, not in preference to the calibrated standard 4241, but because the latter has sprung a slight crack in its tube and it is therefore highly desirable to avoid subjecting the instrument to the operations involved in comparisons lest the crack should thus be increased.

20. The corrections deduced are as follows, the working thermometers hereafter named being only those which have been actually employed in the bar comparisons.

Temper- ature	4217	4218	4221	4227	4228	7345	7347	7348	7349
0	°			0	•	°	0	0	, o
40	- 20	- 23	- 20	30	- 41	- 50	- 30	- 20	- '34
42	• • • •	•27	• • • •	• 92	4/	•66	33	•25	40 • • • •
44	• • • •	34 •20	· 27	.40	49	•67	37	.20	41
40		-30 -21	• 2 T	43		•67	•26	•20	40
40		•••	• • • •	41		•67	.20	·29	40
50	44	33	•20	44)) • ()	.66	•28	·2 E	•26
54	44 '20	•28	•10	.39	•40	•6•	.27	33	•28
5 4 76	· 40	.20	•27	·10	49		37 26	•24	-20 -27
-50 r8	40	-28	•21	•40	•48	.00	•27	• <u>*</u> +	-28
50	•42	-28	°2т	43	•eo	•61	.10	10	28
62	44 • 2 7	•28	.30	*13	-14 -14		-28	•16	•27
64	•26	•2 C	• 2 5	· • 2 T	•4.4	·59	.35	•11	•25
66	.28	· •26	•22	•28	•45	•50	•40	•15	•22
68	•25	27	•32	•20	-TJ -A2	•58	•40	- J •2 I	•22
70	•24	25	.81	•28	•42	•56	.30	.33	•33
72	·28	•22	•22	•22	•48	•50	•3.1	-22	· •22
74	.то 10	•28	• 37	.33	•40	•60	•32	.32	•31
76	•42	-25	• 37	.32	·48	•65	•38	•27	•27
78	•30	·28	• 30	•37	•45	•64	•36	•31	• 25
80	·41	•33	•38	•34	•47	•67	•37	•35	• 3 5
82	42	.31	•30	•35	-48	•71	.37	•34	•35
84	45	·38	•38	.35	•46	•72	:30	.33	.35
86	•4Č	•37	•37	.35	•45	•72	•37	.35	.34
88	•49	.37	·40	•40	•47	•74	•36	·3Č	•35
90	49	•36	•43	•41	-50	•73	•35	•37	•36
92	4.3	•47	•46	•41	•52	·81	•40	•40	•38
94	•45	•50	•50	•41	•54	•87	43	•43	•42
δġ	•47	•52	•56	•40	•57	' 91	•45	•48	•44
98	•47	• 55	•59	42	•59	•94	' 47	•47	•44
100	-					•	•53	•47	•53

TABLE IX. Total corrections to the following Long-range thermometers to find true absolute temperature, determined by comparisons with Standard 4246.

Readings in melting Ice 1870,

32.30

32.26 32.36 32.28

Working	Thermometers	with	scales	marked	on	their	own	glass-tubes,	in	use	1867	and
-			subse	equently-	-(C	ontinu	1ed.)	-				

Temper- ature	7287	7290	7291	7292	Temper- ture	7287	7290	7291	7292
46 48 50 52 54 56	- [°] 15 '19 '21 '19 '17 '20	- [°] 20 [°] 23 [°] 22 [°] 19 [°] 17 [°] 18		+ [°] 03 [°] 02 [°] 00 [°] 05	58 60 62 64 66	[°] 21 *20 *30 *21 *13	- [°] 19 •18 ^{°24} •17 •11		+°05 '10 '04 '08 '07

TABLE X. Total corrections to the following Low-range thermometers to find true absolute temperature, determined by comparisons with Standard 4246.

TABLE XI. Total corrections to the following High-range thermometers to find true absolute temperature, determined by comparisons with Standard 4246.

Temper- ature	4011	4202	4204	4206	4215	4216	7293	7295	7296	7298
ős			-:22	-:24	-°18	,40	-°18		-°18	
67	•26	-3 -27	•25	·28	•26	.30	•22	•24	.51	·28
60	•26	.50	•24	•27	•27	·41	·2 I	•24	.55	·29
71	•28	•27	•25	•33	.30	.39	•23	•26	·2 I	.27
73	•38	•33	•30	•32	•33	•41	•23	•25	•20	•30
75	•38	•33	•32	•30	.35	•45	•20	•25	.50	•27
77	•36	•33	•31	•28	•28	•47	.14	•18	.12	.55
79	•33	•32	•28	.35	•26	.21	.12	•20	•13	•28
81	•29	•28	.51	•28	•23	•48	.13	•20	•15	·24
83	•31	.52	•27	•30	•27	•45	.10	•23	•18	•22
85	•35	•29	•29	•35	•35	•48	' 2 I	•25	.53	.52

(21.) The comparisons which form the basis of Tables *IX*, X and XI were all made in 1867, excepting the working thermometors 4217, 4227, 4228 and 7345, which were compared with Standard 4246 both in 1867 and again directly after the expansion experiments of appendix No. 6 in 1870. Each correction in the cases of the 4 working thermometers just named, is the mean result of 4 comparisons taken by 3 observers; all the other corrections are each derived from two independent comparisons. The observers were J. B. N. Hennessey, Esq. Lieutenent M. W. Rogers, R.E., and W. H. Cole, Esq. M.A.

Working Thermometers with scales marked on their own glass-tubes, in use 1867 and subsequently—(Continued.)

(22.) The occasions when these working thermometers were employed and the numbers of these instruments are as follows :---

		1.R	h.R	$\mathbf{L}.\mathbf{R}$
During the comparisons of appendix No. 3	In Standard bar I _S ,, I _B ,, A	······	4202, 4204 4011, 4215 	4228 4221 4227, 4217
" " appendix No. 4	In Standard steel foot In six-inch brass scales $A, M, \\ R, U, W \\ N, S, T, V$	·····	4215 4204 4011	
""" appendix No. 5 	see <i>the</i> appendix pages			4217, 4218
During the bar comparisons at the Bangalore Base-Line	In Standard bar A before mea- surement } ,, ,, at the middle of the line } ,, after measurement	7287, 7292 ₍₁₎ 7287, 7292 ₍₃₎	7293, 7298 ₍₂₎ 7293, 7298 ₍₄₎ 7293, 7298 ₍₄₎	7347, 7349(0)
" Cape Comorin Base- Line		see pages X	5 to X_12	

23. At the Cape Comorin base-line, in the absence of a sufficient number of L.R thermometers, the following expedient was resorted to for obtaining readings at the anticipated higher temperatures with thermometers of the kinds 1.R and h.R.

"Certain of the thermometers were (under instructions from the Superintendent) adapted to the anticipated "range of temperature by breaking off mechanically portions of the mercury columns sufficient in each case to utilize "the whole graduated scale, the superfluous fluid being driven up and lodged in the excess bulb at the top of the tube. "After this had been satisfactorily effected careful comparisons were made by Captain Basevi and Lieutenant J. Herschel "to ascertain the precise zero correction in each case."

"The adaptation was completely successful and with the exception of the 2 first days' comparisons, the 6 ther-"mometers used remained in their respective places from first to last unchanged." (J. HERSCHEL, LIEUT. R.E.)

the "zero corrections" thus ascertained were as follows :----

No. of Thermometer	Zero Correction	No. of Thermometer	Zero Correction
7287 l. R 7290 l. R 7291 l. R	+ 30 [°] 50 + 28 [°] 30 + 29 [°] 27	7292 l. R 7295 h. R 7298 h. R	° + 29 ^{.75} + 10 [.] 51 + 10 [.] 60

Working Thermometers employed with the 6-inch brass scales belonging to the compensated Microscopes.

24. The brass 6-inch scales M, N, P, R, S, T, and U are provided with straight-bulb thermometers about 8" in length reading to integral degrees and mounted on metal scales : their bulbs rest in hollows made in the 6-inch scales. The other two 6-inch brass scales, marked V and W, are the only ones of modern construction; their thermometers are of the bent-bulb pattern, about $5''_{\frac{1}{2}}$ in length, reading to complete degrees and mounted on metal plates : the scale is marked in duplicate on the glass-tube (see art. 12). All these thermometers were constructed by Messrs. Troughton and Simms. Each has been compared with a known Standard thermometer at some half a dozen different temperatures, and the mean difference employed, as a constant correction to the readings obtained in practise.

(D) Fehr	D0.	1 to 55 and 57 to 70.	(0)	D 0.	50.	J. B. N. HENNESSEY.
(1) (3)	Used in sets Do.	1, 2, 3 and 29 to 38. 1 and 16 to 22.	(2) (4) (6)	Used in sets Do.	4 to 28 and 39 to 50. 2 to 15 and 23 to 80.	

49

APPENDIX.

No. 9.

DETERMINATION OF THE LENGTHS OF THE SUB-DIVISIONS OF THE INCH [a.b.]

The Standard of length at present employed for determining the *runs* of the micrometers of microscopes, is the inch [a.b.] on the steel foot **IF**, which is divided into twentieths by lines engraved on gold pins let into the steel, and the operation has been conducted in two ways. One consisted in carefully leveling and focusing the inch and then running through all the spaces successively from a to b without any readjustment; the other in throwing it out of adjustment and refocusing after the measurement of each space. It is now desirable that the labour should be considerably reduced, by obtaining the absolute lengths of the several sub-divisions, so that in future any one of these may be made use of in place of the whole inch.

For this purpose sufficient data are forthcoming from the records of the Computing Office and the "Report on the measurement of the Cape Comorin Base-line". These data consist of observations for determining the *runs* of the microscopes **G** and **H** at Head Quarters and of **K** and **L** at Cape Comorin, when the former of the two methods of observation above described was adhered to. Other observations, in which the latter method was employed, have been excluded from the rc-duction; for the absolute length of the whole inch being already known, see page (29), it only remains to determine the relative lengths of the several spaces, and to do this it is necessary that they should be all in the same terms, a condition which seems best fulfilled when the same adjustment is maintained during an entire set of measurements from a to b.

The observations at Head Quarters were made by two observers, each taking three measures with each microscope. At Cape Comorin observations were made both before and after the measurement of the base-line, on the first occasion three measures being taken by each of five observers, and on the second two measures by each of four observers.

Of the lines marking the subdivisions of the inch, the 2nd, 4th, 6th &c., beginning from the extremity a, are numbered 1, 2, 3, &c.; the intermediate ones are not numbered, but for convenience will be denoted in the following Table by 0.5, 1.5, 2.5, &c. This Table contains the results from each group of observations with each microscope reduced to millionths of an inch, the inch [a.b] being taken as $\frac{1}{120} \mathbf{A} - 1.30 \text{ m.y}$, see page (29), or 999953 m.i. In combining the groups to obtain the final values, each has been assigned a weight proportional to the number of measures from which it has been derived, and the first of the two columns of means contains these values in m.i. As however all linear measurements are referred to the standard bar \mathbf{A} , and the unite adopted for minute quantities is a millionth of a yard, the value of each 20th is also given in terms of \mathbf{A} , and its difference from $\frac{\mathbf{A}}{2400}$ shewn in m.y.

In computing the probable errors, the groups have been employed instead of the original measures, a proceeding which is shewn by CHAUVENET to be sufficiently accurate. No regard has been had to the *p.e.* of [a.b] itself, a quantity so small as to be rejectaneous when dispersed over the several subdivisions.

Digitized by Google

Observers initials	J.B.N.H.	& W.H.C.	J.T.W., J.H., B.R.I	, J.P.B., 3.&M.W.R.	J.P.B B.R.B. &	J.P.B., J.H., B.R.B. & M.W.R.		Means		
No. of measures	6	6	15	15	8	8	in <i>m.i</i>	In terms of A		
Microscopes	G	н	ĸ	L	ĸ	L				
Space a to o'5 o'5 1'0 1'0 1'5 1'5 2'0 2'0 2'5 2'5 3'0 3'0 3'5 3'5 4'0 4'0 4'5 4'5 5'0 5'0 5'5 5'5 5'5 0'0 6'0 6'5 6'5 7'0 7'0 7'5 7'5 8'0 8'0 8'5 8'5 9'0	m.i 50027 49990 50006 50030 50040 50069 49852 49985 49985 49977 49978 49960 49984 50036 49968 50044 49596 50041 49952	 m·i 49971 49973 49978 50046 50031 50095 49887 50009 49976 49976 49976 49964 50035 50004 50025 49971 	m.i 50019 49979 50016 50049 50046 50078 49879 50019 49945 49973 49967 49990 50006 49973 50001 50001 50001 50001	m.i 50079 49965 49997 50055 50027 50084 49884 49980 49980 49981 49971 49946 50003 50003 49988 50003 49996 50003 49996	m.i 50021 49985 50014 50045 50047 50079 49874 50013 49981 49975 49999 49903 50021 49969 49965 50054 49974	m.i 50011 49964 49985 50047 50031 50078 49872 49984 49976 49959 49968 49976 49959 49968 49976 49959 50019 50008 49991 50021 50069 49978	50030 49975 5002 50047 50037 50081 49881 49999 49970 49970 49970 49970 49970 49970 49970 49970 49970 49970 49970 49970 50014 49982 50003 50003 50003 50003	$\begin{array}{c} m.y \\ \hline A \\ 2400 \\ + 0.83 \pm 0.27 \\ n \\ - 0.69 \pm 0.08 \\ n \\ + 0.06 \pm 0.11 \\ n \\ + 1.31 \pm 0.06 \\ n \\ + 1.03 \pm 0.07 \\ n \\ + 2.25 \pm 0.05 \\ n \\ - 3.31 \pm 0.05 \\ n \\ - 0.03 \pm 0.14 \\ n \\ - 0.83 \pm 0.12 \\ n \\ - 0.83 \pm 0.12 \\ n \\ - 0.78 \pm 0.22 \\ n \\ - 0.31 \pm 0.11 \\ n \\ + 0.39 \pm 0.09 \\ n \\ - 0.50 \pm 0.11 \\ n \\ + 0.03 \pm 0.15 \\ n \\ + 0.03 \pm 0.15 \\ n \\ + 0.03 \pm 0.11 \\ n \\ - 0.69 \pm 0.11 \end{array}$		
9.0 9.2 9.2 p	50096 49882	50087 49883	50084 49924	5009 0 49875	5c088 49896	50084 49926	50089 49899	$\begin{array}{c} & +2.44 \pm 0.03 \\ & -2.81 \pm 0.18 \end{array}$		
Inch [a.b] :	= 999953	999953	999953	999953	999953	999953	999953	$=\frac{\mathbf{A}}{120} - 1.30 \ m.y$		

Linear values of the sub-divisions of the inch [a.b] on the Standard steel foot IF

N.B. The values of single divisions of the micrometers employed vary from 40 m.i to 46 m.i.

February 1871.

W. H. COLE.

APPENDIX.

No. 10.

REPORT ON THE PRACTICAL ERRORS OF THE MEASUREMENT OF THE CAPE COMORIN BASE.

This report only takes notice of certain instrumental errors and errors of observation which can be practically determined and are free from entanglement with other considerations. Other errors such as those of unit, of factor of expansion, of imperfect compensation, those due to difference of circumstances in the measurement and in the Bar comparisons, are here omitted.

The practical errors of measurement may be divided into three heads; viz :---

- I. Errors arising from defective alignment :
- II. Errors arising from dislevelment of Bars and Microscopes :
- III. Errors of intersection of the Bar and Register Dots :

The two first sources of error will, with one exception, have the effect of always increasing the apparent length of the base; the last one is of variable sign. The three are somewhat entangled, as for instance, the errors of cross levelling the end microscopes and of intersecting the register dots affect the position of the boning instrument, and consequently the direction of the line.

The principle followed generally in this report is that of finding a maximum error, and then assuming that errors of all magnitudes between this and zero occur with equal frequency. Supposing the errors to be $o, a, 2a, \ldots, (n-1)a$ and putting x = (n-1)a for the maximum error.

the e.m.s² =
$$\frac{a^2 + (2a)^2 + \ldots + (n-1a)}{n}$$

= a^3 . $\frac{n \cdot \overline{n-1} \cdot \overline{2n-1}}{6n}$
 \therefore e.m.s = $\frac{x}{\sqrt{3}}$ when n is large
 \therefore p.e = '39 × maximum error.

I. Errors of alignment.

The sight vane stations are considered as errorless, for though *certainly* not exactly in one line, still the deviations from one are as certainly so small as to have no appreciable effect on the length of the base.

Digitized by Google

ON THE PRACTICAL ERRORS OF THE MEASUREMENT.

The remaining errors of alignment are *firstly*, those of position of the boning instrument; secondly those of position of the intermediate bars and microscopes. The former are due to

- (a.) Error of cross levelling of boning instrument;
- (b.) Collimation error, pivot error, and error due to the sliding tube of the telescope;
- (c.) Errors of intersection of director and sight vane;
- (d.) Error due to rear microscope;
- (e.) Error due to leading microscope;

(a.) Error of cross levelling boning instrument. The effect of this error depends on the difference of elevation of sight vane and Director on microscope. The steepest slope on the line did not exceed 1 foot per set; the mean slope on the steepest portion was only 0.35 feet per set, viz: 19.5 feet in 3,150 feet. Supposing the height of the sight vane to be 2 feet and of boning instrument to be 5 feet, we have the maximum angle of elevation of sight vane =

$$\tan^{-1} \frac{19.5 + 2 - 5}{31.50} = 0^{\circ} 18''$$

Again to find the maximum depression of Director.

			л.	ın.	л.	гп.	
Height of boning Instrument	•••	•••			5	0	
Least height of director		•••	2	0	-		
Greatest slope of ground in half a "se	et"	•••		6	2	6	
		Differ	onco		0	6	

Dividing this difference by the length of half a set viz. 31.5 feet, we get angle of maximum depression 2¹.

$$= \tan^{-1} \frac{2^{\circ} 5}{3^{\circ} 5} = 4^{\circ} 33$$

Hence

maximum angle between sight vane and director = $4^{\circ}51'$.

Let θ = maximum dislevelment in seconds, then error in arc or apparent angular displacement of the director The greatest error of level was $2\frac{1}{2}$ divisions or 5"; whence multiplying by 0.39

Probable error =
$$\pm 0^{\prime\prime}$$
.166

and probable error of position of boning instrument in inches = \pm 378 × 166 sin 1", where 378 is the distance in inches from boning instrument to director,

$$= \pm 0.0003$$
 (a.)

(b) Collimation error, pivot error &c. To determine the combined effect of these errors, the boning instrument was set up, and a small cone placed on a trestle of the average height at a distance of 31.5 feet. The boning instrument was then placed in line with this cone and a distant sight vane first with graduated face of vertical circle to left or F.L. and then with graduated face of circle to right or F.R. the difference in the two positions being measured on the sliding portion of the instrument by a scale of 40 parts = 1 inch. The results are shewn in the Table in the margin.

F.L 4 ^{.6} 3	F.R. 4'52	Diff. 0'11	F.L. readings are too large consequently the telescope is too much to the right on that f The instrument was always used on F.R. so that the telescope was always to the left by	ace.
4°04 4°66 4°70	4 59 4 57 4 60	•05 •09	- 0.044 divisions or	
Mean	difference . do.	= 0.088	- 0'0011 inches	(b ₁)
			From the observations here recorded it may be inferred that the probable error of setting the boning instrument is	; up

 \pm 0.0006 of an inch (b3)

Digitized by Google

ON THE PRACTICAL ERRORS OF THE MEASUREMENT.

(c.) Errors of intersection of sight vane and director. The maximum error of intersecting the near director

=
$$\frac{1}{4}$$
 of silver line on director = $\frac{1}{4} \times .036$ inches
= 0.009 inches

whence probable error =
$$009 \times 39 = \pm 0035$$
 (c₁)

The maximum error of intersecting sight vane = entire breadth of tin line on sight vane = 25 inch and therefore

The effect of this will vary with the distance : a mean distance of 20 sets may be assumed ; whence

Probable error
$$=\pm \frac{1}{20} \times \cdot 098 = \pm \cdot 0025$$
 inch (c₃)

(d.) Errors of rear end microscope. By experiment it was ascertained that the centre of the director when placed on the rear microscope did not coincide with the axis of that microscope, but that when the level faced towards the boning instrument (as it did in practice), the centre of the director was '009 of an inch to the right : consequently the boning instrument would place itself off the true line to the right by, on an average, '009 $\times \frac{20\frac{1}{3}}{20}$

$$= + \cdot \operatorname{oog2}$$
 inch (d_1)

The value of one division of the level scale = 5'' and taking 2 divisions = 10'' as the maximum error of cross level, the director would be displaced by

 $\pm d \sin 1'' \times 10''$ where $d = \text{mean height of tongue above register + height of director above tongue = <math>8.5 \pm 8.5$ = 17 inch.

hence probable error of position of boning instrument on this account

$$= \pm 17 \sin 1'' \times 10'' \times 39 \times \frac{20\frac{1}{2}}{20}$$

= \pm 0.0004 (d₂)

The extreme error of intersecting register dot (including collimation error) = $\frac{1}{8}$ of the dot = $\frac{1}{8} \times \cos \beta$ inch consequently

Probable Error =
$$\pm$$
 '0004 (d₃)

Digitized by Google

Collecting all these errors together we find the probable error of the position of the boning instrument to be

or

р

$$= + \cdot 0081 \pm \sqrt{(\cdot 0003)^2 + (\cdot 0006)^2 + (\cdot 0035)^2 + (\cdot 0025)^2 + (\cdot 0004)^2 + (\cdot 0004)^2}$$

= + \cdot 0081 \pm \cdot 00044 to right in inches.

(c) Error in position of boning instrument due to leading microscope. This error will depend partly on the telescope tube of the boning instrument and partly on the same errors as occur with the rear microscope. To determine the amount due to the tube of the telescope, a scale was fastened to the top edge of a trestle at the usual distance of the leading microscope and a small cone on another trestle at the distance of the rear microscope : and then the boning instrument being aligned on the cone and a distant sight vane the readings of the scale were taken; this was done several times on both faces, the readings were, in inches.

F.L	F.R	Diff :
6.130	6.180	0.000
5.130	6.180	•060
5.120	б [.] 204	•048
	Mean	0.020

The readings of the scale increased from right to left, consequently on F. R. the boning instrument throws to the left by $\frac{1}{2} \times 0.56 = 0.28$ inches.

It was also found that the axis of the advanced microscope (V), level towards the rear, was 0'0045 inch to left of the centre of director, so that the advanced register dot would be placed altogether -(.028 + .0045) = -.0325inches to left.

It has been shewn however that the instrument places itself too much to the left on F. B. by '0011 inch, consequently this must be subtracted from the above and the register dot is therefore

$$-$$
 '0314 to left (4)

Again Probable Error of intersecting director on advanced microscope is $\pm 000 \times 39$

$$= \pm \cdot 0035$$
 (63)

and Probable Error of level of microscope as before

and Probable Error of intersecting register dot

$$= \pm \cdot 0004 \tag{64}$$

whence combining these quantities the error of position of advanced register dot

$$= - \cdot 0314 \pm \sqrt{(\cdot 0035)^3 + (\cdot 0004)^3 + (\cdot 0004)^3}$$

or $q = - \cdot 0314 \pm \cdot 0035$

Next to find the effect on the line.

If S be the sight vane, B the true position of boning instrument, A the advanced and R the rear microscope; **B** R = $\frac{1}{2}$ set, n the number of sets between R and S so that B S = $n + \frac{1}{2}$; then if B B₁ = p, the instrument will place itself at B_1 and will, owing to the error q, place the advanced register at A_1 instead of a_1 . Again, the next set, the boning instrument will be at B_3 instead of b, and the 2nd register will be laid down at A_3 instead of a_3 ; and so on.

If q_r be the distance of the rth register dot from the line, we find

$$q_{1} = A A_{1} = A a_{1} + q = \frac{n - 1}{n + \frac{1}{2}} p + q$$

$$= (n - 1) \left\{ \frac{p}{n + \frac{1}{2}} + \frac{q}{n - 1} \right\}$$

$$q_{2} = A' A_{2} = A' a_{2} + q = \frac{n - 2}{n - 1 + \frac{1}{2}} \beta B_{2} + q.$$
and $\beta B_{2} = \beta b + p = \frac{n - 1 + \frac{1}{2}}{n - 1} q_{1} + p$

$$= (n - 1 + \frac{1}{2}) \left\{ \frac{p}{n + \frac{1}{2}} + \frac{p}{n - 1 + \frac{1}{2}} + \frac{q}{n - 1} \right\}$$

$$\therefore q_{3} = (n - 2) \left\{ \frac{p}{n + \frac{1}{2}} + \frac{p}{n - 1 + \frac{1}{2}} + \frac{q}{n - 1} + \frac{q}{n - 2} \right\}$$
generally
$$q_{r} = (n - r) \left\{ \left(\frac{1}{n + \frac{1}{2}} + \frac{1}{n - 1 + \frac{1}{2}} + \dots + \frac{1}{n - r + 1 + \frac{1}{2}} \right) p + \left(\frac{1}{n - 1} + \frac{1}{n - 2} + \dots + \frac{1}{n - r} \right) q \right\}$$

and

gle
If the boning instrument was originally off the line by a quantity s, then the term $\frac{n-r}{n+\frac{1}{3}}$ s

must be added to the above,

Tables for both these series were formed by summing continuously a table of reciprocals.

To apply these expressions to the measurement : in measuring North to South the sight vanes were at the following distances apart in sets

53, 39, 25, 25

and in measuring from South to North the distances were

50, 39, 53

consequently, since the sight vane was always removed (except at the closing sections of course) when the measurement arrived within 4 sets of it, the values of n, for the two circumstances of measurement, are

North to South 53, 43, 29, 29

South to North 50, 43, 57

The following table gives some of the values of q for the first section the minus sign signifying to the East or left hand.

<i>r</i> =	<i>q</i> =	$\Delta q =$	<i>r</i> =	q =	$\Delta q =$
1 2 3 4	$\begin{array}{r} - \circ \circ \circ 234 \pm \circ \circ \circ 55 \\ - \circ \circ 464 \pm \circ 0112 \\ - \circ \circ 695 \pm \circ 0163 \\ - \circ 0911 \pm \circ 0216 \end{array}$	- 0·0230 ± °0124 - °0231 ± °0198 - °0216 ± °0271	35 36 37 38	$\begin{array}{r} - & 0.4689 \pm .1080 \\ - & .4663 \pm .1073 \\ - & .4632 \pm .1062 \\ - & .4584 \pm .1049 \end{array}$	+ $0.0026 \pm .1522$ + $.0031 \pm .1509$ + $.0048 \pm .1492$
15 16 17	$\begin{array}{r} - \circ 3021 \pm 0703 \\ - 3178 \pm 0740 \\ - 3319 \pm 0774 \end{array}$	- 0'0157 ± '1020 - '0141 ± '1070	40 41 42	- 0'4436 ± '1011 - '4337 ± '0985 - '4217 ± '0956	$+ 0.0009 \pm .1411$ + .0120 $\pm .1373$
31 32 33 34	$ \begin{array}{r} - 0.4649 \pm .1074 \\4673 \pm .1079 \\4688 \pm .1082 \\4695 \pm .1081 \end{array} $	- 0 [.] 0024 ± [.] 1522 - [.] 0015 ± [.] 1528 - [.] 0007 ± [.] 1529	46 47 48 49	$\begin{array}{r} - \circ \cdot 3507 \pm \cdot 0780 \\ - \cdot 3256 \pm \cdot 0717 \\ - \cdot 2965 \pm \cdot 0647 \\ - \cdot 2627 \pm \cdot 0564 \end{array}$	+ 0.0221 ± .1000 + .0201 ± .0000 + .0338 ± .0828

The mean value of Δq from the first 34 is

— ·0135 ± ·1017.

The mean value of Δq from the last 15 is

 $+ .0147 \pm .1306$.

consequently the mean value of the angle of inclination of any set to the line is clearly

 $< \tan^{-1} \frac{13}{756} = 36''$ very nearly: Now if θ = angle of inclination of a set to the true line, then the error in length of the set = 21 Sin² $\frac{\theta}{2}$ = 2×756 Sin² 18'' in inches, = '0000115 inches, and the error of length of the

first section $= \cdot 00001$ inches.

and

For the other sections the amount will be the same for all practical purposes, and the effect on the whole length of the base may be asserted safely to be not more than $141\frac{1}{2} \times .0000115$

= 0.0016 inches.

Digitized by Google

It will be interesting to compare the measured differences of alignment at the Register Brasses X Y Z with the computed differences.

56

For X, measuring North to South n = 53, r = 35 therefore $X_1 = -0.469 \pm .109$. For Y n = 43, r = 21 and $s = -.262 \pm .058$ $\therefore Y_1 = -0.488 \pm .087$ for Z n = 29, r = 17 and $s = -.267 \pm .053$ $\therefore Z_1 = -0.369 \pm .062$

Similarly measuring South to North we have

For Z n = 50, r = 37whence $Z_2 = + 0.426 \pm .098$ for Y n = 43, r = 26whence $Y_2 = + 0.482 \pm 0.091$ and for X n = 57, r = 22whence $X_3 = + 0.582 \pm .101$ $s = + 0.257 \pm .054$

consequently subtracting the values N to S from those S to N we have

	Computed difference	Measured differences				
at X	+ 1.021 ± .149 inch	(II – I) + 1 [.] 033	(IV – III) + 1.221	Mean + 1.277		
" Y	$+ 0.970 \pm .150$ "	" + 1.000	" + 1.840	" + 1°465		
,, Z	+ 0 [.] 795 ± '116 "	"	"	" + 1°253		

Though it is evident from these results that some source of error has been under-estimated, still the effect on the length will be scarcely increased, as that effect is due to the *differences* in the errors of the alignment of the several sets.

The error in length, due to defective alignment of the ends of a set, has been investigated, but, there are still the errors of alignment of the intermediate bars and microscopes to be considered.

- These are (a) Error of intersecting director.
 - (b) Error of cross levelling microscopes.
 - (c) Error of non-coincidence of axis of microscope with line passing through the foci.
 - (d) Error of intersecting dot on tongue of bar.
 - (e) Error of side telescope.

(a) The probable error of intersecting any director by the boning instrument may be taken as

- $\pm \frac{1}{4} \times .036 \times .30 = \pm .0032$ inch
- (b) The maximum error of cross levelling a microscope is 3 division = 15''

whence Probable error =
$$15 \times 39 = 6''$$
 nearly
and displacement of director = $\pm 8.5 \sin 6''$

$$= \pm .0003$$
 inche

(c) In all the microscopes there was a slight excentricity of the axis; on an average it did not exceed twice the diameter of a bar dot

(d) The error of placing a dot midway between the parallel wires did not exceed as a maximum the diameter of the dot so that the

Probable Error =
$$\pm \cdot 003 \times \cdot 39 = \pm \cdot 0012$$
 inch (d)

(c) Errors of the side telescope. The combined errors of collimation and parallelism were as follows:

During	I	measurement mean of	7 microscop	es 9	57	
	τπ	Do.	do. do	1	9	
	ĪV	Do.	do.	I	21	
			Mea	n 3	37	

57

(a)

The effect of this on the position of one end of a bar is $\pm 3 \sin 3' 37'' = \pm .0032$ inches And if $\frac{1}{10}$ of an inch be the maximum error of intersecting the horns of the boning instrument, then

Probable error = \pm '1 × '39 = \pm '039 inches.

and the effect of this for the mean microscope

$$=\pm \cdot \circ_{39} \times \frac{3}{12 \times 6_3} = \pm \cdot \circ_{002}$$
 inch (e₂)

Lastly error on account of difference between half the space between the two horns and the space proper to each microscope. These differences and the angles subtanded thereby at the distances of the respective microscopes were as follows :---

Wm	icrocone	ni 10' ac	ch substanded angle	· 6	"2
S		•00		0	<i>)</i>
Ũ	"	.10	"	ō	12
M	"	•06	"	ō	6
N	"	' 02	59	0	3
0	"	. 09	22	0	15
V	,,	•14))	0	13
			Mean	0	8

(e3)

(e1)

The error on this account $= \pm 3'' \sin 8'' = \pm 0001$ inch Consequently the whole amount by which one end of a bar may be placed out of line between the ends

$$= \pm \sqrt{(.0035)^2 + (.0003)^2 + (.000)^2 + (.0012)^2 + (.0032)^2 + (.0002)^2 + (.0001)^2}$$

= \pm .0077 inch.

For the extremes of the two end bars the first two errors have been already allowed, consequently the probable error of their alignment is

$$\pm$$
 .0069 inches.

The angle each end bar may make with the line is

$$= \sin^{-1} \sqrt{\frac{(0077)^2 + (0069)^2}{12 \times 10}} = 17''.5$$

and each intermediate bar

$$= \sin^{-1} \frac{0077 \sqrt{2}}{12 \times 10} = 18''.7$$

and effect on the length per set

$$= 2 \times 6 \times 120 \text{ Sin } {}^{2}9'' = \cdot 000,002,74 \text{ inch.}$$

and on $141\frac{1}{2}$ sets = $\cdot 0004$ inches.

Also the error on the part measured by the microscope due to (d) and (e) = $\pm \cdot 0034$, and the angle which the microscope makes with the line = $\sin^{-1} \frac{\cdot 0034}{6}$, whence error in length per microscope = $\frac{(\cdot 0034)^3}{2 \times 6}$, and error per set

= $6 \times \frac{(\cdot \circ \circ 34)^2}{2 \times 6} = \frac{(\cdot \circ \circ 34)^2}{2}$, and error in $141\frac{1}{2}$ sets

= .0008 inches.

We have therefore the total error in length due to errors of alignment $= + \cdot 0016 + \cdot 0004 + \cdot 0008$

= 0'0028

(I)

Digitized by Google

58

II The errors of level. These are of three kinds.

- (a) Errors of bar levels.
- Errors of microscope levels. (b)

Effect of level error of end microscopes on the length owing to look down telescopes. (c)

The first two errors are of invariable sign.

(b) Levels of Microscopes.

and on 1413 sets

(a) Bar Levels

The values of one division of the level scales were found to be as follows ;

A	Bar	•••	•••	•••	•••	•••	11
B	"	•••	•••	•••	•••	•••	5•
Č.	"	•••	•••	•••	•••	•••	5.
ñ	"	•••	•••	•••	•••	•••	6.
E	"	•••	•••	•••	•••	•••	5.3
н	"	•••	•••	•••	•••	•••	8.3
					Mean		6.3

The extreme error of levelling a bar may be set down as ± 2 divisions from the supposed true level reading; whence Probable error = $\pm 12^{".6} \times :_{39} = \pm 5^{"}$ nearly.

The level readings compared with the plane of the tongues were determined before and after the first measurment and after each successive measurement. The mean of the readings before and after a measurement may be taken as the true reading, and the difference between this mean and the first of the readings (which was used in the measurement) considered as the error. These errors converted into arc were as follows : TT

р

		A	D	U	D	LC.	п
I	Measurement	7 .7	12 °0	17.5	<i>"</i>	15.0	31.5
II	>9	28.6	4.2	24.0	49 [.] 8	3 8.0	5.8
III	"	22.0	1.0	40.0	3.0	20.7	12'4
IV	"	8.8	2.2	27.5	39.0	24.5	14.1
	Means	16.8	5.0	27.3	30.0	24.5	10.0

and General Mean = 20''.

Consequently error of measurement in inches per set = $720 \times 2 \left\{ \sin^2 10'' \pm \sin^2 2\frac{1}{2}'' \right\} = 000,0034 \pm 000,0002$ and error on $141\frac{1}{2}$ sets.

$$= 0005 \pm 0000$$
 (a)

The values of the level scales of the two end microscopes V and W were found to be each equal to 5" per division. this value may be safely assumed for all the microscopes.

The maximum dislevelment may be set down as 5 divisions for the intermediate microscopes and 21 divisions for the end microscopes, the latter being invariably levelled with very great care. Consequently the average errors may be taken as $25'' \times 39 = 10''$ for the intermediate and $12'' \cdot 5 \times 39 = 5''$ for the end microscopes; and the error in length per set

$$= 5 \times 12 \sin^{3} 5'' + 12 \sin^{2} 2\frac{1}{3}'' = 12 \sin^{3} 1'' (125 + 6.25)$$

= 1575 \sin^{3} 1'' = .000,000,04
= .0000 (b)

(c) Levels of end microscopes. Any dislevelment of the end microscopes shortens or lengthens the base according to which direction the axis of the microscope is inclined; consequently the error will be of an uncertain sign. As extra care is taken in leveling these microscopes, the maximum error has been taken as 21 divisions and the probable error as $= \pm 5''$

If d = distance of register from tongue at rear end.

And D = distance of register from tongue at advanced end.

Then probable error in length of one set

consequently for whole base
Probable Error =
$$\pm \sin 5'' \sqrt{\Sigma (d^2) + \Sigma (D^2)}$$

 $= \pm \sin 5'' \sqrt{\overline{\Sigma (d^2) + \Sigma (D^2)}}$
 $= \pm \sin 5'' \sqrt{\overline{85'4 + 76'4}}$ in feet
 $= \pm \cdot 0037$ inch . (c)

Hence Total due to errors of Levelling

$$= 6005 \pm 6037$$

III. The errors of intersection.

The Diameters of the dots on the bars were measured and found to be as follows in inches

Standard A		Left Dot inches 0 [.] 0026		Right Dot inches 0 [.] 0028
Bar A		0.0031		0'0025
, В	4	0.0038		0 ^{.002} Č
" C		0.0028		0'002 I
" D		0'0024		0.0031
		0.0030		0.0033
" " " "		0.0020		0.0023
. " 11		00020		0 0020
	Mean	0'0031	Mean	0.0025 = 0.0028 inches.
Also the dots on some of the registe	ers and pin h	eads were m	easured viz:	
Register A	·0074	Pin Dot No	. 11	0'0110
" C	0005	,,	23	1000
" Е	.0080		27	' 0107
			40	.0080
General mean $= 0001$ inches.			•	
The maximum error of intersectin	ng register d	$ots = \frac{1}{2}th ot$	f Diameter.	•
Do. Do.	Bar	$= \frac{1}{2}$ th	••	
Whence probable error in the forme	r		"	
$=\pm \frac{.0001}{.0001} \times .30 = \pm .000$	00,444 inch.			

and probable error in the latter

 $= \pm \frac{.0028}{4} \times .39 = \pm .000,273$ inch.

and probable error per set

$$= \pm \sqrt{2 \times (.000444)^2 + 12 (.000273)^2}$$

= \pm :001135.

Therefore the probable error in $141\frac{1}{2}$ sets *i.e.* on the whole base

$$= \pm \cdot 001135 \sqrt{141\frac{1}{3}}$$

$$= \pm \cdot 0135 \text{ inch} \tag{III}$$

(II)

Digitized by Google

Combining errors I. II. III. together we obtain the whole error of measurement arising from the causes which have been specified.

 $= \pm .0033^* \pm .014,0$ inches.

By an oversight in calculation this quantity was originally found to be + 0017 inch = '00014 of a foot and is quoted at this value on Page (78) Chapter VIII Section 10 of this volume.
 J. P. BASEVI, CAPTAIN, R.E.

Excess of compensation burs over Standard A at 62". Cape Comorin Base. Bruss Components West. Comparisons (I. 1.) 9th January 1869

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62, with the old value of the factor of expansion, or 000,006,801, for 1°F.

•

· · ·

PLATE. II.

Excess of compensation bars over Standard A at 62. Cape Comorin Base Brass Components West . Comparisons (I. 2) II the January 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62° with the old value of the factor of expansion, or 000,006, 801, for 1°F.

C. Diese, Proto.

.

•

-.

• •

•

The horisontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yord on the outer scale. The observations of the Standard wave reduced to 62, with the old value of the factor of expansion, or 000,006,801, for 1°F.

C. Drece, Photo.

c. G. Olizotate, Zine. Digitized by Google

.

.

Excess of compensation bars over Standard A at 62: Cape Comorin Base. Brass Components West. Comparisons (I.4.) 26" January 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62. with the old value of the factor of expansion, or 000,006,801, for 1°F.

C. Dreoz, Photo.

a. G. OTLEFFACH, 2800. Digitized by Google

· . .

Excess of compensation bars over Standard A at 62°. Cape Connorm Base Brass Components East . Comparisons (11.1.) 28th January 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 million the of a yard on the outer scale. The observations of the Standard were reduced to 62° with the old value of the factor of expansion, or 000,006,801, for 1° F.

Excess of compensation bars over Standard A at 62". Cape Comorin Base. Brass Components East. Comparisons (IL2) · 29 th January 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62", with the old value of the factor of expansion, or 000,006,001, for 1° F... C. DISON, Photo.

•
•
•

•

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62° with the old value of the factor of expansion, or 000,006.801, for 1°F._ 0. Drow, Photo.

• . • . • •

Excess of compensation bars over Standard A at 62°. Cape Comorin Base. Brass Components East. Comparisons (II. 4.) IIth February 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62, with the old value of the factor of expansion, or 000,006, 801, for 1°F.

C. G. OLLEFFACR, Ziveo. Digitized by Google

C. DYNON, Photo.

•

· · ·

PLATE IX

Excess of compensation bars over Standard A at 62°. Cape Comorin Base. Brass Components West. Comparisons (III.1.) 12th February 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yord on the outer scale. The observations of the Standard were reduced. to 62, with the old value of the factor of expansion, or 000, 006, 801, for 1°F._ C. DINON, PLOUD.

C. G. OLEVALCE, Zibon Digitized by Google

.

•

Excess of compensation bars over Standard A at 62. Cape Comorin Base. Brass Components West. Comparisons (III.2.)13th February 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62, with the old value of the factor of expansion, or 000,006,801, for 1°F... C. Druss, Photo.

C. O. DILEBBECH, Zince. Digitized by Google

•

.

Digitized by Google

•

Excess of compensation bars over Standard A at 62°. Cape Comorin Base. Brass Components West. Comparisons (III.3) 24th February 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62° with the old value of the factor of expansion, or 000,006,801, for 1° F.

•

•

Excess of compensation bars over Standard A at 62.° Cape Comorin Base. Brass Components West . Comparisons (III.4.)25th February 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62° with the old value of the factor of expansion, or 000,006,801, for $1^{\circ}F_{...}$

C. Dreor, Photo.

C. C. OLIEFFACH, Zinco. Digitized by Google

•

Excess of compensation bars over Standard A at 62.° Cape Comorin Base. Brass Components East. Comparisons (IV.1.) 26th February 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the standard were reduced to 62° with the old value of the factor of expansion, or 000,006,801 for 1°F. C. Drow, Photo.

C. G. OLLEFFACE, Zinoo. Digitized by Google

•

C. G. OLIMPIACE, Zinco

Digitized by Google

Excess of compensation bars over Standard A at 62. Cape Comorin Base. Brass Components East . Comparisons (IV.2.) 27 the February 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62? with the old value of the factor of esquansion, or 000,006,801 for 1°F.

C. Drees, Photo.

•

•

Excess of compensation Bars over Standard A at 62°. Cape Comorin Base. Brass Components East. Comparisons (IV. s.) 9th March 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62°, with the old value of the factor of expansion, or 000,006,801, for 1°F. C. DINON, FLOTO.

•

•

. •

. ·

•

· .

Excess of compensation bars over Standard A at 62. Cape Comorin Base. Brass Components East . Comparisons (N.4.) 10th March 1869.

The horizontal intervals correspond to one hour. The vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. The observations of the Standard were reduced to 62° with the old value of the factor of expansion, or 000,006,801, for 1'F._ C. Dross, Phone.
·

PLATE XVII.

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

Cape Comorin Base. Brass Components West. Comparisons (I.1.) 9th January 1869.

The horixontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale...

• •

.

· PLATE XVIII

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

Cape Comorin Base. Brass Components West. Comparisons (I.2.) 11 th January 1869.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale...

C. Drsor. Photo.

.

•

PLATE XIX

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

Cape Comorin Base. Brass Components West. Comparisons (I. 3.) 25th January 1869.

The horizontal intervals correspond to one hour The upper vertical intervals correspond to 1°F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale.

•

PLATE XX.

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

Cape Comorin Base . Brass Components West . Comparisons (I.4.) 26th January 1869.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale.

C. Drios, Photo.

.;

. . .

• • . . .

. .

. .

ذ

.. .

. .

• · · ·

.

.

Digitized by GOOGLEVACH, ZINCO

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

Cape Comorin Base. Brass Components East. Comparisons (II.1.) 28th January 1869.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale.

C. Dreos, Photo.

· .

.

¥

· · ·

.

. .

•

.

PLATE XXII.

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

Cape Comorin Base. Brass Components East. Comparisons (II. 2.) 29th January. 1869.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to I'F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale ... C. Dysos, Photo.

•

PLATE XXIII

Digitized by GOOGIC

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62' and curves of temperatures of vir and of standard.

Cape Comorin Base. Brass Components East. Comparisons (II. 3.) 10 the February 1869.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to IF. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionthe of a yard on the outer scale. C G. OLLENBACH, Zinco,

C. Drios. Photo.

•

. . .

•

•

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard . Cape Comorin Base. Brass Components East. Comparisons (II.4.) II & February 1869.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to IF. of temperature. The lower vertical intervals correspond to 2 divisions of the nucrometer on the inner scale, and to 20 millionths of a yard on the outer scale.

PLATE XXV

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard. Cape Comorin Base. Brass Components West. Comparisons (III. 1.) 12th February 1869.

The upper vertical intervals correspond to 1. F. of temperature The horizontal intervals correspond to one hour. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of in yard on the outer scale . C. O. Olimental Sec. C. Drane, Photo.

PLATE XXVI.

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

Cape Comorin Base. Brass Components West. Comparisons (III.2.) 13th February 1869.

The horisontal intervals correspond to one hour. The upper vertical intervals correspond to l'F of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale.

•

PLATE XXVII.

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale._

17

Digitized by C. G. Ortrata, Kino.

.

· · · ·

•

• •

.

.

•

PLATE XXVL

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard a 62° and curves of temperatures of air and of standard.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature. lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yc on the outer scale.

Digitized by COC Grander 1

•

PLATE XXIX

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale. C. Draw, Pane.

-

Digitized by Google

.

.

٠

PLATE. XXX.

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale...

PLATE XXXI.

Ordinary and corrected curves of excess of mean of Compensation Bars over Standard at 62° and curves of temperatures of air and of standard.

The horizontal intervals correspond to one hour. The upper vertical intervals correspond to 1°F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 millionths of a yard on the outer scale...

•

.

.

· · ·

.

.

PLATE XXXII.

The horizontal intervals correspond to one hour The upper vertical intervals correspond to 1° F. of temperature. The lower vertical intervals correspond to 2 divisions of the micrometer on the inner scale, and to 20 million the of a yard on the outer scale. Digitized by, C. OLENDACH Spee

C. Driver, Photo:

PLATE XXXIII

Cape Comorin Base. Curves of excess of mean of Compensation \bot 's over Standard, corrected for everything but difference of temperature of brass & iron components.

C. G. OLISTIAN, ZION Digitized by GOOGLE

.

•

. .

· . · ·

.

.

Digitized by Google

Digitized by Google

